Predicting Size of Forest Fire Using Hybrid Model

Abstract : This paper outlines a hybrid approach in data mining to predict the size of forest fire using meteorological and forest weather index (FWI) variables such as Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), Drought Code (DC), Initial Spread Index (ISI), temperature, Relative Humidity (RH), wind and rain. The hybrid model is developed with clustering and classification approaches. Fuzzy C-Means (FCM) is used to cluster the historical variables. The clustered data are then used as inputs to Back-Propagation Neural Network classification. The label dataset having value greater than zero in fire area size are clustered using FCM to produce two categorical clusters,i.e.: Light Burn, and Heavy Burn for its label. On the other hand, fire area label with value zero is clustered as No Burn Area. A Back-Propagation Neural Network (BPNN) is trained based on these data to classify the output (burn area) in three categories, No Burn Area, Light Burn and Heavy Burn. The experiment shows promising results depicting classification size of forest fire with the accuracy of confusion matrix around 97, 50 % and Cohens Kappa 0.954. This research also compares the performance of proposed model with other classification method such as SVM, Naive Bayes, DCT Tree, and K-NN that showed BPNN have best performance.
Type de document :
Communication dans un congrès
David Hutchison; Takeo Kanade; Bernhard Steffen; Demetri Terzopoulos; Doug Tygar; Gerhard Weikum; Linawati; Made Sudiana Mahendra; Erich J. Neuhold; A Min Tjoa; Ilsun You; Josef Kittler; Jon M. Kleinberg; Alfred Kobsa; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan. 2nd Information and Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. Springer, Lecture Notes in Computer Science, LNCS-8407, pp.316-327, 2014, Information and Communication Technology. 〈10.1007/978-3-642-55032-4_31〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01397228
Contributeur : Hal Ifip <>
Soumis le : mardi 15 novembre 2016 - 15:48:15
Dernière modification le : mercredi 16 novembre 2016 - 01:04:11
Document(s) archivé(s) le : jeudi 16 mars 2017 - 16:55:00

Fichier

978-3-642-55032-4_31_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Guruh Shidik, Khabib Mustofa. Predicting Size of Forest Fire Using Hybrid Model. David Hutchison; Takeo Kanade; Bernhard Steffen; Demetri Terzopoulos; Doug Tygar; Gerhard Weikum; Linawati; Made Sudiana Mahendra; Erich J. Neuhold; A Min Tjoa; Ilsun You; Josef Kittler; Jon M. Kleinberg; Alfred Kobsa; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan. 2nd Information and Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. Springer, Lecture Notes in Computer Science, LNCS-8407, pp.316-327, 2014, Information and Communication Technology. 〈10.1007/978-3-642-55032-4_31〉. 〈hal-01397228〉

Partager

Métriques

Consultations de la notice

44

Téléchargements de fichiers

86