A. Alonso-betanzos, O. Fontenla-romero, B. Guijarro-berdinas, E. Hernndez-pereira, M. I. Paz-andrade et al., An intelligent system for forest fire risk prediction and fire fighting management in Galicia, Expert Systems with Applications, vol.25, issue.4, pp.545-554, 2003.
DOI : 10.1016/S0957-4174(03)00095-2

P. Cortez and A. Morais, A data mining approach to predict forest fires using meteorological data, Proc. EPIA, pp.512-523, 2007.

C. Elmas and Y. Sonmez, A data fusion framework with novel hybrid algorithm for multi-agent Decision Support System for Forest Fire, Expert Systems with Applications, vol.38, issue.8, pp.9225-9236, 2011.
DOI : 10.1016/j.eswa.2011.01.125

Y. Safi and A. Bouroumi, A neural network approach for predicting forest fires, 2011 International Conference on Multimedia Computing and Systems, pp.1-5, 2011.
DOI : 10.1109/ICMCS.2011.5945716

L. Iliadis, M. Vangeloudh, and S. Spartalis, An intelligent system employing an enhanced fuzzy c-means clustering model: Application in the case of forest fires, ¡ce:title¿Special issue on Information and Communication Technologies in Bio and Earth Sci- ences¡/ce:title¿, pp.276-284, 2010.
DOI : 10.1016/j.compag.2009.07.008

Y. P. Yu, R. Omar, R. D. Harrison, M. K. Sammathuria, and A. R. Nik, Pattern clustering of forest fires based on meteorological variables and its classification using hybrid data mining methods, Journal of Computational Biology and Bioinformatics Research, vol.3, pp.47-52, 2011.

G. E. Sakr, I. H. Elhajj, and G. Mitri, Efficient forest fire occurrence prediction for developing countries using two weather parameters, Engineering Applications of Artificial Intelligence, vol.24, issue.5, pp.888-894, 2011.
DOI : 10.1016/j.engappai.2011.02.017

I. Sitanggang and M. Ismail, Hotspot occurrences classification using decision tree method: Case study in the Rokan Hilir, Riau Province, Indonesia, 2010 Eighth International Conference on ICT and Knowledge Engineering, pp.46-50, 2010.
DOI : 10.1109/ICTKE.2010.5692912

K. Satoh, S. Weiguo, and K. T. Yang, A study of forest fire danger prediction system in Japan, Proceedings. 15th International Workshop on Database and Expert Systems Applications, 2004., pp.598-602, 2004.
DOI : 10.1109/DEXA.2004.1333540

G. Sakr, I. Elhajj, G. Mitri, and U. Wejinya, Artificial intelligence for forest fire prediction, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.1311-1316, 2010.
DOI : 10.1109/AIM.2010.5695809

I. H. Witten and E. Frank, Data mining, ACM SIGMOD Record, vol.31, issue.1, 2005.
DOI : 10.1145/507338.507355

J. C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, vol.3, issue.3, 1973.
DOI : 10.1080/01969727308546046

J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, 1981.
DOI : 10.1007/978-1-4757-0450-1

S. Chattopadhyay, D. K. Pratihar, and S. C. Sarkar, A comparative study of fuzzy c-means algorithm and entropy-based fuzzy clustering algorithms, Computing and Informatics, vol.30, issue.4, pp.701-720, 2011.

D. Singh, M. Dutta, and S. H. Singh, Neural network based handwritten hindi character recognition system, Proceedings of the 2nd Bangalore Annual Compute Conference on 2nd Bangalore Annual Compute Conference, COMPUTE '09, p.15, 2009.
DOI : 10.1145/1517303.1517320

A. Eleyan and H. Demirel, PCA and LDA Based Neural Networks for Human Face Recognition, 2007.
DOI : 10.5772/4833

J. Han and M. Kamber, Data Mining, 2005.
DOI : 10.1007/978-1-4899-7993-3_104-2

T. Byrt, J. Bishop, and J. B. Carlin, Bias, prevalence and kappa, Journal of Clinical Epidemiology, vol.46, issue.5, pp.423-429, 1993.
DOI : 10.1016/0895-4356(93)90018-V