LDFGB Algorithm for Anomaly Intrusion Detection

Abstract : With the development of internet technology, more and more risks are appearing on the internet and the internet security has become an important issue. Intrusion detection technology is an important part of internet security. In intrusion detection, it is important to have a fast and effective method to find out known and unknown attacks. In this paper, we present a graph-based intrusion detection algorithm by outlier detection method which is based on local deviation factor (LDFGB). This algorithm has better detection rates than a previous clustering algorithm. Moreover, it is able to detect any shape of cluster and still keep high detection rate for detecting unknown or known attacks. LDFGB algorithm uses graph-based cluster algorithm (GB) to get an initial partition of dataset which depends on a parameter of cluster precision, then we use the outlier detection algorithm to further processing the results of graph-based cluster algorithm. This measure is effective to improve the detection rates and false positive rates.
Type de document :
Communication dans un congrès
David Hutchison; Takeo Kanade; Bernhard Steffen; Demetri Terzopoulos; Doug Tygar; Gerhard Weikum; Linawati; Made Sudiana Mahendra; Erich J. Neuhold; A Min Tjoa; Ilsun You; Josef Kittler; Jon M. Kleinberg; Alfred Kobsa; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan. 2nd Information and Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. Springer, Lecture Notes in Computer Science, LNCS-8407, pp.396-404, 2014, Information and Communication Technology. 〈10.1007/978-3-642-55032-4_39〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01397240
Contributeur : Hal Ifip <>
Soumis le : mardi 15 novembre 2016 - 15:52:35
Dernière modification le : mercredi 16 novembre 2016 - 01:04:11
Document(s) archivé(s) le : jeudi 16 mars 2017 - 13:25:30

Fichier

978-3-642-55032-4_39_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Shang-Nan Yin, Zhi-Guo Chen, Sung-Ryul Kim. LDFGB Algorithm for Anomaly Intrusion Detection. David Hutchison; Takeo Kanade; Bernhard Steffen; Demetri Terzopoulos; Doug Tygar; Gerhard Weikum; Linawati; Made Sudiana Mahendra; Erich J. Neuhold; A Min Tjoa; Ilsun You; Josef Kittler; Jon M. Kleinberg; Alfred Kobsa; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan. 2nd Information and Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. Springer, Lecture Notes in Computer Science, LNCS-8407, pp.396-404, 2014, Information and Communication Technology. 〈10.1007/978-3-642-55032-4_39〉. 〈hal-01397240〉

Partager

Métriques

Consultations de la notice

133

Téléchargements de fichiers

24