N
N

N

HAL

open science

Distributed Universal Constructions: a Guided Tour
Michel Raynal

» To cite this version:

Michel Raynal. Distributed Universal Constructions: a Guided Tour. [Research Report] 2040, IRISA.

2016, pp.23. hal-01397265v2

HAL Id: hal-01397265
https://inria.hal.science/hal-01397265v2

Submitted on 22 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01397265v2
https://hal.archives-ouvertes.fr

Distributed Universal Constructions: a Guided Tour

Michel Raynal

Institut Universitaire de France
IRISA, Université de Rennes, 35042 Rennes, France
Department of Computing, Hong Kong Polytechnic University

Tech Report 2040, November 2016
IRISA, University of Rennes (France)

November 21, 2016

Abstract

The notion of a universal construction is central in compgicience: the wheel has not to be
reinvented for each new problem. In the contexhgfrocess asynchronous distributed systems, a
universal construction is an algorithm that is able to baihy object defined by a sequential spec-
ification despite the occurrence of up(te — 1) process crash failures. The aim of this paper is to
present a guided tour of such universal constructionsplt# & not to be a catalog of the numerous
constructions proposed so far, but a (as simple as posgi#sgntation of the basic concepts and
mechanisms that constitute the basis these constructshenm.

Keywords: Abortable object, Agreement problem, Asynchronous mget# system, Atomic opera-
tions, Computability, Concurrent object, Consensus, ICfaiture, Disjoint-access parallelism, Help
mechanism, LL/SC instruction, Memory location, Non-blimgk Obstruction-freedom, Progress
condition, Sequential specificatiokrSet agreementk;-Simultaneous consensus, Speculative execu-
tion, Universal construction, Wait-freedom.

1 Introduction

A (very) short historical perspective Looking for (some) universality seems inherent to humankind.
Any language, any writing system, can be seen as an attempt to univeréa]ityr{ the science domain,
one of the very first witness of research of universality found in tte peems to be the Plimpton 322
tablet (Figure 1), which describes the fifteen first Pythagorean tripléts ¢> = ¢2).This is only a list,
not yet an algorithm with its proof.

o ;,: |=_ AT "
— J ":) |_'
e - = -
- A e -)
i JI"
— i Ll
- e ..: - -
e e E -;-_:‘ : ;_,,1.’1_- .?"
— i o A :
\ 1 .;If — ey ol
x =]
o . s F i
bl Ei
e = o T F i
e = ' [t !

Figure 1: Plimpton 322 tablet

The geometric constructions with a compass and a straightedge designesl Agcient Greeks
are among the first algorithms with their correctness proofs (see alsp Pf@ofs of impossible con-
structions in the “compass + straightedge” computing model took more time (e.gnpbssibility of
squaring the circle, i.e., build, with straightedge and compass only, a sghase area is equal to the
area of a given circlé) More recently, the Turing machine provides us with an abstract compuging d
vice, which is considered as the most general sequential computing maatehytfixing the limits of
what can be computed by a sequential machine?[6lt]is consequently claimed to hsiversal The
halting problem is the most famous of the problems that are impossible to solve in this gerestal”
sequential computing model.

In distributed computing the situation is different. As written in [38h Sequential systems, com-
putability is understood through the Church-Turing Thesis: anything taatoe computed, can be com-
puted by a Turing Machine. In distributed systems, where computatiguosreecoordination among
multiple participants, computability questions have a different flavor. He,there are many prob-
lems which are not computable, but these limits to computability reflect thmuttiffof making decisions
in the face of ambiguity, and have little to do with the inherent computational pofwedividual par-
ticipants”

In distributed computing the main issues posed by universality and computabpi&aaphen one
has to implement distributed state machines (distributed services encapsulatedirnrent objects) in
the presence of adversaries due to the environment in which the compuwatitves (such as asyn-
chrony and process failures) [25, 32, 43, 46].

1This impossibility follows from the fact that is a transcendent number (F. von Lindemann 1882), and a theordéi by
L. Wantzel, who established, in 1937, necessary and sufficient camslfito a number to be constructible in the “compass +
straightedge” computing model [62].

2This means that any sequential computing model proposed so faréhaartte computability power as a Turing machine
(e.g., Church’s Lambda calculus, or Post systems [51]), or ikere¢han a Turing machine (e.g., finite state automata).

2

Concurrent objects and asynchronous crash-prone read/writesystems A concurrent object is an
object that can be accessed (possibly simultaneously) by severalspesc From both practical and
theoretical point of views, a fundamental problem of concurrentparogiing consists in implementing
high level concurrent objects, where “high level” means that the objesiges the processes with an
abstraction level higher than the atomic hardware-provided instructiohde \is is well-known and
well-mastered since a long time in the context of failure-free systems [13]fat isom being trivial
in failure-prone systems (e.g., see textbooks such as [52, 58]), \therstill an important research
domain.

This paper considers systems made up skquential asynchronous processes which, at the hard-
ware level, communicate through memory locations (memory words also callestierey which can
be accessed by atomic operations (instructions), including the basicmdagriée operations. More-
over, it is assumed that, in any run, up(t@ — 1) processes may crash (unexpected halting). When
restricted to the basic read and write instructions, this computation model isnkmoger the name
wait-free read/writemodel (denoted her@ ARW,,[0], whereCARW stands for Crash Asynchronous
Read/write).

On progress conditions Deadlock-freedom and starvation-freedom are well-known pregreadi-
tions in failure-free asynchronous systems. As their implementation is badedkomechanisms, they
are not suited to asynchronous crash-prone systems. This is due dothteat it is impossible to distin-
guish a crashed process from a slow process, and consequerdbeapthat acquires a lock and crashes
before releasing it can entail the blocking of the entire system.

Hence, new progress conditions for concurrent objects suited th-prase asynchronous systems
have been proposed. Given an object, we have the following.

e The strongest progress conditionvisit-freedom(WF) [32]. It states that, any operation (on
the object that is built) issued by a process that does not crash termifidissmeans that it
terminates whatever the behavior of the other processes. This cambassbe equivalent of the
starvation-freedom progress condition encountered in failure-jigess.

e Thenon-blockingprogress condition (NB) states that there is at least one process itraiveey's
progress (all its object operations terminate) [38]. This progressittmmds also calledock-
freedom It can be seen as the equivalent of deadlock-freedom in faileeegystems. Non-
blocking has been generalized in [14], under the nareck-freedon(k-NB), which states that
at leastk processes can always make progress.

e The obstruction-freedonprogress condition (OB) states that a process that does not crash will
be able to terminate its operation if all the other processes hold still long erj@dghThis is
the weakest progress condition. It has been generalized in [59¢r Wine name:-obstruction-
freedom(k-OB), which states that, if a set of at mdsprocesses run alone for a sufficiently long
period of time, they will terminate their operations.

While wait-freedomandnon-blockingare independent of the concurrency and failure pattdrstruction-
freedomis dependent from it. Asymmetric progress conditions have been intrddu¢él]. The com-
putational structure of progress conditions is investigated in [60].

Universal construction The notion of a universal construction was introduced by M. Herlihy £].[3
It considers objects (a) which are defined from sequential specifisatiod (b) whose operations are
total, i.e., any object operation returns a result (as an examplesh&) operation on an empty stack
returns the default value).

Let PC be a progress condition. RC-compliant universal constructias an algorithm that, given
the sequential specification of an objéz{or a sequential implementation of it), provides a concurrent

implementation oD satisfying the progress conditiaPC' in the the presence of um — 1) process
crashes (Figure 2).

Sequential specification PC-compliant PC-compliant implementation
~,
-

of an objectZ universal construction of objectZ

Figure 2: PC-compliant universal construction

It has been shown in [25, 32, 47] that the design of a universaltcan®n with respect to the
wait-freedom progress condition is impossibl&€idRW,,[0]. This means that the basic system model
CARW,,[0] has to be enriched with hardware-provided atomic instructions or additongbuting ob-
jects whose computational power is stronger than atomic read/write registére following, we con-
sider terms “register” and “memory location” as synonyms; we sometimes alsateanic read/write
object” by a slight abuse of language).

Content of the paper This paper aims at being a guided tour to distributed universal constraction
Its goal is not to be a presentation including as many universal constraetfopossible, but to focus on
the central features universal constructions rest on, and illustratewtith existing algorithms. To this
end, after having introduced basic definitions (Section 2), the papeegas as follows.

e Section 3 presents first a simple and elegant universal constructiod suitee system model
CARW,[LLISC] (CARW,[0] enriched with the hardware-provided instructions LL and SC,
which are defined in the section). This allows for an easy introduction afdtien of aspecula-
tive computatiorand the notion of &elp mechanisr{introduced in [32] and recently formalized
in [17]). This section presents also extensions devotéarte objects.

e Section 4 is made up of two subsections. the first is on the efficiency oérsaivconstructions.
Considering the algorithms that realize them, it addresses the notitisjaiht-access parallelism

The second subsection is on the object side. It considers the cas@fsahconstructions for
deterministicabortableobjects [15, 31, 52, 53]. Such an object is a classical object defyed b
sequential specification which allows an operation to return a default vainehe presence of
contention (in this case the operation has no effect on the object). Hereeoncurrency-free
execution, an abortable object behaves as its non-abortable count&éhmanotion ofk-abortable
object has been recently introduced in [8], where is also presentessaciated universal con-
struction. Ak-abortable object is such that an operation is allowed to retuonly if it is concur-
rent with operations from at moétdifferent processes, and none these operations return

e All the previous universal constructions consider that the underlyiagheprone system is en-
riched with hardware-provided atomic instructions such as LL/SC or CaBfswap, which
work on memory locations [22]. Hence, the question: Which are the instnsctiwat allow to
build a universal construction? As an example, can a universal catistt be designed for the
system modeC ARW,, [Test&Set (CARW,[] enriched with the hardware-provided atomic in-
struction Test&Set). This issue was solved by M. Herlihy in [32], who intoeduthe celebrated
consensus hierarchyrhis is addressed in the first part of Section 5. Hence, the consebjacs
is at the core of universal constructions.

Then, the section shows another important advantage of using coasdijsats instead of prim-
itives hardware-provided instructions to design universal constngti®hile instructions are
uniform (any instruction can access any memory location [22]), an olgeattyped abstrac-
tion that has the property that an operation on typeannot be applied to an object of tyfé.

Moreover, an object can be weakened or generalized accordingnedils of the user. As an ex-
ample, the consensus object can be weakened th-ffa¢ agreemen&(SA) object [19] or to the
k-simultaneous consensus $C) object [3] £-SA andk-SC objects are defined in the section).

The section presents then the notion df-aniversal construction due to E. Gafni and R. Guer-
raoui [27]. Such a construction considdrobjects (instead of only one) and ensures that at
least one of these objects progresses forever. This construction aalkeSC objects instead of
consensus objects.

Finally, the section considers the case where we want that, not at leabubat least objects
progress forever, wheréis any predefined constant [i..k]. As shown in [55], objects de-
noted(k, ¢)-SC ((k, ¢)-simultaneous consensus objects defined in the section), which are strictly
stronger thark-SC objects (wher > 1), and weaker than consensus objects (whenk), are
necessary an sufficient to build a universal constructionkfobjects, where at leagtobjects
progress forever. It is important to notice that these generalizationsiegrgal constructions
could not have been obtained from hardware-provided instructidris.will conclude the guided
tour.

Finally, after a short Section 6 comparing universal constructions aftidese transactional memory
(STM) systems, Section 7 concludes the paper.

2 The Basic Asynchronous Read/Write ModeC ARW,, [(]

Crash-prone asynchronous processesThe basic computing model deno@d R W, [(}] was sketched
in the introduction. It is composed of a setrobequential processes denoggd..., p,. Each process is
asynchronous which means that it proceeds at its own speed, whitle eahitrary and remains always
unknown to the other processes.

A process may halt prematurely (crash failure), but executes corigtigcal algorithm until it
possibly crashes. Up tg — 1) processes may crash in a run. Due to the atomicity of the hardware-
provided operations, if a process crashes while executing such aatiopethis operation appears as
entirely executed or not at all. A process that crashes in a run is said@albein this run. Otherwise,
it is corrector non-faulty Hence, a faulty process is a process whose speed, after some timmsrema
forever equal td.

On atomicity The processes communicate by accessing atomic read/write registers (meoaery
tions). Atomicity means that the read and write primitive operations on a regpgteaaas if they have
been executed one after the other. Moreover, the correspondingrszgjof operationS' is such that

(a) if the operatiorop; terminated before the operatiop, started,op, appears beforep, in S, and

(b) a read operation on a registRreturns the value written by the closest preceding write operation on
R (or its initial value if there is no preceding write) [44]. Atomicity is also calleearizability when
considering any object defined by a sequential specification [38].

Notation Variables local to a procegs are denoted with lowercase letters, sometimes indexediwith
Memory location and objects shared by the processes are denoted with lediers.

3 A Simple LL/SC-Based WF-Compliant Universal Construction
3.1 ExtendingCARW,,[0] with LL/SC

Model CARW, [LL/ISC] These hardware-provided atomic instructions can be applied to any memory
location. The wait-free read/write mod@M4RW,,[0] enriched with them is denotedARW,,[LL/SC].

5

LL/SC is made up of three instructions: LL stands for Linked Load; SC stémdstore conditional; VL
stands for Validate.

Let X be a memory locationX.LL() returns the current value &f. Letp; be a process that invokes
X.SC(v). This invocation assignsto X if X has not been assigned a value by another process since
the previous invocation oX.LL() issued byp;. In this case X.SC(v) returnstrue and we say that
the invocation is successful; otherwise it retufrd se. Finally, an invocation ofX.VL() by process
pi returnstrue if no other process has issued a succes&f$IC() since the last invocation oX.LL()
issued byp;.

These instructions are used to bracketpeculative computationA process first readX with
X.LL() and stores its value in a local variahte Thenp,; does a local computation which depends on
bothx; and its local state. The aim of this local computation is to define a new vdioreX . Finally,

p; tries to commit its local computation by writing into X, which is done by invokingX.SC(v).

If this invocation is successful, the write is committed; otherwise the write failsinMa behavior
can be obtained by the Compare&Swap() instruction. The main advantadd €| with respect to
Compare&Swap(), is that it does suffer the ABA problem (which requseguence numbers to be
solved) [52, 58]. Algorithms based on LL/SC can be found in many publicstfe.g., [23, 33, 39, 52,
58, 59] to cite a few).

3.2 A simple universal construction inCARW,,[LL/SC]

This section presents a simplified version (denoted sFK) of a univeseatraction due to P. Fatourou
and N. Kallimanis [24]. The main difference is that the presented constrnugsies sequence numbers
which increase forever, while [24] uses sequence numbers m@&uldhis additional memory cost
makes it much easier to present and prove correct.

Collectobject This construction uses a collect object. Such an object can easily be BUITRIV,, [()].

It consists of an array’OL[1..n], with one entry per process, and provides them with two operations
denotedipdate() andcollect(). The invocation ofCOL.update(v) by a procesg; assigns to COL][i].

The invocation ofCOL.collect() is an asynchronous scan of the array which returns, for each gntry
the value it has read frol@OL][j]. A formal definition of such an object can be found in [52].

Due to the asynchronous scan, a collect object is not atomic (hence et otlject is computation-
ally weaker than a snapshot object [1]). An atomic version of a collgetcois described in [24]. Its
implementation (a) assumes that thheomponents of the collect object are stored in a single memory
location, and (b) is based on the hardware-provided instruetd() (Y.add(v) atomically adds to
Y).

Global and local variables Let O be the object that is built.
e STATE is a memory location made up of three fields:

— STATE .walue contains the current value 6f. Itis initialized to the initial value 0®.

— STATE.sn[l..n] is an array of sequence numbers initializedto - - ,0]; STATE .sn[i] is
the sequence number of the last invocation of an operatidn issued byp;.

— STATE. res[1..n] is an array of result values initialized ta, - - - , L]; STATE .res[i] con-
tains the result of the last operation issuedbshat has been applied .

e BOARD is a collect object. Each of its entiycontains a pai BOARD|i].op, BOARDi|.sn)
initialized to(_L, 0); BOARDi].op contains the last operation éhissued by;, andBOARDi].sn
contains its sequence number.

e Each process; manages a sequence number generatpiitialized to1.

The objectO is assumed to be defined by a transition functiogh Let s be the current state @
andop(in) be the invocation of the operati@p() on O, with input parametein; (s, op(in)) outputs
apair(s’,r) such that’ is the state 0 after the execution afp(in) on s, andr is the result obp(in).

Construction sFK: speculative computation and helping The construction sFK is described in Fig-
ure 3. When a procegs invokes an operationp(in) on O, it first publishes the paifop(in), sn;) in
the collect objecBOARD (line 1). Then, it invokes the internal procedurgply() at the end of which
it will locally return the result produced byp(in) (line 2).

whenp; invokesop(in) do
(1) BOARD.update({op(in), sn;)); sn; < sn; + 1;
(2) apply(); letr = STATE res[i]; return(r).

internal procedure apply() is

(3) repeattwice

(4) ls « STATE.LL();

(5) pairs < BOARD .collect();
(6) for ¢ € {1,2,--- ,n}do

(7) if (pairs[f].sn = ls.sn[f] 4+ 1 then

(8) (new_state, r) « §(ls.value, pairs[l].op);
9) Is.res[l] < r; ls.sn[l] < pairs[l].sn

(20) end if

(11) end for
(12) STATE.SC(ls)
(13) end repeat twice

Figure 3: WF-compliant universal construction sFK (system m8de&R W, [LL/SC])

The core of the construction is the procedapply(), in which a proces®; executes twice the
lines 4-12 (we will see later why this has to be done twice). Propgséisst reads the current local
state of the object (line 4), and starts a first speculative execution (whichand at line 12). In this
speculative executiom, first reads the content of the collect objés®A R D from which it obtains for
each procesg, a pair(last operation invoked by, associated sequence numbéret us remind that as
BOARD .collect() is not atomic, angb; is asynchronous, the pairs that are returned are not necessarily
associated with a consistent global state the computation passed through.

Then,p; considers each pair ipuirs in the “for” loop of lines 6-11. In this loopp; strives to help
all the processes that have a pending operatio® oRrom its point of view (i.e., with the information
it has obtained from its previous reads $TATE and BOARD), those are all the processgssuch
thatpairs|¢].sn = ls.sn[f] + 1 (line 7). If this local predicate is trug, locally simulates (speculative
computation) the last operation issued jlipynot yet applied to the object (line 6), and locally saves
the result of the operation and its sequence number (line 9). Fipallgies to commit its speculative
computation by invoking TATE .SC() (line 12). Let us observe that, if this invocation is successful, we
can conclude that no process modifi#élA TE while p; was doing its speculative computation. Hence,
the local variablés of p; is up to date, and, from an external observer point of view, everytpgars
as if the computation starting at line 4 and ending at line 12 was executed atomiicHily invocation
of STATE.SC() is not successful, the speculative execution is not committed.

Construction sFK: why “repeat twice”? Let us first observe that, due to sequence numbers, once
registered in the collect obje@OARD, an operation cannot be executed once more than once. More-
over, if the procesg; that invokes an operation does not crash, it terminates its opergt{om). This
follows from the fact that the lines 7-10 are executed a bounded nurieres 2n). But is the result
provided forop(in) correct?

To answer this question, let us consider the execution described in FguWhen procesg;
(bottom of the figure) executeésTATE .LL() followed by BOARD .collect() (lines 4-5),p; (top of the
figure) has not yet registered by executiB@ ARD .update() (line 1). Hencepairs; does not contain
(op(in), sn). Let us assume that the executiontSsfFATE.SC(Is;) by p; is successful. Ip; executes
only once the repeat loop, its executiontifATE.SC() is not successful, ang returns despite the fact
thatp; has not helped it by executing(in). Hence, the statemendturn(r) executed by, at line 2
returns the result of its previous operation invocation.

Dbi
BOARD .update(op(in), sn) Ils; <= STATE.LL() STATE.SC(): not successful

lsj = STATELL() pairs; < BOARD.collect() STATE.SC()
successful

>~
>

Atomicity line

next successful
STATE.SC()
by some process;.

pj

Figure 4: Why to repeat twice lines 4-12 (big dot = atomic step)

Assuming now thap,; executes twice the repeat loop, let us consider the first successiahiion
of STATE.SC() that occurs after the previous successful invocatiop;byrhis invocation is issued by
some procesg;, (which can bep;, p; or any other process). According to the algorithm of Figure 3,
it follows that p;, has previously invoked TATE .LL(). Moreover, this invocation occurs necessarily
after the successful invocation 6fTATE.SC() by p; (otherwise the invocation a§ TATE.SC() by
pr could not be successful). Consequently, the invocatio®Of4 RD.collect() by px is such that
(op(in),sn) € pairsg. It follows thatpy found pairsg|i].sn = lsg.sni] + 1, and simulated the
execution ofop(in) on behalf ofp; and wrote the corresponding resultlis).res[:] which was then
copied iINSTATE .res[i| by the successful execution STATE.SC() by py.

Linearization of the operations onO Let SC[1], SC[2], ..., SE], etc. be the sequence of all the suc-
cessful invocations o TATE.SC(); asSTATE.SC() is atomic, this sequence is well-defined. Starting
from SC([1], each SCc| applies at least one operation on the objectlt is possible to totally order
the operations applied 10 by each SCt|. Let sedz| be the corresponding sequence. The sequence of
operations applied t® is then seq[1] followed by seq[2], ..., followed by $ej etc.

Remark on sequence numbers Techniques such as the one described in [9, 48] (known under the
namealternating bit protocal can be used to obtain an implementation in which the sequence numbers
are implemented modufa

3.3 The case of large objects

The previous universal construction considered that the internal altdltee object §TATE) can be
copied all at once. Aarge object is an object whose internal state cannot be copied in one instruction

Several articles have addressed this problem, e.g., [2, 6, 33]. Thpsoalse to fragment a large
object into blocks. Two main approaches have been proposed.

e One consists in using pointers linking the blocks representing the objéciMi88eover, it requires
that the programmer provides a sequential implementation of the object tliatnperas little
copying as possible. The pointers are then accessed with LL instructioals allow a process to

obtain a logical copy of the object (which means that only the needed o object is copied
in its local memory). A process executes then locally a speculative compytasidefined by the
operation it want to apply to the object. Finally it uses SC instructions on theppate pointers
to try to commit the new value of the object.

e The other approach consists in representing the object as a long mgayehted into blocks [6].
This paper presents two object constructions based on this approhi, ave universal with
respect to non-blocking and wait-freedom, respectively. It alseeptesalgorithms implementing
atomic LLL/LSC operations (where “L’ stands for Large), which extergllth/SC instructions
to arrays of memory locations. These operations are built in the system cd@V,,[LL/SC].

4 Extensions

This section presents two extensions of universal constructions. Bheifie is their efficiency. The
second one considers a weakening of concurrent objects calletlalearbjects.

4.1 Onthe implementation side: Disjoint-access paralledm

Disjoint-access parallelism A universal construction idisjoint-access parallef two processes that
access distinct parts of an obje@tdo not access common base objects or common memory location
which constitute the internal representation’bf As an example, let us consider a queue. If the queue
contains three or more items, a process execuiiqgeue(v) and a process executirgqueue() must
be able to progress without interfering.

Hence, the aim of a disjoint-access parallel universal construction imtade efficient implemen-
tations. Let us observe that all the universal constructions that buiihboi@er on the operations (such
as the one described in Section 3.2 and the ones presented in [2, 28,638t disjoint-access parallel.

What can be done? Hence the question posed by F. Ellen, P. Fatourou, N. Kosmas, A. MilzohiCa
Travers, in [21]: Is it possible to design a disjoint-access parallel Wfaptiant universal construction?
This work presents two important results.

e The firstis an impossibility result. It states that it is impossible to design a waiveonstruction
that is disjoint-access parallel and ensures that all the operation invesafithe processes that
do not crash always terminate. Hence, when we consider any objicedidy a sequential
specification, disjoint-access parallelism and wait-freedom are mutuallysbxe.

e The second resultis a positive one, namely the previous impossibility (whigidersanyobject
defined by a sequential specification) does not apply to a special dlasscurrent objects.
Hence, the constructions for this object class are no longer “unk/énstine strict sense. This
object class contains all the objecisfor which, in any sequential execution, each operation
accesses a bounded number of base objects used to repfesEramples of such objects are
bounded trees, or stacks and queues whose internal represergia¢itissbased.

In their paper, the authors describe a universal construction thatesndor the previous ob-
jects, both the disjoint-access parallel property of the object implementatidthea wait-freedom
progress condition for the processes that use it. This constructiorsisrtesl in the system model
CARW,|LLISC].

4.2 Onthe object side: Abortable objects

Abortable objects have been investigated in several articles, e.g., [81152, 53]. They found their
origin in the commit/abort output of transaction-based systems [28], andtiom of “fast path” initially
introduced in fast mutual exclusion algorithms [45].

9

Definition An abortable object is an object (defined by a sequential specificatich)tbat

e When executed in a contention-free context, an operation takes effecinadifies the state of
the object and returns a result as defined by its sequential specification,

e When executed in a contention context, an operation either takes effécetmns a result as
defined by its sequential specification, or returns the default val(ebort). If L is returned, the
operation has no effect on the state of the object.

Hence, an abortable object is such that any operation always ret@nsvbatever the concurrency
context). Its progress condition is consequently wait-freedom. Diffgrérom an abortable object,
an obstruction-free object does not guarantee operation termination preékence of concurrency.
A theory of deterministic abortable objects (including a study of their resgeptwer) is presented
in [31].

Universal constructions for abortable objects Such a very simple construction is described in Fig-
ure 5. It is a trivial simplification of the universal construction describbeffigure 3 from which the
helping mechanism has been suppressed. The memory lo&8iWAE contains now only the state of
the object.

when p; invokesop(in) do

(1) ls <« STATE.LL();

(2) (new_state,r) < 6(ls, pairs[l].op);

(3) done < STATE.SC(ls);

(4) if (done) thenreturn(r) elsereturn(L) end if.

Figure 5: WF-compliant universal construction for abortable objegtstésn modeC ARW,, [LL/SC])

When a procesg; invokes an operationp(in) on the object, it reads its current state to obtain a
local copy (line 1). Then it produces a speculative executioopdfn) on this local statés (line 2).
Finally, it tries to commit its local execution by issuisg’ATE.SC(ls) (line 3). If this SC is successful,

p; returns the result it has previously computed. Otherwise, there wasstbleaconcurrent operation,
andp; returnsL (line 4).

Let us observe that, if several processes concurrently invoketes, each invokeSTATE.LL(),
and the first of them that invokesI'’ATE.SC() produces a successful SC. It follows that, in the presence
of concurrency, at least one process is guaranteed to make @agtks sense that it does not return

An efficientsolo-fastuniversal construction for deterministic abortable objects is describedb]n [
Solo-fast (also called contention-aware in other articles) means that themeptiation is allowed to
use atomic operations on memory locations stronger than read/write only wéenishcontention.
Moreover, this implementation guarantees that the operations that do not rtieddiject never return
L and use only read/write operations. This implementation is based on the prinpvation on
memory locations Compare&Swap, whose computational power is the same &3.LL/S

k-Abortable objects This notion was recently introduced in [8]. Rrabortableobject guarantees
progress even under high contention, where “progress” means tbahnot be returned by some oper-
ation invocations.

Roughly speaking an operation invoked by a process is allowed to afdgtif @ is concurrent with
operations issued by distinct processes and none of them returnsrhis means that thie operations
that entail the abort of another operation must succeed. It is easy tihaeeabortability is wait-
freedom where any operation returns a nomesult. A formal presentation can be found in [8].

10

A universal construction fok-abortable objects suited to the system maddR W, [LL/SC] is
presented in [8]. Differently from the construction for abortable objpotsented in Figure 5, it is not a
trivial construction. It uses an array ofmemory location3OARD(1..n] used by the processes to store
their last operations (they are the equivalent of the collect oljézt RD[1..n| used in Figure 3), an
array ofk memory locationdVINNERS|1..k| which contains the (up t®) “winning” operations, and
another memory locatioSTATE (similar to the locatiorSTATE used in Figure 3). All these memory
locations are accessed with the LL/SC atomic operations. (We use the sattifigeidess in Figure 3 to
facilitate the understanding.)

The construction works as follows. After it has registered its operatid®(d RD|i], a proces®;
tries to find an available entry i/ INNERS[1..k|. If it succeeds, its operation will not abort; otherwise
its operation will eventually abort. In all cases, i.e., whatever the fate of itsaperation, the process
p; Will help the winning operations to terminate. This construction is efficient in #mses that each
operation terminates i@ (k) accesses to memory locations.

Let us observe that, as everyabortable object can easily implementitéock-free counterpart, the
previous universal construction fbrabortable objects iB-NB-compliant universal construction. Let us
remember that, differently from its-lock-free counterpart, no process can get stuck whesalaortable
object is used.)

5 From Operations on Memory Locations to Agreement Objects

5.1 Primitive operations versus objects

The previous universal constructions are based on hardwavedpdoatomic operations such as LL/SC.
This operation, as all the hardware-provided synchronization opegafguch as Test&Set or Com-
pare&Swap) is uniform in the sense that they can be applied to any memotipiof& 22]. Hence the
following natural questions come to mind:

e Is it possible to design a universal construction with other hardwareiged atomic operations
such as Test&Set or Fetch&Add, initially designed to solve synchronizatiores8s Moreover,
which synchronization atomic operations are equivalent (from the pbiviews of a universal
construction)?

e Is it possible to generalize the concept of a universal construction wottrelinated construction
of several objects with different progress conditions?

These questions are answered in this section.

5.2 A fundamental agreement object: consensus

Differently from a memory location which is only a sequence of bits accelsgdthrdware-provided
atomic operations, the aim of an object is to provide its user with a high abstréetie (by hiding im-
plementation details) and allow easier reasoning and proofs. An objediriedl®y a set of operations,
and a specification which describes its correct behavior. The opesagsociated with an object are
specific to it (i.e., due the very essence of the object concept, they awaifarm).

The consensus object The consensus object is the fundamental object associated with agteemen
problems. Introduced (in a different form) in the context of Byzantinechyonous message-passing
systems [46], a consensus object provides the processes with a gegition denotedropose() that

a process can invoke only once (one-shot object). When a proced®apropose(v), we say that it
“proposes the value”. This operation returns a result. If a process returns valueve say that it
“decidesw”. In the context of process crash failures, the consensus objeefirsed by the following

set of properties (let us remind that a correct process is a proceésotdgnot crash).

11

e Termination. If a correct process invokespose(), it decides a value.
¢ Validity. A decided value is a proposed value.
e Agreement. No two processes decide different values.

A consensus object allows the processes to agree on the same valtieisaradue is not arbitrary: it
was proposed by one of them. Hence, when considering a universstiaction, consensus objects can
be used by the processes to agree on the order in which their operatishberapplied to the object
that is built.

5.3 A simple consensus-based universal construction

A simple WF-compliant consensus-based universal construction islle$ Figure 6. This construc-
tion, proposed in [30], is inspired from the state machine replication parafdig] and the consensus-
based atomic broadcast algorithm presented in [18]. The reader wikfimdof of it in [52]. LetO be
the object that is built. As in Section 3, its sequential behavior is defined laysition function’().

Local variables A processp; manages locally a copy of the object, denotédte;, an arraysn;[1..n]
wheresn;[j] denotes the sequence number of the last operationt @sued byp; locally applied to
state;. The local variableglone;, res;, prop;, k;, andlist;, are auxiliary variables whose meaning is
clear from the contextjst; is a list of pairs of (operation, process identityjst;| is its size, andist;[r]

is its 1N element; hencdjst;[r].op is an object operation aridst;[r].proc the process that issued it.

whenp; invokesop(in) do
(1) done; < false; BOARD[i] < (op(in), sn;[i] + 1);
(2) wait (done;); return(res;).

Underlying local task T: % background server task %
(3) while (true) do

(4) prop; < €; % empty list %

(5) for j € {1,...,n}do

(6) if (BOARDY/j].sn > sn;[j]) then

@ append BOARDj].op, j) to prop;

(8) end if

9) end for;

(20) if (prop; # €) then

(12) list; < CONS|k;].propose(prop;);

(13) for r = 1to |list;| do

(14) (state;, res;) < d(state;, list;[r].op);
(15) let j =list;[r].proc; sni[j] < sni[j] + 1;
(16) if (¢ = j) then done; + true end if
17) end for

(18) end if

(19) end while.

Figure 6: A wait-free consensus-based universal constructiate (fmy proces;)

Shared Objects The shared memory contains the following objects.

e An array BOARDI1..n] of single-writer/multi-reader atomic registers. Each entry is a pair such
that the pair(BOARD|j].op, BOARD|j].sn) contains the last operation issued byand its
sequence number. Ea¢tOARD([j] is initialized to(_L, 0).

e An unbounded array’ONS|1..] of consensus objects.

12

Process behavior When a procesg; invokes an operatioop(in)on O, it registers it and its associated
sequence number BOARDJi| (line 1). Then, it waits until the operation has been executed, and returns
its result (line 2).

The arrayBOARD constitutes the helping mechanism used by the background task of eaelspro
p;. This task is made up two parts, which are repeated forever. pjrbtiild a proposaprop;, which
includes the last operations (at most one per process) which not baxeapplied to the obje€, from
its local point of view (lines 4-9 and predicate of line 6). Then, if the sagagrop; is not empty,p;
proposes it to the next consensus instaG€&VS[k;] line 12). The resulting valu&st; is a sequence
of operations proposed by a process to this consensus instances$xdben applies this sequence of
operations to its local copytate; of O (line 14), and updates accordingly its local arkay (line 15).
If the operation that was applied is its own operatipnsets the Booleadone; to true (line 16), which
will terminate its current invocation (line 2).

Bounded wait-freedom versus unbounded wait-freedom This construction ensures that the oper-
ations issued by the processes are wait-free, but does not guatiaatdébey are bounded-wait-free,
namely, the number of steps (accesses to the shared memory) execatedabedperation terminates is
finite but not bounded. Consider a procgsshat issues an operatia@p(), while k1 is the value of;.
let andk2 = k1 + « be such thadp() is output by the consensus instan€@NS[k2]. The taskl’ of p;
must executev times the lines 4-18 in order to catch up the consensus instatgés k2] and return
the result produced byp(). It is easy to see that the quantity2 — k1) is always finite but cannot be
bounded.

A bounded construction is described in [32]. Instead of requiring @acbess to manage a local
copy of the object) is kept in shared memory and is represented by a list of cells including aatme
the resulting state, the result produced by this operation, and a cossdsjeat whose value is a pointer
to the next cell. The last cell defines the current value of the object.

5.4 Consensus number and the consensus hierarchy

Consensus number of an object The notion of theconsensus numbeaf an object was introduced
by M. Herlihy in [32]. Let us consider an object of tyfie(defined by a sequential specification). The
consensus numbef an object of typél is the greatest integer such that it is possible to implement a
consensus object in a systemroprocesses, with any number of atomic read/write registers and objects
of typeT'. The consensus number4sx if there is no largest.

This notion allows us to answer the first question posed in Section 5.1, arah#vier defines what
is called the objeatonsensus hierarchyMore precisely, it has been shown in [32] that:

e The consensus number of read/write registets Isfollows that all objects that can be built from
read/write registers only (i.e., MARW, [0] without enrichment with additional operations) have
consensus numbeér Snapshot objects [1, 5] and renaming objects [7, 16] are such gbjects

e The consensus number of hardware operations such as Test&Se&A&at;iSwap (exchange
the values in a local register an a shared register), and a few othegescbiasensus number
This means that a universal construction can be built 4RV, [Test&Set (i.e., in a system of
two processes), but impossibleGARWV,, [Test&Set for n > 2.

e Let ak-window read/write register be a register that stores only the sequetite laistk values
which have been written, and whose read operation returns this seopfestonost values. Itis
shown in [49] that the consensus number éfaindow isk.

e Finally, the consensus number of Compare&Swap, LL/SC, and a few piterso.

This infinite hierarchy is theonsensus hierarchylt provides us with a ranking of the power of
synchronization objects and hardware provided synchronizatioratipes in wait-free systems (i.e.,

13

systems where all, except one, processes may crash). As an exanglg, ritimber of processors
may crash, this hierarchy states that a multicore with Test&Set is computationallgderful than a
multicore with LL/SC.

Consensus from several operations on memory locationsThe previous hierarchy considers that
consensus must be built from read/write registers and objects of atgpefi’ only. What can be done
when several hardware operations which access the same memory lspeaaiven?

As an example, let us consider the system m@d&R W, [Test&Set, Fetch&Adddefined in [22])
where Test&Set and Fetch&Add2 are two atomic operations defined as follows

e Test&Set returns the value of the memory location, and setslitfti containedo,
e Fetch&Add2 returns the value in the memory location and increaseit by

Each of these operations on memory locations has consensus riniberalgorithm described in Fig-
ure 7 (due to F. Ellen, G. Gelashvili, N. Shavit, and L. Zhu, [22]) showas$ #&hbinary consensus object
can be built ilCARW,, [Test&Set, Fetch&AddR for any value of.. This means that the previous hier-
archy collapses when object types defined by operations on memory lacatio be used to implement
consensus. Binary consensus means that only the vdlmed1 can be proposed. This is not a problem
as it is possible to build a multivalued consensus object from binary cens@tjects (see [52]).

whenp; invokes propose(v) do
(1) if (v =0) then X .fetch&add2();

2 if (X is odd)then return(1) elsereturn(0) end if

3) else z < X.test&set();

4) if (zis odd)V (z = 0) thenreturn(1) elsereturn(0) end if
(5) endif.

Figure 7: A wait-free consensus algorithmdml R, [Test&Set, Fetch&AddP(code for process;)

The internal representation of the binary consensus object is a singlersnewation X, initialized
to 0. According to the value it propose8 ¢r 1), a process executes the statements of lines 2-3 or the
statements of lines 4-5. The value returned by the consensus objedesisgthe first atomic operation
that is executed. It i§ if the first operation onX is X.fetch&add2(), and1 if first operation onX is
X .test&set(). The reader can check that, if the first operation’is fetch&add2(), X becomes and
remains even forever. If it isest&set(), X becomes and remains odd forever. In the first case, @nly
can be decided, while in the second case, drtgn be decided.

Power number The notion of thgpower numbenf an object typel’ (PN(T")) was introduced by G.
Taubenfeld in [59]. It is the largest integkersuch that it is possible to implementsaobstruction-free
consensus object f@anynumber of processes, using any number of atomic read/write registdrangn
number of objects of typ&' (the registers and the objects of typdeing wait-free). If there is no such
largestk, PN(T") = 4.

Hence, the power number of an object typeeclatesk-obstruction-freedom and wait-freedom, when
objects of typ€el” are used. Let CN) be the consensus number of the objects of tfpdt is shown
in [59] that CN(I") = PN(T"). This result establishes a strong relation linking wait-freedom fand
obstruction-freedom. As noticed in [59], “the difficult part of the pramfo show that, for any: > 1,
it is possible to implement A-obstruction-free consensus algorithm for any number of processies)
only wait-free consensus objects foprocesses and atomic read/write registers”.

14

5.5 Universal construction “1 amongk”

k-Set agreement k-Set agreement{SA) was introduced by S. Chaudhuri [19]. It is a simple gen-
eralization of consensus. It is defined by the same validity and terminatigenies, and a weaker
agreement property, namely, at méstifferent values can be decided by the processes. Hérset,
agreement is consensus. Itis shown in [10, 37, 56] that it is impossibleltba-set agreement object
in CARW,,[0] whenk or more processes may crash.

k-simultaneous consensus k-Simultaneous consensus-$C) was introduced in [3]. As consensus
andk-SA, ak-SC object is a one-shot object that provides the processes with a apegition denoted
propose(). This operation takes an input parameter a vector offsigéhose each entry contains a value,
and returns a paifr, v). The input vector contains “proposed” values, angifv) is the pair returned to
the invoking process, this process “decideand this decision is associated with the consensus instance
', 1 <z <k.

More precisely, the behavior offaSC object is defined by the following properties.

e Termination. If a correct process invokgepose(), it decides a paifz, v).

e Validity. If a procesy; decides the paifx, v), we havel < x < k, and the value was proposed
by a process in the entryof its input vector parameter.

e Agreement. Lep; be a process that decides the pairv), andp; be a process that decides the
pair (y, w). We have(z = y) = (v = w).

It is shown in [3] thatk-SA andk-SC have the same computational power in the sense that a
SA object can be built i ARW,,[k-SC, and ak-SC object can be built i€ ARW,,[k-SA]. This
equivalence is no longer true in asynchronous crash-prone megaagieag systems, whefeSC is
stronger thark-SA [12, 54].

Letin;[1..k] be the input parameter of a procegssAn easy implementation ¢-SC inCARW,, (0]
enriched withk consensus objectSONS|1..k] is as follows. For each, 1 < = < k, and in parallel,

a procesy; proposesn;[x] to the consensus obje€tONS|z|. Let CONS|y] be the first consensus
object which returns a valueto p;. Proces®; decides then the pajy, v).

The notion of k-universality E. Gafni and R. Guerraoui investigated in [27] the following question:
What does happens if, instead of consensus objects, wé-8ge (or equivalentlyk-SC) objects to
design a universal construction?

They showed that it is then possible to design what they callediaiversal constructionSuch a
construction considers objects (instead of only one) and guarantees that at least one of thjestso
progresses forever. Let GG denote theniversal construction described in [27].

Adopt-commit object The GG construction relies daSC objects and adopt-commit (AC) objects.
This object, introduced in [26], is a one-shot object which provides thegsses with a single operation
denotedbropose(), which takes a value as input parameter and returns a pair composedyodiadta
value. Its behavior is defined by the following properties.

o Validity.
— Result domain. Any returned pditag, v) is such that (a) has been proposed by a process
and (b)tag € {commit, adopt}.
— No-conflicting values. If a procegs invokespropose(v) and returns before any other pro-
cessp; has invokecpropose(w) with w # v, only the pair(commit, v) can be returned.

e Agreement. If a process returfisommit,v), only the pairs(commit,v) or (adopt,v) can be
returned by the other processes.

15

e Termination. An invocation ofropose() by a correct process always terminates.

It follows from the “no-conflicting values” property that, if a single valuds proposed, only the
pair (commit, v) can be returned. Adopt-commit objects can be wait-free implementéd W, (0]
(e.g., [26, 52]). Hence, they provide processes with a higher abietrdevel than read/write registers,
but do not provide them with additional computational power.

A non-blocking k-universal construction (This section borrows text from [55]) The algorithm GG
is based on local replication paradigm, namely, the only shared objectsearerttiol objectd(SC1..]
(unbounded list ok-SC objects) andi C[1..][1..k] (matrix of adopt-commit objects). Each process
manages a copy of every objeet denotedstate;[m], which contains the last state of as known by
pi- The invocation by, of d(state;[m], op) applies the operatioop() to its local copy of objecin.
The construction consists in an infinite sequence of asynchronoudsdocally denotea; at process
pi.

Each process manages the following local data structures.

e For each objecin, my_list;[m] defines the list of operations that wants to apply to the ob-
jectm. Moreover,my_list;|m].first() sets the read head to point to the first element of this list
and returns its valuemny_list;[m].current() returns the operation under the read head; finally,
my_list;lm].next() advances the read head before returning the operation pointed to @athe r
head.

e For each objectn, oper;[m], ac_op;[m] are local variables which contain operations fhatants
to apply objectn (this list can be defined dynamically according to the algorithm executed by
tag;[m] is used to contain a tag returned by an adopt-commit object concerningjdutab

The algorithm is presented in Figure 8. A procgs§rst initializes its round number, and the local
copy of each object. The arrayer;[1..k] is such thabper;[m| contains the next operation thatwants
to apply tom. When this is done, it enters an infinite loop, which constitutes the core obtistraction.
To simplify the presentation, and without loss of generality, we considetathabject operations are
different (this can be easily realized with sequence numbers and priolegdities). Moreover, we also
do not consider the result returned by each operation.

After it has increased its round number, a proggsisivokes thek-simultaneous consensus object
KSC|[r] to which it proposes the operation vectper;[1..n], and from which it obtains the pair denoted
(obj, op); op is an operation proposed by some process for the objgctline 2). Proces®; then
invokes the adopt-commit objeetC[r|[obj] to which it proposes the operatiap output by KSC|r]
for the objecb; (line 3). Finally, for all the other objects # obj, p; invokes the adopt-commit object
AC|r][m] to which it proposesper;m| (line 4). As already indicated, the tags and the operations
defined by the vector of pairs output by the adopt-commit objéct$r|[1..k] are saved in the vectors
tag;[1..k];andac_op;[1..k], respectively. The aim of these lines, realized by the obj&&€’'[r] and
AC|[r][1..m]is to implement a filtering mechanism such that (a) for each object, at mostpenation
can be be committed, and (b) there is at least one object for which antiopgeacommitted at some
process. This filtering mechanism is explained separately below.

After the execution lines 2-4, far < m < k, (tag;lm|, ac_op;[m]) contains the operation that
has to consider for the objeet. For each of them it does the following. Firstaif_op;[m] is marked “to
be executed afterper;[m]|, p; appliesoper;[m] to state;m]| (lines 6-8). Then, the predicate of line 9
ensures that no operation invocation is applied twice on the same object (¢his fimissing in [27]). If
tag;[m] = adopt, p; adoptsac_op;[m| as its next proposal for the objeet (lines 10-11). Otherwise,
tag;i/m| = commit. In this casep; first appliesac_op;[m] to its local copystate;[m| (line 12). Then,
if ac_op;[m] was an operation it has issueg,computes its next operatiaimer;[m] on the objectn
(lines 13-16).

16

r; < 0;
foreachm € {1,...,k} do

state;[m] < initial state of the objecin; oper;[m] < my_list;[m].first()
end for.

repeat forever
(1) ri <71 +1;
(2) (obj,op) < KSC|r;].propose(oper;[1..k]);
(3) (tagilobj], ac_opi[obj]) <— AC|[ri][obj].propose(op);
(4) foreachm € {1,...,k}\ {obj} do
(tagim], ac_opi[m]) <= AC|[ri][m].propose(oper;[m]) end for;
(5) foreachm € {1,...,k} do

(6) if (ac_op;[m] is marked “to_be_executed_after” oper;[m])

@) then state;[m].d(state;[m], oper;[m])

8) end if;

9) if (oper;[m] is not marked “to_be_executed_after” ac_op;[m])
(10) then if (tag;[m] = adopt)

(11) then oper;[m] < ac_op;[m)|

(12) else state;[m] < d(state;[m], ac_op;[m]); % tag;[m] = commit %
(13) if ac_op;[m] = my_list;[m].current()

(14) then oper;[m] < my_list;[m].next()

(15) else oper;[m] <— my_list;[m].current()

(16) end if;

a7) mark oper;[m] “to_be_executed_after” ac_op;[m]
(18) end if

(19) end if

(20) end for

end repeat

Figure 8: Non-blockingd:-universal construction (code of)

As explained in [27], the use of a naive strategy to update local coptbg abjects, makes possible
the following bad scenario. During a rounda proces®; executes an operatiapl on its copy of the
objectm1, while a procesg, executes a operatiasp2 on a different objectn2. Then, during round
r + 1, p1 executes a operatiasp3 on the objectn2 without having executed firgtp2 on its copy of
m?2. This bad behavior is prevented from occurring by a combined usedbpfta&commit objects and an
appropriate marking mechanism. When a proggspplies an operatiosp() to its local copy of an ob-
jectm, it has necessarily received the pgipmmit, op()) from the adopt-commit object associated with
the current round, and consequently the other processes haetg@emmit, op()) or (adopt, op()).
The procesg; attaches then to its next operation for the objectwhich is denotedper;[m]) the in-
dication thatoper;|m| has to be applied to: afterop() so that no process execuigser;[m| without
having previously executesp(). Hence, to prevent the bad behavior previously described, a grpces
attaches toper;|m| (line 17) the fact that this operation cannot be applied to any copy of tieetoh
before the operatioac_op;[m)|.

Al already indicated, thig-universal construction ensures that at least one process psegr®rever
(non-blocking progress condition), and at least one object pregsdsrever.

Why at least one object operation is committed at every round It was claimed above that the
“filtering mechanism” realized by lines 2-4 ensures that at least one topeia committed at every
round. We prove here this claim. Figure 9 illustrates the associated regsonin

After a proces®;; obtained a paifob;j1, opl) from its invocationK:SC[r].propose(oper;[1..k]) at
line 2, itinvokesA C'[r|[obj1].propose(opl) at line 3, and only then it invoked C'[r|[obj].propose(opl)
for each objecbbj # objl at line 4. If its invocation ofAC/[r][obj1].propose(opl) at line 3 returns
(commit, —), the claim follows.

17

Hence, let us assume that the invocatior4dt [r][obj1].propose(opl) by p;1 returns(adopt, —).
It follows from the “non-conflicting” property of the AC object C[r][obj1] that another processs
has necessarily invokediC'[r][obj1].propose(op’) with op” # op1; moreover this invocation by;, was
issued at line 4 (if both;; andp;2 had invokedA C[r|[obj1].propose() at line 3, due to agreement prop-
erty of AC[r|[obj1], they would have obtained the same pair from this object at line 3, andaquoersity
pi2 could not have preventeg; from obtaining(commit, —) from the AC objectd C[r][0bj1] at line 3).
If follows that p;, started line 4 beforg;; terminated line 3. The invocation by, at line 3 of AC[r][—]
involved some objeaib;2 obtained byp;o at line 2, and we necessarily hasgj2 # obj1).

(obj1, =) « KSC]r].propose() (adopt,—) <= AC|[r|[obj1].propose()

line 2 line 3
DPi1 —=

AC|[r][obj2].propose() ~ __---""~ Drecedes

line 3 line 4
Pio ine - ‘ ine |

- ’ﬁ;e;edes AC[r][obj1].propose()

\

-
-

Dix [Tine3] ‘ line 4 |
AC|r][objx].propose() AC[r][obs2].propose()

\]

Figure 9: Net effect of th&-SC and CA objects used at lines 2-4 of round

If the invocation of AC[r|[0bj2].propose() returns(commit, —), the claim follows. Otherwise, due
to the agreement property afC[r|[obj2], there is a process;s, different fromp;; andp;2, such that
the execution pattern betweep # p;o is the same as the previous pattern betwgen# p;1, etc. The
claim then follows by induction and the fact that there is finite number of gsE=e

5.6 Ultimate universal construction “/ amongk”

The previous NB-compliar-universal construction ensures that at least one object pregréssver,
and one process progresses forever. Hence, the natural qudstibmpossible to design a universal
construction in which at leagtobjects progress forever, whete< ¢ < k, and all correct processes
progress forever (wait-freedom progress condition).

Such a very general universal construction was proposed by yhdRal. Stainer, and G. Taubenfeld
in [55]. It rests on an extension of tkeSC object calledk, ¢)-simultaneous consensus.

(k, ¢)-simultaneous consensusLet ¢ € {1, ..., k}. A (k,¢)-SC object is &-SC object (see Sec-
tion 5.5) where instead of a single pdir, v), the operatiorpropose() returns a set of exactly pairs
{{z1,v1), ..., (xg,vp) }, such that all the pairs differ in their first component.

It is easy to see thdtk, 1)-SC object is &-SC object (and consequently:eSA object). Moreover,
a (k, k)-SC object is a consensus object. It is also easy to see ttkatg-SC object is a consensus
object. Fork > 1, a(k, ¢)-SC object is weaker than(&, ¢ + 1)-SC object.

(k, £)-Universal construction The(k, ¢)-universal construction presented in [55] borrows the lines 1-
4 of Figure 8, in whicht-SC objects are replaced ¥, /)-SC objects. All the rest of the construction,
which is built incrementally, is based on a different approach. A nonkiigck-universal construc-
tion is first described, and then enriched step by step to obtain the finaldMiptiant(%, ¢)-universal
construction. Its noteworthy features are the following.

18

On the object side. At leagtamong the: objects progress forever, < ¢ < k. This means that
an infinite number of operations is applied to each of theslejects. This set of objects is not
predetermined, and depends on the execution.

On the process side. The progress condition associated with proécesgeis-freedom. That
is, a process that does not crash executes an infinite number of opsraticcach object that
progresses forever.

An object stops progressing when no more operations are applied to itoflsguction guaran-
tees that, when an object stops progressing, all its copies stop in the star{attfae non-crashed
processes).

The construction igontention-aware This means that the overhead introduced by using opera-
tions on memory locations other than atomic read/write registers is eliminated whierigm®
contention during the execution of an object operation. In the absermanténtion, a process
completes its operations by accessing only read/write registers.

The construction igenerouswith respect tmbstruction-freedomrhis means that each process is
able to complete its pending operations on all thabjects each time all the other processes hold
still long enough. That is, if once and again all the processes excetald still long enough,
then all thek objects, and not jugtobjects, are guaranteed to always progress.

Last but least, it is shown in [55] thdk, ¢)-simultaneous consensus objects are necessary and
sufficient to implement gk, ¢)-universal construction, i.e. to ensure that at Idaamongk
objects progress forever while guaranteeing the wait-freedom m®gomdition to the processes.
Relations betwee(k, k — p)-SC objects an@p + 1)-set agreement objects for< p < k are also
investigated in [55].

6 Universal Construction vs Software Transactional Memory

A universal construction is on the distributed implementation of concurigatts defined by a sequen-
tial specification. The concept ofsmftware transactional memo($TM), introduced in [35], and later
refined in [57], is different. Its aim is to provide the programmers with a lagguconstruct (called
transaction) that discharges them from the management of synchronization issu#ss ay, a pro-
grammer can concentrate his efforts on which parts of processes Hawexecuted atomically and not
on the way atomicity is realized. This last issue is then the job of the underlyiMysy$tem. Among
others, main differences between universal constructions and S3teinsyg are the following.

e Object operations are defined a priori (statically), and the univematauction knows them.
Differently, the transactions are defined dynamically, and the STM sysdasmdpriori knowledge
of their content and their effects.

Let us also notice that, despite the fact they have the same name, databsaetiwas [28] and
STM transactions are not the same. Database transactions are codstrahne sense that they
are the result of a queries expressed in a given formalism. Differerfly, ttansactions can be
any piece of code produced by a programmer, which must be executaitally. Moreover,
usually the code of the STM transactions is not known by the STM system.

The consistency condition of concurrent objects (captured at run-trtiedarizability [38]) and
the consistency conditions of STM systems (e.g., opacity [29], virtual waantgistency [40], or
TMS1 [20]) are different. Among other points, this come from the fact émgttwo transactions
are a priori independent.

Due to their very nature, universal constructions consider failunegsystems. Differently, some
STMs address failure-free systems while others address failure-pystems.

19

7 Conclusion

The aim of this article was to be a guided visit to universal constructionsyimchsonous crash-prone
systems, where the processes communicate through a shared memonyoscad in the introduction,
its ambition is not to be an exhaustive catalog of the numerous universstrectiions proposed so far,
but a relatively easy to understand introduction to the “universal ageti&in” problem and the important
concepts, objects, and approaches, which constitute the foundatitthesaxfsociated algorithms.

To this end, the article has first presented a simple construction baseddwaha operations on
memory locations, namely the LL/SC pair of operations. It then moved frooweae-provided opera-
tions to agreement objects, and presented a simple consensus-baseshliobnstruction. Finally, the
article considered the case where the aim is not to address the constafci@ngle object, but the
coordinated construction of several objects. It is important to realizeithadt all the objects which
are built are required to progress forever, hardware operatiaisasILL/SC or Compare&Swap are
stronger than necessary to build universal constructions.

As a final remark, let us notice that OB-compliant (obstruction-freeyarsal constructions do not
require to enrich the system with the additional computational power prowigeastructions such as
LL/SC or agreement objects, i.e., they can be done in the basic system @RV [()]. This remains
true even if the processes are anonymous. The algorithms present&ibni]d a consensus object and
a repeated consensus object respectively, in such an asynciromah-prone anonymous read/write
system with onlyn read/write atomic registers, which we conjecture to be optimal (it is provedin [6
that at leastn — 1) registers are necessary).

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shidt N., Atomic snapshots of shared memory.
Journal of the ACM40(4):873-890 (1993)

[2] Afek Y., Dauber D., and Touitou D., Wait-free made fa8toc. 27th ACM Symposium on Theory of Com-
puting (STOC’95)ACM Press, pp. 538-547 (1995)

[3] Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers The k-simultaneous consensus probldbis-
tributed Computing22(3):185-195 (2010)

[4] Aguilera M.K., Frolund S., Hadzilacos V., Horn S.L., amdueg S., Abortable and query-abortable objects
and their efficient implementatioRroc. 26th ACM Symposium on Principles of Distributed Cotimgu
(PODC’07), ACM Press, pp. 23-32 (2007)

[5] Anderson J.H., Multi-writer composite registeRistributed Computing7(4):175-195 (1994)

[6] Anderson J. and Moir M., Universal constructions forglarobjectsIEEE Transactions on Parallel and
Distributed Systemd4.0(12):1317-1332 (1999)

[7] Attiya H., Bar-Noy A., Dolev D., Peleg D., and Reischuk, Renaming in an asynchronous environment.
Journal of the ACM37(3):524-548 (1990)

[8] Ben-David N., Cheng Chan D.Y., Hadzilacos V. and Toued&\bortable objects: progress under high con-
tention.Proc. 30th Int'l Symposium on Distributed Computing (DI$SE);, Springer LNCS 9888, pp. 298-
312 (2016)

[9] Bartlett K. A., Scantlebury S. A., and Wilkinson P. T., Adte on reliable full-duplex transmission over
half-duplex links.Communications of the ACM2(5):260-261 (1969)

[10] Borowsky E. and Gafni E., Generalized FLP impossipilésults fort-resilient asynchronous computations.
Proc. 25th ACM Symposium on Theory of Computing (STOCAGM Press, pp. 91-100 (1993)

20

[11] Bouzid Z., Raynal M., and Sutra P., Anonymous obstnrefree (n, k)-set agreement withn — & + 1)
atomic read/write registerBroc. 19th Int’'l Conference On Principles Of Distributeds&ms (OPODIS'15)
Leibniz Int'l Proceedings in Informatics, LIPICS 46, Aécl18:1-17 (2015)

[12] Bouzid Z. and Travers C., Simultaneous consensus ehdhan set agreement in message-pasiray.
33rd Int’'l IEEE Conference on Distributed Computing Sys€f@DCS’13) IEEE Press, pp. 611-620 (2013)

[13] Brinch Hansen, PThe origin of concurrent programmin&pringer, 534 pages, ISBN 0-387-95401-5 (2002)

[14] Bushkov V. and Guerraoui G., Safety-liveness exclusiodistributed computing?roc. 34th ACM Sympo-
sium on Principles of Distributed Computing (PODC’1BICM Press, pp. 227-236 (2015)

[15] Capdevielle Cl., Johnen C., and Milani A., Solo-fasivensal constructions for deterministic abortable
objects.Proc. 28th Int'l Symposium on Distributed Computing (DI$4D); Springer LNCS 8784, pp. 288-
302 (2014)

[16] Castafieda A., Rajsbaum S., and Raynal M., The renamiiggm in shared memory systems: an intro-
duction.Elsevier Computer Science Revjéa229-251 (2011)

[17] Censor-Hillel K., Petrank E., and Timnat S., Helfroc. 34th Symposium on Principles of Distributed
Computing (PODC’'15)ACM Press, pp. 241-250 (2015)

[18] Chandra T.D. and Toueg S., Unreliable failure detector reliable distributed system¥ournal of the ACM
43(2):225-267 (1996)

[19] Chaudhuri S., More choices allow more faults: set casas problems in totally asynchronous systems.
Information and Computatigri05(1):132-158 (1993)

[20] Doherty S., Groves L., Luchangco V., and Moir M., Towafdrmally specifying and verifying transactional
memory.Formal Aspects of Computing5:769&S799 (2013)

[21] Ellen F., Fatourou P., Kosmas E., Milani A., and Trav€rs Universal constructions that ensure disjoint-
access parallelism and wait-freeddbistributed Computing29:251-277 (2016)

[22] Ellen F., Gelashvili G., Shavit N. and Zhu L., A complgxbased hierarchy for multiprocessor synchroniza-
tion (Extended abstractiProc. 35th ACM Symposium on Principles of Distributed CotimguPODC’16)
ACM Press, pp. 289-298 (2016)

[23] Fatourou P. and Kallimanis N.D., The RedBlue adaptiniersal constructiond2roc. 23rd Symposium on
Distributed Computing (DISC’09B5pringer LNCS 5805, pp. 127-141 (2009)

[24] Fatourou P. and Kallimanis N.D., Highly-efficient wdiiee synchronizatioriTheory of Computing Systems
55:475-520 (2014)

[25] Fischer M.J., Lynch N.A., and Paterson M.S., Impodisjbof distributed consensus with one faulty process.
Journal of the ACM32(2):374-382 (1985)

[26] Gafni E., Round-by-round fault detectors: unifyingusiirony and asynchroniroc. 17th ACM Symposium
on Principles of Distributed Computing (POD@CM Press, pp. 143-152 (1998)

[27] Gafni E. and Guerraoui R., Generalizing universalyoc. 22nd Int'l Conference on Concurrency Theory
(CONCUR’11) Springer LNCS 6901, pp. 17-27 (2011)

[28] Gray J., Notes on database operating systéganced course on Operating Syste8pringer LNCS 60,
pp. 393-481 (1978)

[29] Guerraoui R. and Kapalka M., On the correctness of @raimsnal memoryProc. 3rd ACM Symposium on
Principles an Practice of Parallel Programming (PPOPP’Q2)CM Press, pp. 175-184 (2008)

[30] Guerraoui R. and Raynal M., A universal constructionviait-free objectsProc. Workshop on Foundations
of Fault-Tolerant Distributed Computing (FOFDC 200TQomputer Society Press, pp. 959-966 (2007)

21

[31] Hadzilacos V. and Toueg S., On deterministic abortablects.Proc. 35th ACM symposium on Principles
of Distributed Computing (PODC’13ACM Press, pp. 4-12 (2013)

[32] Herlihy M.P., Wait-free synchronizatiodACM Transactions on Programming Languages and Systems
13(1):124-149 (1991)

[33] Herlihy M.P., A methodology for implementing highly eourrent data object&«CM Transactions on Pro-
gramming Languages and Systems(5):745-770 (1993)

[34] Herlihy M.P., Luchangco V., and Moir M., Obstructioregé synchronization: double-ended queues as an
example.Proc. 23th Int'l IEEE Conference on Distributed Computingstems (ICDCS’'03)IEEE Press,
pp. 522-529 (2003)

[35] Herlihy M. and Moss J.E.B., Transactional memory: #@eattural support for lock-free data structures.
Proc. 20th Annual International Symposium on Computer kecture (ISCA'93) ACM Press, pp. 289-
300 (1993)

[36] Herlihy M., Rajsbaum S., and Raynal M., Power and limftdistributed computing shared memory models.
Theoretical Computer Sciencg09:3-24 (2013)

[37] Herlihy M.P. and Shavit N., The topological structurfeagsynchronous computabilityournal of the ACM
46(6):858-923 (1999)

[38] Herlihy M.P. and Wing J.M, Linearizability: a corre@ss condition for concurrent objec&CM Transac-
tions on Programming Languages and Systel2$3):463-492 (1990)

[39] Imbs D. and Raynal M., Help when needed, but no more: iefftaead/write partial snapshaournal of
Parallel and Distributed Computing’2(1):1-13 (2012)

[40] Imbs D. and Raynal M., Virtual world consistency: A cdtiwh for STM systems (with a versatile protocol
with invisible read operationsT.heoretical Computer Sciencé44:113-127 (2012)

[41] Imbs D., Raynal M., and Taubenfeld G., On asymmetrigpess conditions?roc. 29th ACM Symposium
on Principles of Distributed Computing (PODC’'1CM Press, pp. 55-64 (2010)

[42] Kramer S. N.History begins at Sumer: thirty-nine firsts in man’s recatd@story. University of Pennsyl-
vania Press, 416 pages, ISBN 978-0-8122-1276-1 (1956)

[43] Lamport L., Time, clocks, and the ordering of events digtributed systenlCommunications of the ACM
21(7):558-565 (1978)

[44] Lamport L., On interprocess communication, Part l:ibdsrmalism. Distributed Computing1(2):77-85
(1986)

[45] Lamport L., Fast mutual exclusioACM Transactions on Computer Systef(d):1-11 (1987)

[46] Lamport L., Shostack R. and Pease M., The Byzantine rgéproblem ACM Transactions on Program-
ming Languages and System§3)-382-401 (1982)

[47] Loui M. and Abu-Amara H., Memory requirements for agremt among unreliable asynchronous pro-
cessesAdvances in Computing Researdh163-183, JAI Press (1987)

[48] Lynch W. C., Reliable full-duplex file transmission ovelf-duplex telephone line€ommunications of the
ACM, 11(6):407-410 (1968)

[49] Mostéfaoui A., Perrin M., and Raynal M., A simple obj¢lcat spans the whole consensus hierarSup-
mitted to publication(2016)

[50] Neugebauer O. EThe exact sciences in AntiquiBrinceton University Press (1952); 2nd edition: Brown
University Press, (1957); Reprint: Dover publicationsgap

22

(51]

[52]

(53]

(54]

[55]

[56]

[57]
(58]

[59]

(60]

(61]

(62]

(63]

Post E. L., Formal reductions of the general combiratatecision problemAmerican Journal of Mathe-
matics 65 (2):197-215 (1943)

Raynal M.,Concurrent programming: algorithms, principles and foatidns Springer, 515 pages, ISBN
978-3-642-32026-2 (2013)

Raynal M., Concurrent systems: hybrid object impletagons and abortable objec®roc. 21th Int'l Eu-
ropean Parallel Computing Conference (EUROPAR;)ringer LNCS 9233, pp. 3-15 (2015)

Raynal M. and Stainer J., Simultaneous consensus vagseement: a message-passing-sensitive hierar-
chy of agreement problemBroc. 20th Int'l Colloquium on Structural Information ando@munication
Complexity (SIROCCO 201,3$pringer LNCS 8179, pp. 298-309 (2013)

Raynal M., Stainer J., and Taubenfeld G., Distributatversality.Algorithmica 76(2):502-535 (2016)

Saks M. and Zaharoglou F., Wait-fréeset agreement is impossible: the topology of public kndgée
SIAM Journal on Computing@9(5):1449-1483 (2000)

Shavit N. and Touitou D., Software transactional membistributed Computind 0(2):99-116 (1997)

Taubenfeld G.,Synchronization algorithms and concurrent programmid@3 pages, Pearson Educa-
tion/Prentice Hall, ISBN 0-131-97259-6 (2006)

Taubenfeld G., Contention-sensitive data structuré algorithms.Proc. 23rd Int'l Symposium on Dis-
tributed Computing (DISC’09)Springer LNCS 5805, pp. 157-171 (2009)

Taubenfeld G., The computational structure of progresnditions.Proc. 24th Int'l Symposium on Dis-
tributed Computing (DISC’'10)Springer LNCS 6343, pp. 221-235 (2010)

Turing A. M., On computable numbers with an applicatiorthe Entscheidungsproblefroc. of the Lon-
don Mathematical Society2:230-265 (1936)

Wantzel P. L., Recherches sur les moyens de reconrsaiireprobleme de géométrie peut se résoudre avec
la regle et le compadpurnal de mathématiques pures et appliquéd€8):366-372 (1837)

Zhu L., A ttight space bound for consensBsoc. 48th ACM Symposium on Theory of Computing (STOC'16)
ACM Press, pp. 345-350 (2016)

23

