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Abstract

The notion of a universal construction is central in computing science: the wheel has not to be
reinvented for each new problem. In the context ofn-process asynchronous distributed systems, a
universal construction is an algorithm that is able to buildany object defined by a sequential spec-
ification despite the occurrence of up to(n − 1) process crash failures. The aim of this paper is to
present a guided tour of such universal constructions. Its spirit is not to be a catalog of the numerous
constructions proposed so far, but a (as simple as possible)presentation of the basic concepts and
mechanisms that constitute the basis these constructions rest on.
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1 Introduction

A (very) short historical perspective Looking for (some) universality seems inherent to humankind.
Any language, any writing system, can be seen as an attempt to universality [42]. In the science domain,
one of the very first witness of research of universality found in the past seems to be the Plimpton 322
tablet (Figure 1), which describes the fifteen first Pythagorean triplets (a2 + b2 = c2).This is only a list,
not yet an algorithm with its proof.

Figure 1: Plimpton 322 tablet

The geometric constructions with a compass and a straightedge designed by the Ancient Greeks
are among the first algorithms with their correctness proofs (see also [50]). Proofs of impossible con-
structions in the “compass + straightedge” computing model took more time (e.g., theimpossibility of
squaring the circle, i.e., build, with straightedge and compass only, a squarewhose area is equal to the
area of a given circle)1. More recently, the Turing machine provides us with an abstract computing de-
vice, which is considered as the most general sequential computing model, thereby fixing the limits of
what can be computed by a sequential machine [61]2. It is consequently claimed to beuniversal. The
halting problem is the most famous of the problems that are impossible to solve in this “mostgeneral”
sequential computing model.

In distributed computing the situation is different. As written in [36]: “In sequential systems, com-
putability is understood through the Church-Turing Thesis: anything that can be computed, can be com-
puted by a Turing Machine. In distributed systems, where computations require coordination among
multiple participants, computability questions have a different flavor. Here,too, there are many prob-
lems which are not computable, but these limits to computability reflect the difficulty of making decisions
in the face of ambiguity, and have little to do with the inherent computational power of individual par-
ticipants.”

In distributed computing the main issues posed by universality and computability appear when one
has to implement distributed state machines (distributed services encapsulated inconcurrent objects) in
the presence of adversaries due to the environment in which the computationevolves (such as asyn-
chrony and process failures) [25, 32, 43, 46].

1This impossibility follows from the fact thatπ is a transcendent number (F. von Lindemann 1882), and a theorem byP.
L. Wantzel, who established, in 1937, necessary and sufficient conditions for a number to be constructible in the “compass +
straightedge” computing model [62].

2This means that any sequential computing model proposed so far has the same computability power as a Turing machine
(e.g., Church’s Lambda calculus, or Post systems [51]), or is weaker than a Turing machine (e.g., finite state automata).
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Concurrent objects and asynchronous crash-prone read/writesystems A concurrent object is an
object that can be accessed (possibly simultaneously) by several processes. From both practical and
theoretical point of views, a fundamental problem of concurrent programming consists in implementing
high level concurrent objects, where “high level” means that the object provides the processes with an
abstraction level higher than the atomic hardware-provided instructions. While this is well-known and
well-mastered since a long time in the context of failure-free systems [13], it isfar from being trivial
in failure-prone systems (e.g., see textbooks such as [52, 58]), whereit is still an important research
domain.

This paper considers systems made up ofn sequential asynchronous processes which, at the hard-
ware level, communicate through memory locations (memory words also called registers) which can
be accessed by atomic operations (instructions), including the basic read and write operations. More-
over, it is assumed that, in any run, up to(n − 1) processes may crash (unexpected halting). When
restricted to the basic read and write instructions, this computation model is known under the name
wait-free read/writemodel (denoted hereCARWn[∅], whereCARW stands for Crash Asynchronous
Read/write).

On progress conditions Deadlock-freedom and starvation-freedom are well-known progress condi-
tions in failure-free asynchronous systems. As their implementation is based on lock mechanisms, they
are not suited to asynchronous crash-prone systems. This is due to the fact that it is impossible to distin-
guish a crashed process from a slow process, and consequently a process that acquires a lock and crashes
before releasing it can entail the blocking of the entire system.

Hence, new progress conditions for concurrent objects suited to crash-prone asynchronous systems
have been proposed. Given an object, we have the following.

• The strongest progress condition iswait-freedom(WF) [32]. It states that, any operation (on
the object that is built) issued by a process that does not crash terminates.This means that it
terminates whatever the behavior of the other processes. This can be seen as the equivalent of the
starvation-freedom progress condition encountered in failure-free systems.

• Thenon-blockingprogress condition (NB) states that there is at least one process that can always
progress (all its object operations terminate) [38]. This progress condition is also calledlock-
freedom. It can be seen as the equivalent of deadlock-freedom in failure-free systems. Non-
blocking has been generalized in [14], under the namek-lock-freedom(k-NB), which states that
at leastk processes can always make progress.

• The obstruction-freedomprogress condition (OB) states that a process that does not crash will
be able to terminate its operation if all the other processes hold still long enough[34]. This is
the weakest progress condition. It has been generalized in [59], under the namek-obstruction-
freedom(k-OB), which states that, if a set of at mostk processes run alone for a sufficiently long
period of time, they will terminate their operations.

Whilewait-freedomandnon-blockingare independent of the concurrency and failure pattern,obstruction-
freedomis dependent from it. Asymmetric progress conditions have been introduced in [41]. The com-
putational structure of progress conditions is investigated in [60].

Universal construction The notion of a universal construction was introduced by M. Herlihy in [32].
It considers objects (a) which are defined from sequential specifications and (b) whose operations are
total, i.e., any object operation returns a result (as an example, apush() operation on an empty stack
returns the default value⊥).

Let PC be a progress condition. APC-compliant universal constructionis an algorithm that, given
the sequential specification of an objectO (or a sequential implementation of it), provides a concurrent
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implementation ofO satisfying the progress conditionPC in the the presence of up(n − 1) process
crashes (Figure 2).

Sequential specification

of an objectZ

PC-compliant implementation

of objectZ

PC-compliant
universal construction

Figure 2:PC-compliant universal construction

It has been shown in [25, 32, 47] that the design of a universal construction with respect to the
wait-freedom progress condition is impossible inCARWn[∅]. This means that the basic system model
CARWn[∅] has to be enriched with hardware-provided atomic instructions or additionalcomputing ob-
jects whose computational power is stronger than atomic read/write registers (in the following, we con-
sider terms “register” and “memory location” as synonyms; we sometimes also say “atomic read/write
object” by a slight abuse of language).

Content of the paper This paper aims at being a guided tour to distributed universal constructions.
Its goal is not to be a presentation including as many universal constructions as possible, but to focus on
the central features universal constructions rest on, and illustrate them with existing algorithms. To this
end, after having introduced basic definitions (Section 2), the paper proceeds as follows.

• Section 3 presents first a simple and elegant universal construction suited to the system model
CARWn[LL/SC] (CARWn[∅] enriched with the hardware-provided instructions LL and SC,
which are defined in the section). This allows for an easy introduction of thenotion of aspecula-
tive computationand the notion of ahelp mechanism(introduced in [32] and recently formalized
in [17]). This section presents also extensions devoted tolargeobjects.

• Section 4 is made up of two subsections. the first is on the efficiency of universal constructions.
Considering the algorithms that realize them, it addresses the notion ofdisjoint-access parallelism.

The second subsection is on the object side. It considers the case of universal constructions for
deterministicabortableobjects [15, 31, 52, 53]. Such an object is a classical object defined by a
sequential specification which allows an operation to return a default value⊥ in the presence of
contention (in this case the operation has no effect on the object). Hence,in a concurrency-free
execution, an abortable object behaves as its non-abortable counterpart. The notion ofk-abortable
object has been recently introduced in [8], where is also presented an associated universal con-
struction. Ak-abortable object is such that an operation is allowed to return⊥ only if it is concur-
rent with operations from at mostk different processes, and none these operations return⊥.

• All the previous universal constructions consider that the underlying crash-prone system is en-
riched with hardware-provided atomic instructions such as LL/SC or Compare&Swap, which
work on memory locations [22]. Hence, the question: Which are the instructions that allow to
build a universal construction? As an example, can a universal construction be designed for the
system modelCARWn[Test&Set] (CARWn[∅] enriched with the hardware-provided atomic in-
struction Test&Set). This issue was solved by M. Herlihy in [32], who introduced the celebrated
consensus hierarchy. This is addressed in the first part of Section 5. Hence, the consensusobject
is at the core of universal constructions.

Then, the section shows another important advantage of using consensus objects instead of prim-
itives hardware-provided instructions to design universal constructions. While instructions are
uniform (any instruction can access any memory location [22]), an objectis a typed abstrac-
tion that has the property that an operation on typeT cannot be applied to an object of typeT ′.
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Moreover, an object can be weakened or generalized according to theneeds of the user. As an ex-
ample, the consensus object can be weakened to thek-set agreement (k-SA) object [19] or to the
k-simultaneous consensus (k-SC) object [3] (k-SA andk-SC objects are defined in the section).

The section presents then the notion of ak-universal construction due to E. Gafni and R. Guer-
raoui [27]. Such a construction considersk objects (instead of only one) and ensures that at
least one of these objects progresses forever. This construction relies onk-SC objects instead of
consensus objects.

Finally, the section considers the case where we want that, not at least one but at leastℓ objects
progress forever, whereℓ is any predefined constant in[1..k]. As shown in [55], objects de-
noted(k, ℓ)-SC ((k, ℓ)-simultaneous consensus objects defined in the section), which are strictly
stronger thank-SC objects (whenℓ > 1), and weaker than consensus objects (whenℓ < k), are
necessary an sufficient to build a universal construction fork objects, where at leastℓ objects
progress forever. It is important to notice that these generalizations of universal constructions
could not have been obtained from hardware-provided instructions. This will conclude the guided
tour.

Finally, after a short Section 6 comparing universal constructions and software transactional memory
(STM) systems, Section 7 concludes the paper.

2 The Basic Asynchronous Read/Write ModelCARWn[∅]

Crash-prone asynchronous processesThe basic computing model denotedCARWn[∅]was sketched
in the introduction. It is composed of a set ofn sequential processes denotedp1, ...,pn. Each process is
asynchronous which means that it proceeds at its own speed, which canbe arbitrary and remains always
unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctlyits local algorithm until it
possibly crashes. Up to(n − 1) processes may crash in a run. Due to the atomicity of the hardware-
provided operations, if a process crashes while executing such an operation, this operation appears as
entirely executed or not at all. A process that crashes in a run is said to befaulty in this run. Otherwise,
it is corrector non-faulty. Hence, a faulty process is a process whose speed, after some time, remains
forever equal to0.

On atomicity The processes communicate by accessing atomic read/write registers (memoryloca-
tions). Atomicity means that the read and write primitive operations on a register appear as if they have
been executed one after the other. Moreover, the corresponding sequence of operationsS is such that
(a) if the operationop1 terminated before the operationop2 started,op1 appears beforeop2 in S, and
(b) a read operation on a registerR returns the value written by the closest preceding write operation on
R (or its initial value if there is no preceding write) [44]. Atomicity is also calledlinearizability when
considering any object defined by a sequential specification [38].

Notation Variables local to a processpi are denoted with lowercase letters, sometimes indexed withi.
Memory location and objects shared by the processes are denoted with capital letters.

3 A Simple LL/SC-Based WF-Compliant Universal Construction

3.1 ExtendingCARWn[∅] with LL/SC

Model CARWn[LL/SC ] These hardware-provided atomic instructions can be applied to any memory
location. The wait-free read/write modelCARWn[∅] enriched with them is denotedCARWn[LL/SC].
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LL/SC is made up of three instructions: LL stands for Linked Load; SC stands for store conditional; VL
stands for Validate.

LetX be a memory location.X.LL() returns the current value ofX. Letpi be a process that invokes
X.SC(v). This invocation assignsv to X if X has not been assigned a value by another process since
the previous invocation ofX.LL() issued bypi. In this case,X.SC(v) returnstrue and we say that
the invocation is successful; otherwise it returnsfalse. Finally, an invocation ofX.VL() by process
pi returnstrue if no other process has issued a successfulX.SC() since the last invocation ofX.LL()
issued bypi.

These instructions are used to bracket aspeculative computation. A process first readsX with
X.LL() and stores its value in a local variablexi. Thenpi does a local computation which depends on
bothxi and its local state. The aim of this local computation is to define a new valuev for X. Finally,
pi tries to commit its local computation by writingv into X, which is done by invokingX.SC(v).
If this invocation is successful, the write is committed; otherwise the write fails. A similar behavior
can be obtained by the Compare&Swap() instruction. The main advantage of LL/SC, with respect to
Compare&Swap(), is that it does suffer the ABA problem (which requiressequence numbers to be
solved) [52, 58]. Algorithms based on LL/SC can be found in many publications (e.g., [23, 33, 39, 52,
58, 59] to cite a few).

3.2 A simple universal construction inCARWn[LL/SC ]

This section presents a simplified version (denoted sFK) of a universal construction due to P. Fatourou
and N. Kallimanis [24]. The main difference is that the presented construction uses sequence numbers
which increase forever, while [24] uses sequence numbers modulo2). This additional memory cost
makes it much easier to present and prove correct.

Collect object This construction uses a collect object. Such an object can easily be built inCARWn[∅].
It consists of an arrayCOL[1..n], with one entry per process, and provides them with two operations
denotedupdate() andcollect(). The invocation ofCOL.update(v) by a processpi assignsv toCOL[i].
The invocation ofCOL.collect() is an asynchronous scan of the array which returns, for each entryj,
the value it has read fromCOL[j]. A formal definition of such an object can be found in [52].

Due to the asynchronous scan, a collect object is not atomic (hence a collect object is computation-
ally weaker than a snapshot object [1]). An atomic version of a collect object is described in [24]. Its
implementation (a) assumes that then components of the collect object are stored in a single memory
location, and (b) is based on the hardware-provided instructionadd() (Y.add(v) atomically addsv to
Y ).

Global and local variables LetO be the object that is built.

• STATE is a memory location made up of three fields:

– STATE .value contains the current value ofO. It is initialized to the initial value ofO.
– STATE .sn[1..n] is an array of sequence numbers initialized to[0, · · · , 0]; STATE .sn[i] is

the sequence number of the last invocation of an operation onO issued bypi.
– STATE .res[1..n] is an array of result values initialized to[⊥, · · · ,⊥]; STATE .res[i] con-

tains the result of the last operation issued bypi that has been applied toO.

• BOARD is a collect object. Each of its entryi contains a pair〈BOARD [i].op,BOARD [i].sn〉
initialized to〈⊥, 0〉; BOARD [i].op contains the last operation onO issued bypi, andBOARD [i].sn
contains its sequence number.

• Each processpi manages a sequence number generatorsni initialized to1.
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The objectO is assumed to be defined by a transition functionδ(). Let s be the current state ofO
andop(in) be the invocation of the operationop() onO, with input parameterin; δ(s, op(in)) outputs
a pair〈s′, r〉 such thats′ is the state ofO after the execution ofop(in) ons, andr is the result ofop(in).

Construction sFK: speculative computation and helping The construction sFK is described in Fig-
ure 3. When a processpi invokes an operationop(in) onO, it first publishes the pair〈op(in), sni〉 in
the collect objectBOARD (line 1). Then, it invokes the internal procedureapply() at the end of which
it will locally return the result produced byop(in) (line 2).

whenpi invokesop(in) do
(1) BOARD .update(〈op(in), sni〉); sni ← sni + 1;
(2) apply(); let r = STATE .res[i]; return(r).

internal procedure apply() is
(3) repeat twice
(4) ls← STATE .LL();
(5) pairs← BOARD .collect();
(6) for ℓ ∈ {1, 2, · · · , n} do
(7) if (pairs[ℓ].sn = ls.sn[ℓ] + 1 then
(8) 〈new_state, r〉 ← δ(ls.value, pairs[ℓ].op);
(9) ls.res[ℓ]← r; ls.sn[ℓ]← pairs[ℓ].sn
(10) end if
(11) end for
(12) STATE .SC(ls)
(13) end repeat twice.

Figure 3: WF-compliant universal construction sFK (system modelCARWn[LL/SC])

The core of the construction is the procedureapply(), in which a processpi executes twice the
lines 4-12 (we will see later why this has to be done twice). Processpi first reads the current local
state of the object (line 4), and starts a first speculative execution (whichwill end at line 12). In this
speculative execution,pi first reads the content of the collect objectBOARD from which it obtains for
each processpℓ a pair〈last operation invoked bypℓ, associated sequence number〉. Let us remind that as
BOARD .collect() is not atomic, andpi is asynchronous, the pairs that are returned are not necessarily
associated with a consistent global state the computation passed through.

Then,pi considers each pair inpairs in the “for” loop of lines 6-11. In this loop,pi strives to help
all the processes that have a pending operation onO. From its point of view (i.e., with the information
it has obtained from its previous reads ofSTATE andBOARD), those are all the processespℓ such
thatpairs[ℓ].sn = ls.sn[ℓ] + 1 (line 7). If this local predicate is true,pi locally simulates (speculative
computation) the last operation issued bypℓ not yet applied to the object (line 6), and locally saves
the result of the operation and its sequence number (line 9). Finally,pi tries to commit its speculative
computation by invokingSTATE .SC() (line 12). Let us observe that, if this invocation is successful, we
can conclude that no process modifiedSTATE while pi was doing its speculative computation. Hence,
the local variablels of pi is up to date, and, from an external observer point of view, everythingappears
as if the computation starting at line 4 and ending at line 12 was executed atomically. If the invocation
of STATE .SC() is not successful, the speculative execution is not committed.

Construction sFK: why “repeat twice”? Let us first observe that, due to sequence numbers, once
registered in the collect objectBOARD , an operation cannot be executed once more than once. More-
over, if the processpi that invokes an operation does not crash, it terminates its operationop(in). This
follows from the fact that the lines 7-10 are executed a bounded number of times (2n). But is the result
provided forop(in) correct?
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To answer this question, let us consider the execution described in Figure4. When processpj
(bottom of the figure) executesSTATE .LL() followed byBOARD .collect() (lines 4-5),pi (top of the
figure) has not yet registered by executingBOARD .update() (line 1). Hencepairsj does not contain
〈op(in), sn〉. Let us assume that the execution ofSTATE .SC(lsj) by pj is successful. Ifpi executes
only once the repeat loop, its execution ofSTATE .SC() is not successful, andpi returns despite the fact
thatpj has not helped it by executingop(in). Hence, the statementreturn(r) executed bypi at line 2
returns the result of its previous operation invocation.

Atomicity line

lsj ← STATE .LL()

lsi ← STATE .LL()BOARD .update(op(in), sn)

pairsj ← BOARD .collect() STATE .SC()
successful STATE .SC()

next successful

by some processpk

STATE .SC(): not successful

pi

pj

Figure 4: Why to repeat twice lines 4-12 (big dot = atomic step)

Assuming now thatpi executes twice the repeat loop, let us consider the first successful invocation
of STATE .SC() that occurs after the previous successful invocation bypj . This invocation is issued by
some processpk (which can bepi, pj or any other process). According to the algorithm of Figure 3,
it follows that pk has previously invokedSTATE .LL(). Moreover, this invocation occurs necessarily
after the successful invocation ofSTATE .SC() by pj (otherwise the invocation ofSTATE .SC() by
pk could not be successful). Consequently, the invocation ofBOARD .collect() by pk is such that
〈op(in), sn〉 ∈ pairsk. It follows that pk found pairsk[i].sn = lsk.sn[i] + 1, and simulated the
execution ofop(in) on behalf ofpi and wrote the corresponding result inlsk.res[i] which was then
copied inSTATE .res[i] by the successful execution ofSTATE .SC() by pk.

Linearization of the operations onO Let SC[1], SC[2], ..., SC[x], etc. be the sequence of all the suc-
cessful invocations ofSTATE .SC(); asSTATE .SC() is atomic, this sequence is well-defined. Starting
from SC[1], each SC[x] applies at least one operation on the objectO. It is possible to totally order
the operations applied toO by each SC[x]. Let seq[x] be the corresponding sequence. The sequence of
operations applied toO is then seq[1] followed by seq[2], ..., followed by seq[x], etc.

Remark on sequence numbers Techniques such as the one described in [9, 48] (known under the
namealternating bit protocol) can be used to obtain an implementation in which the sequence numbers
are implemented modulo2.

3.3 The case of large objects

The previous universal construction considered that the internal stateof the object (STATE ) can be
copied all at once. Alargeobject is an object whose internal state cannot be copied in one instruction.

Several articles have addressed this problem, e.g., [2, 6, 33]. They allpropose to fragment a large
object into blocks. Two main approaches have been proposed.

• One consists in using pointers linking the blocks representing the object [33]. Moreover, it requires
that the programmer provides a sequential implementation of the object that performs as little
copying as possible. The pointers are then accessed with LL instructions which allow a process to
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obtain a logical copy of the object (which means that only the needed part of the object is copied
in its local memory). A process executes then locally a speculative computation, as defined by the
operation it want to apply to the object. Finally it uses SC instructions on the appropriate pointers
to try to commit the new value of the object.

• The other approach consists in representing the object as a long array fragmented into blocks [6].
This paper presents two object constructions based on this approach, which are universal with
respect to non-blocking and wait-freedom, respectively. It also presents algorithms implementing
atomic LLL/LSC operations (where “L” stands for Large), which extend the LL/SC instructions
to arrays of memory locations. These operations are built in the system modelCARWn[LL/SC].

4 Extensions

This section presents two extensions of universal constructions. The first one is their efficiency. The
second one considers a weakening of concurrent objects called abortable objects.

4.1 On the implementation side: Disjoint-access parallelism

Disjoint-access parallelism A universal construction isdisjoint-access parallelif two processes that
access distinct parts of an objectO do not access common base objects or common memory location
which constitute the internal representation ofO. As an example, let us consider a queue. If the queue
contains three or more items, a process executingenqueue(v) and a process executingdequeue() must
be able to progress without interfering.

Hence, the aim of a disjoint-access parallel universal construction is to provide efficient implemen-
tations. Let us observe that all the universal constructions that built a total order on the operations (such
as the one described in Section 3.2 and the ones presented in [2, 23, 33])are not disjoint-access parallel.

What can be done? Hence the question posed by F. Ellen, P. Fatourou, N. Kosmas, A. Milani, and C.
Travers, in [21]: Is it possible to design a disjoint-access parallel WF-compliant universal construction?
This work presents two important results.
• The first is an impossibility result. It states that it is impossible to design a universal construction

that is disjoint-access parallel and ensures that all the operation invocations of the processes that
do not crash always terminate. Hence, when we consider any object defined by a sequential
specification, disjoint-access parallelism and wait-freedom are mutually exclusive.

• The second result is a positive one, namely the previous impossibility (which considersanyobject
defined by a sequential specification) does not apply to a special class of concurrent objects.
Hence, the constructions for this object class are no longer “universal” in the strict sense. This
object class contains all the objectsO for which, in any sequential execution, each operation
accesses a bounded number of base objects used to representO. Examples of such objects are
bounded trees, or stacks and queues whose internal representationsare list-based.

In their paper, the authors describe a universal construction that ensures, for the previous ob-
jects, both the disjoint-access parallel property of the object implementation, and the wait-freedom
progress condition for the processes that use it. This construction is presented in the system model
CARWn[LL/SC].

4.2 On the object side: Abortable objects

Abortable objects have been investigated in several articles, e.g., [4, 15,31, 52, 53]. They found their
origin in the commit/abort output of transaction-based systems [28], and the notion of “fast path” initially
introduced in fast mutual exclusion algorithms [45].
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Definition An abortable object is an object (defined by a sequential specification) such that

• When executed in a contention-free context, an operation takes effect, i.e., modifies the state of
the object and returns a result as defined by its sequential specification,

• When executed in a contention context, an operation either takes effect and returns a result as
defined by its sequential specification, or returns the default value⊥ (abort). If⊥ is returned, the
operation has no effect on the state of the object.

Hence, an abortable object is such that any operation always returns (i.e., whatever the concurrency
context). Its progress condition is consequently wait-freedom. Differently from an abortable object,
an obstruction-free object does not guarantee operation termination in thepresence of concurrency.
A theory of deterministic abortable objects (including a study of their respective power) is presented
in [31].

Universal constructions for abortable objects Such a very simple construction is described in Fig-
ure 5. It is a trivial simplification of the universal construction describedin Figure 3 from which the
helping mechanism has been suppressed. The memory locationSTATE contains now only the state of
the object.

whenpi invokesop(in) do
(1) ls← STATE .LL();
(2) 〈new_state, r〉 ← δ(ls, pairs[ℓ].op);
(3) done← STATE .SC(ls);
(4) if (done) then return(r) elsereturn(⊥) end if.

Figure 5: WF-compliant universal construction for abortable objects (system modelCARWn[LL/SC])

When a processpi invokes an operationop(in) on the object, it reads its current state to obtain a
local copy (line 1). Then it produces a speculative execution ofop(in) on this local statels (line 2).
Finally, it tries to commit its local execution by issuingSTATE .SC(ls) (line 3). If this SC is successful,
pi returns the result it has previously computed. Otherwise, there was at least one concurrent operation,
andpi returns⊥ (line 4).

Let us observe that, if several processes concurrently invoke operations, each invokesSTATE .LL(),
and the first of them that invokesSTATE .SC() produces a successful SC. It follows that, in the presence
of concurrency, at least one process is guaranteed to make progress in the sense that it does not return⊥.

An efficientsolo-fastuniversal construction for deterministic abortable objects is described in [15].
Solo-fast (also called contention-aware in other articles) means that the implementation is allowed to
use atomic operations on memory locations stronger than read/write only when there is contention.
Moreover, this implementation guarantees that the operations that do not modifythe object never return
⊥ and use only read/write operations. This implementation is based on the primitive operation on
memory locations Compare&Swap, whose computational power is the same as LL/SC.

k-Abortable objects This notion was recently introduced in [8]. Ak-abortableobject guarantees
progress even under high contention, where “progress” means that⊥ cannot be returned by some oper-
ation invocations.

Roughly speaking an operation invoked by a process is allowed to abort only if it is concurrent with
operations issued byk distinct processes and none of them returns⊥. This means that thek operations
that entail the abort of another operation must succeed. It is easy to seethat n-abortability is wait-
freedom where any operation returns a non-⊥ result. A formal presentation can be found in [8].
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A universal construction fork-abortable objects suited to the system modelCARWn[LL/SC] is
presented in [8]. Differently from the construction for abortable objectspresented in Figure 5, it is not a
trivial construction. It uses an array ofn memory locationsBOARD [1..n] used by the processes to store
their last operations (they are the equivalent of the collect objectBOARD [1..n] used in Figure 3), an
array ofk memory locationsWINNERS [1..k] which contains the (up tok) “winning” operations, and
another memory locationSTATE (similar to the locationSTATE used in Figure 3). All these memory
locations are accessed with the LL/SC atomic operations. (We use the same identifiers as in Figure 3 to
facilitate the understanding.)

The construction works as follows. After it has registered its operation inBOARD [i], a processpi
tries to find an available entry inWINNERS [1..k]. If it succeeds, its operation will not abort; otherwise
its operation will eventually abort. In all cases, i.e., whatever the fate of its own operation, the process
pi will help the winning operations to terminate. This construction is efficient in the sense that each
operation terminates inO(k) accesses to memory locations.

Let us observe that, as everyk-abortable object can easily implement itsk-lock-free counterpart, the
previous universal construction fork-abortable objects isk-NB-compliant universal construction. Let us
remember that, differently from itsk-lock-free counterpart, no process can get stuck when ak-abortable
object is used.)

5 From Operations on Memory Locations to Agreement Objects

5.1 Primitive operations versus objects

The previous universal constructions are based on hardware-provided atomic operations such as LL/SC.
This operation, as all the hardware-provided synchronization operations (such as Test&Set or Com-
pare&Swap) is uniform in the sense that they can be applied to any memory location [6, 22]. Hence the
following natural questions come to mind:

• Is it possible to design a universal construction with other hardware-provided atomic operations
such as Test&Set or Fetch&Add, initially designed to solve synchronization issues? Moreover,
which synchronization atomic operations are equivalent (from the point of view of a universal
construction)?

• Is it possible to generalize the concept of a universal construction to thecoordinated construction
of several objects with different progress conditions?

These questions are answered in this section.

5.2 A fundamental agreement object: consensus

Differently from a memory location which is only a sequence of bits accessedby hardware-provided
atomic operations, the aim of an object is to provide its user with a high abstraction level (by hiding im-
plementation details) and allow easier reasoning and proofs. An object is defined by a set of operations,
and a specification which describes its correct behavior. The operations associated with an object are
specific to it (i.e., due the very essence of the object concept, they are not uniform).

The consensus object The consensus object is the fundamental object associated with agreement
problems. Introduced (in a different form) in the context of Byzantine synchronous message-passing
systems [46], a consensus object provides the processes with a single operation denotedpropose() that
a process can invoke only once (one-shot object). When a process invokespropose(v), we say that it
“proposes the valuev”. This operation returns a result. If a process returns valuew, we say that it
“decidesw”. In the context of process crash failures, the consensus object is defined by the following
set of properties (let us remind that a correct process is a process that does not crash).
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• Termination. If a correct process invokespropose(), it decides a value.

• Validity. A decided value is a proposed value.

• Agreement. No two processes decide different values.

A consensus object allows the processes to agree on the same value, andthis value is not arbitrary: it
was proposed by one of them. Hence, when considering a universal construction, consensus objects can
be used by the processes to agree on the order in which their operations must be applied to the object
that is built.

5.3 A simple consensus-based universal construction

A simple WF-compliant consensus-based universal construction is described in Figure 6. This construc-
tion, proposed in [30], is inspired from the state machine replication paradigm [43] and the consensus-
based atomic broadcast algorithm presented in [18]. The reader will finda proof of it in [52]. LetO be
the object that is built. As in Section 3, its sequential behavior is defined by a transition functionδ().

Local variables A processpi manages locally a copy of the object, denotedstatei, an arraysni[1..n]
wheresni[j] denotes the sequence number of the last operation onO issued bypj locally applied to
statei. The local variablesdonei, resi, propi, ki, andlisti, are auxiliary variables whose meaning is
clear from the context;listi is a list of pairs of (operation, process identity);|listi| is its size, andlisti[r]
is its rth element; hence,listi[r].op is an object operation andlisti[r].proc the process that issued it.

whenpi invokesop(in) do
(1) donei ← false; BOARD [i]← 〈op(in), sni[i] + 1〉;
(2) wait (donei); return(resi).

Underlying local task T : % background server task %
(3) while (true) do
(4) propi ← ǫ; % empty list %
(5) for j ∈ {1, . . . , n} do
(6) if (BOARD [j].sn > sni[j]) then
(7) append(BOARD [j].op, j) to propi
(8) end if
(9) end for;
(10) if (propi 6= ǫ) then
(11) ki ← ki + 1;
(12) listi ← CONS [ki].propose(propi);
(13) for r = 1 to |listi| do
(14) 〈statei, resi〉 ← δ(statei, listi[r].op);
(15) let j = listi[r].proc; sni[j]← sni[j] + 1;
(16) if (i = j) then donei ← true end if
(17) end for
(18) end if
(19) end while.

Figure 6: A wait-free consensus-based universal construction (code for processpi)

Shared Objects The shared memory contains the following objects.

• An arrayBOARD [1..n] of single-writer/multi-reader atomic registers. Each entry is a pair such
that the pair〈BOARD [j].op,BOARD [j].sn〉 contains the last operation issued bypj and its
sequence number. EachBOARD [j] is initialized to〈⊥, 0〉.

• An unbounded arrayCONS [1..] of consensus objects.
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Process behavior When a processpi invokes an operationop(in)onO, it registers it and its associated
sequence number inBOARD [i] (line 1). Then, it waits until the operation has been executed, and returns
its result (line 2).

The arrayBOARD constitutes the helping mechanism used by the background task of each process
pi. This task is made up two parts, which are repeated forever. First,pi build a proposalpropi, which
includes the last operations (at most one per process) which not have been applied to the objectO, from
its local point of view (lines 4-9 and predicate of line 6). Then, if the sequencepropi is not empty,pi
proposes it to the next consensus instanceCONS [ki] line 12). The resulting valuelisti is a sequence
of operations proposed by a process to this consensus instance. Processpi then applies this sequence of
operations to its local copystatei of O (line 14), and updates accordingly its local arraysni (line 15).
If the operation that was applied is its own operation,pi sets the Booleandonei to true (line 16), which
will terminate its current invocation (line 2).

Bounded wait-freedom versus unbounded wait-freedom This construction ensures that the oper-
ations issued by the processes are wait-free, but does not guaranteethat they are bounded-wait-free,
namely, the number of steps (accesses to the shared memory) executed before an operation terminates is
finite but not bounded. Consider a processpi that issues an operationop(), while k1 is the value ofki.
let andk2 = k1 + α be such thatop() is output by the consensus instanceCONS [k2]. The taskT of pi
must executeα times the lines 4-18 in order to catch up the consensus instanceCONS [k2] and return
the result produced byop(). It is easy to see that the quantity(k2 − k1) is always finite but cannot be
bounded.

A bounded construction is described in [32]. Instead of requiring eachprocess to manage a local
copy of the object,O is kept in shared memory and is represented by a list of cells including an operation,
the resulting state, the result produced by this operation, and a consensus object whose value is a pointer
to the next cell. The last cell defines the current value of the object.

5.4 Consensus number and the consensus hierarchy

Consensus number of an object The notion of theconsensus numberof an object was introduced
by M. Herlihy in [32]. Let us consider an object of typeT (defined by a sequential specification). The
consensus numberof an object of typeT is the greatest integern such that it is possible to implement a
consensus object in a system ofn processes, with any number of atomic read/write registers and objects
of typeT . The consensus number is+∞ if there is no largestn.

This notion allows us to answer the first question posed in Section 5.1, and thisanswer defines what
is called the objectconsensus hierarchy. More precisely, it has been shown in [32] that:

• The consensus number of read/write registers is1. It follows that all objects that can be built from
read/write registers only (i.e., inCARWn[∅] without enrichment with additional operations) have
consensus number1. Snapshot objects [1, 5] and renaming objects [7, 16] are such objects).

• The consensus number of hardware operations such as Test&Set, Fetch&Add, Swap (exchange
the values in a local register an a shared register), and a few others, have consensus number2.
This means that a universal construction can be built inCARW2[Test&Set] (i.e., in a system of
two processes), but impossible inCARWn[Test&Set] for n > 2.

• Let ak-window read/write register be a register that stores only the sequence ofthe lastk values
which have been written, and whose read operation returns this sequence of at mostk values. It is
shown in [49] that the consensus number of ak-window isk.

• Finally, the consensus number of Compare&Swap, LL/SC, and a few others, is+∞.

This infinite hierarchy is theconsensus hierarchy. It provides us with a ranking of the power of
synchronization objects and hardware provided synchronization operations in wait-free systems (i.e.,
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systems where all, except one, processes may crash). As an example, ifany number of processors
may crash, this hierarchy states that a multicore with Test&Set is computationally less powerful than a
multicore with LL/SC.

Consensus from several operations on memory locationsThe previous hierarchy considers that
consensus must be built from read/write registers and objects of a giventypeT only. What can be done
when several hardware operations which access the same memory locations are given?

As an example, let us consider the system modelCARWn[Test&Set, Fetch&Add2] (defined in [22])
where Test&Set and Fetch&Add2 are two atomic operations defined as follows:

• Test&Set returns the value of the memory location, and sets it to1 if it contained0,

• Fetch&Add2 returns the value in the memory location and increases it by2.

Each of these operations on memory locations has consensus number2. The algorithm described in Fig-
ure 7 (due to F. Ellen, G. Gelashvili, N. Shavit, and L. Zhu, [22]) shows that a binary consensus object
can be built inCARWn[Test&Set, Fetch&Add2], for any value ofn. This means that the previous hier-
archy collapses when object types defined by operations on memory locations can be used to implement
consensus. Binary consensus means that only the values0 and1 can be proposed. This is not a problem
as it is possible to build a multivalued consensus object from binary consensus objects (see [52]).

whenpi invokespropose(v) do
(1) if (v = 0) thenX.fetch&add2();
(2) if (X is odd)then return(1) elsereturn(0) end if
(3) else x← X.test&set();
(4) if (x is odd)∨ (x = 0) then return(1) elsereturn(0) end if
(5) end if.

Figure 7: A wait-free consensus algorithm inCARWn[Test&Set, Fetch&Add2] (code for processpi)

The internal representation of the binary consensus object is a single memory locationX, initialized
to 0. According to the value it proposes (0 or 1), a process executes the statements of lines 2-3 or the
statements of lines 4-5. The value returned by the consensus object is sealed by the first atomic operation
that is executed. It is0 if the first operation onX is X.fetch&add2(), and1 if first operation onX is
X.test&set(). The reader can check that, if the first operation onX is fetch&add2(), X becomes and
remains even forever. If it istest&set(), X becomes and remains odd forever. In the first case, only0
can be decided, while in the second case, only1 can be decided.

Power number The notion of thepower numberof an object typeT (PN(T )) was introduced by G.
Taubenfeld in [59]. It is the largest integerk such that it is possible to implement ak-obstruction-free
consensus object foranynumber of processes, using any number of atomic read/write registers, and any
number of objects of typeT (the registers and the objects of typeT being wait-free). If there is no such
largestk, PN(T ) = +∞.

Hence, the power number of an object typeT relatesk-obstruction-freedom and wait-freedom, when
objects of typeT are used. Let CN(T ) be the consensus number of the objects of typeT . It is shown
in [59] that CN(T ) = PN(T ). This result establishes a strong relation linking wait-freedom andk-
obstruction-freedom. As noticed in [59], “the difficult part of the proofis to show that, for anyk ≥ 1,
it is possible to implement ak-obstruction-free consensus algorithm for any number of processes, using
only wait-free consensus objects fork processes and atomic read/write registers”.

14



5.5 Universal construction “1 amongk”

k-Set agreement k-Set agreement (k-SA) was introduced by S. Chaudhuri [19]. It is a simple gen-
eralization of consensus. It is defined by the same validity and termination properties, and a weaker
agreement property, namely, at mostk different values can be decided by the processes. Hence,1-set
agreement is consensus. It is shown in [10, 37, 56] that it is impossible to build ak-set agreement object
in CARWn[∅] whenk or more processes may crash.

k-simultaneous consensus k-Simultaneous consensus (k-SC) was introduced in [3]. As consensus
andk-SA, ak-SC object is a one-shot object that provides the processes with a singleoperation denoted
propose(). This operation takes an input parameter a vector of sizek, whose each entry contains a value,
and returns a pair〈x, v〉. The input vector contains “proposed” values, and if〈x, v〉 is the pair returned to
the invoking process, this process “decidesv, and this decision is associated with the consensus instance
x”, 1 ≤ x ≤ k.

More precisely, the behavior of ak-SC object is defined by the following properties.

• Termination. If a correct process invokespropose(), it decides a pair〈x, v〉.

• Validity. If a processpi decides the pair〈x, v〉, we have1 ≤ x ≤ k, and the valuev was proposed
by a process in the entryx of its input vector parameter.

• Agreement. Letpi be a process that decides the pair〈x, v〉, andpj be a process that decides the
pair 〈y, w〉. We have(x = y)⇒ (v = w).

It is shown in [3] thatk-SA andk-SC have the same computational power in the sense that ak-
SA object can be built inCARWn[k-SC], and ak-SC object can be built inCARWn[k-SA]. This
equivalence is no longer true in asynchronous crash-prone message-passing systems, wherek-SC is
stronger thank-SA [12, 54].

Let ini[1..k] be the input parameter of a processpi. An easy implementation ofk-SC inCARWn[∅]
enriched withk consensus objectsCONS [1..k] is as follows. For eachx, 1 ≤ x ≤ k, and in parallel,
a processpi proposesini[x] to the consensus objectCONS [x]. Let CONS [y] be the first consensus
object which returns a valuev to pi. Processpi decides then the pair〈y, v〉.

The notion of k-universality E. Gafni and R. Guerraoui investigated in [27] the following question:
What does happens if, instead of consensus objects, we usek-SA (or equivalentlyk-SC) objects to
design a universal construction?

They showed that it is then possible to design what they called ak-universal construction. Such a
construction considersk objects (instead of only one) and guarantees that at least one of these objects
progresses forever. Let GG denote thek-universal construction described in [27].

Adopt-commit object The GG construction relies onk-SC objects and adopt-commit (AC) objects.
This object, introduced in [26], is a one-shot object which provides the processes with a single operation
denotedpropose(), which takes a value as input parameter and returns a pair composed of a tag and a
value. Its behavior is defined by the following properties.

• Validity.

– Result domain. Any returned pair〈tag, v〉 is such that (a)v has been proposed by a process
and (b)tag ∈ {commit, adopt}.

– No-conflicting values. If a processpi invokespropose(v) and returns before any other pro-
cesspj has invokedpropose(w) with w 6= v, only the pair〈commit, v〉 can be returned.

• Agreement. If a process returns〈commit, v〉, only the pairs〈commit, v〉 or 〈adopt, v〉 can be
returned by the other processes.
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• Termination. An invocation ofpropose() by a correct process always terminates.

It follows from the “no-conflicting values” property that, if a single valuev is proposed, only the
pair 〈commit, v〉 can be returned. Adopt-commit objects can be wait-free implemented inCARWn[∅]
(e.g., [26, 52]). Hence, they provide processes with a higher abstraction level than read/write registers,
but do not provide them with additional computational power.

A non-blocking k-universal construction (This section borrows text from [55]) The algorithm GG
is based on local replication paradigm, namely, the only shared objects are the control objectsKSC [1..]
(unbounded list ofk-SC objects) andAC [1..][1..k] (matrix of adopt-commit objects). Each processpi
manages a copy of every objectm, denotedstatei[m], which contains the last state ofm as known by
pi. The invocation bypi of δ(statei[m], op) applies the operationop() to its local copy of objectm.
The construction consists in an infinite sequence of asynchronous rounds, locally denotedri at process
pi.

Each process manages the following local data structures.

• For each objectm, my_listi[m] defines the list of operations thatpi wants to apply to the ob-
jectm. Moreover,my_listi[m].first() sets the read head to point to the first element of this list
and returns its value;my_listi[m].current() returns the operation under the read head; finally,
my_listi[m].next() advances the read head before returning the operation pointed to by the read
head.

• For each objectm, operi[m], ac_opi[m] are local variables which contain operations thatpi wants
to apply objectm (this list can be defined dynamically according to the algorithm executed bypi);
tagi[m] is used to contain a tag returned by an adopt-commit object concerning the objectm.

The algorithm is presented in Figure 8. A processpi first initializes its round number, and the local
copy of each object. The arrayoperi[1..k] is such thatoperi[m] contains the next operation thatpi wants
to apply tom. When this is done, it enters an infinite loop, which constitutes the core of the construction.
To simplify the presentation, and without loss of generality, we consider thatall object operations are
different (this can be easily realized with sequence numbers and process identities). Moreover, we also
do not consider the result returned by each operation.

After it has increased its round number, a processpi invokes thek-simultaneous consensus object
KSC [r] to which it proposes the operation vectoroperi[1..n], and from which it obtains the pair denoted
〈obj, op〉; op is an operation proposed by some process for the objectobj (line 2). Processpi then
invokes the adopt-commit objectAC [r][obj] to which it proposes the operationop output byKSC [r]
for the objectobj (line 3). Finally, for all the other objectsm 6= obj, pi invokes the adopt-commit object
AC [r][m] to which it proposesoperi[m] (line 4). As already indicated, the tags and the operations
defined by the vector of pairs output by the adopt-commit objectsAC [r][1..k] are saved in the vectors
tagi[1..k];andac_opi[1..k], respectively. The aim of these lines, realized by the objectsKSC [r] and
AC [r][1..m]is to implement a filtering mechanism such that (a) for each object, at most one operation
can be be committed, and (b) there is at least one object for which an operation is committed at some
process. This filtering mechanism is explained separately below.

After the execution lines 2-4, for1 ≤ m ≤ k, 〈tagi[m], ac_opi[m]〉 contains the operation thatpi
has to consider for the objectm. For each of them it does the following. First, ifac_opi[m] is marked “to
be executed after”operi[m], pi appliesoperi[m] to statei[m] (lines 6-8). Then, the predicate of line 9
ensures that no operation invocation is applied twice on the same object (this line is missing in [27]). If
tagi[m] = adopt, pi adoptsac_opi[m] as its next proposal for the objectm (lines 10-11). Otherwise,
tagi[m] = commit. In this casepi first appliesac_opi[m] to its local copystatei[m] (line 12). Then,
if ac_opi[m] was an operation it has issued,pi computes its next operationoperi[m] on the objectm
(lines 13-16).
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ri ← 0;
for eachm ∈ {1, ..., k} do

statei[m]← initial state of the objectm; operi[m]← my_listi[m].first()
end for.

repeat forever
(1) ri ← ri + 1;
(2) 〈obj, op〉 ← KSC [ri].propose(operi[1..k]);
(3) (tagi[obj], ac_opi[obj])← AC [ri][obj].propose(op);
(4) for each m ∈ {1, ..., k} \ {obj} do

(tagi[m], ac_opi[m])← AC [ri][m].propose(operi[m]) end for;
(5) for each m ∈ {1, ..., k} do
(6) if (ac_opi[m] is marked “to_be_executed_after” operi[m])
(7) then statei[m].δ(statei[m], operi[m])
(8) end if ;
(9) if (operi[m] is not marked “to_be_executed_after′′ ac_opi[m])
(10) then if (tagi[m] = adopt)
(11) then operi[m]← ac_opi[m]
(12) else statei[m]← δ(statei[m], ac_opi[m]); % tagi[m] = commit %
(13) if ac_opi[m] = my_listi[m].current()
(14) then operi[m]← my_listi[m].next()
(15) else operi[m]← my_listi[m].current()
(16) end if ;
(17) mark operi[m] “to_be_executed_after” ac_opi[m]
(18) end if

(19) end if

(20) end for

end repeat.

Figure 8: Non-blockingk-universal construction (code ofpi)

As explained in [27], the use of a naive strategy to update local copies ofthe objects, makes possible
the following bad scenario. During a roundr, a processp1 executes an operationop1 on its copy of the
objectm1, while a processp2 executes a operationop2 on a different objectm2. Then, during round
r + 1, p1 executes a operationop3 on the objectm2 without having executed firstop2 on its copy of
m2. This bad behavior is prevented from occurring by a combined used of adopt-commit objects and an
appropriate marking mechanism. When a processpi applies an operationop() to its local copy of an ob-
jectm, it has necessarily received the pair〈commit, op()〉 from the adopt-commit object associated with
the current round, and consequently the other processes have received 〈commit, op()〉 or 〈adopt, op()〉.
The processpi attaches then to its next operation for the objectm (which is denotedoperi[m]) the in-
dication thatoperi[m] has to be applied tom afterop() so that no process executesoperi[m] without
having previously executedop(). Hence, to prevent the bad behavior previously described, a processpi
attaches tooperi[m] (line 17) the fact that this operation cannot be applied to any copy of the objectm
before the operationac_opi[m].

Al already indicated, thisk-universal construction ensures that at least one process progresses forever
(non-blocking progress condition), and at least one object progresses forever.

Why at least one object operation is committed at every round It was claimed above that the
“filtering mechanism” realized by lines 2-4 ensures that at least one operation is committed at every
round. We prove here this claim. Figure 9 illustrates the associated reasoning.

After a processpi1 obtained a pair〈obj1, op1〉 from its invocationKSC [r].propose(operi[1..k]) at
line 2, it invokesAC [r][obj1].propose(op1) at line 3, and only then it invokesAC [r][obj].propose(op1)
for each objectobj 6= obj1 at line 4. If its invocation ofAC [r][obj1].propose(op1) at line 3 returns
〈commit,−〉, the claim follows.
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Hence, let us assume that the invocation ofAC [r][obj1].propose(op1) by pi1 returns〈adopt,−〉.
It follows from the “non-conflicting” property of the AC objectAC [r][obj1] that another processpi2
has necessarily invokedAC [r][obj1].propose(op′) with op′ 6= op1; moreover this invocation bypi2 was
issued at line 4 (if bothpi1 andpi2 had invokedAC [r][obj1].propose() at line 3, due to agreement prop-
erty ofAC [r][obj1], they would have obtained the same pair from this object at line 3, and consequently
pi2 could not have preventedpi1 from obtaining〈commit,−〉 from the AC objectAC [r][obj1] at line 3).
If follows thatpi2 started line 4 beforepi1 terminated line 3. The invocation bypi2 at line 3 ofAC [r][−]
involved some objectobj2 obtained bypi2 at line 2, and we necessarily haveobj2 6= obj1).

line 3
pix

pi2

pi1

line 3

line 3line 2

AC [r][obj2].propose()

〈obj1,−〉 ← KSC [r].propose()

AC [r][obj1].propose()

AC [r][objx].propose() AC [r][obj2].propose()

precedes

line 4

line 4

precedes

〈adopt,−〉 ← AC [r][obj1].propose()

Figure 9: Net effect of thek-SC and CA objects used at lines 2-4 of roundr

If the invocation ofAC [r][obj2].propose() returns〈commit,−〉, the claim follows. Otherwise, due
to the agreement property ofAC [r][obj2], there is a processpi3, different frompi1 andpi2, such that
the execution pattern betweenpi3 6= pi2 is the same as the previous pattern betweenpi2 6= pi1, etc. The
claim then follows by induction and the fact that there is finite number of processes.

5.6 Ultimate universal construction “ℓ amongk”

The previous NB-compliantk-universal construction ensures that at least one object progresses forever,
and one process progresses forever. Hence, the natural question: Is it possible to design a universal
construction in which at leastℓ objects progress forever, where1 ≤ ℓ ≤ k, and all correct processes
progress forever (wait-freedom progress condition).

Such a very general universal construction was proposed by M. Raynal, J. Stainer, and G. Taubenfeld
in [55]. It rests on an extension of thek-SC object called(k, ℓ)-simultaneous consensus.

(k, ℓ)-simultaneous consensus Let ℓ ∈ {1, ..., k}. A (k, ℓ)-SC object is ak-SC object (see Sec-
tion 5.5) where instead of a single pair〈x, v〉, the operationpropose() returns a set of exactlyℓ pairs
{〈x1, v1〉, ..., 〈xℓ, vℓ〉}, such that all the pairs differ in their first component.

It is easy to see that(k, 1)-SC object is ak-SC object (and consequently ak-SA object). Moreover,
a (k, k)-SC object is a consensus object. It is also easy to see that a(k, k)-SC object is a consensus
object. Fork > 1, a(k, ℓ)-SC object is weaker than a(k, ℓ+ 1)-SC object.

(k, ℓ)-Universal construction The(k, ℓ)-universal construction presented in [55] borrows the lines 1-
4 of Figure 8, in whichk-SC objects are replaced by(k, ℓ)-SC objects. All the rest of the construction,
which is built incrementally, is based on a different approach. A non-blocking k-universal construc-
tion is first described, and then enriched step by step to obtain the final WF-compliant(k, ℓ)-universal
construction. Its noteworthy features are the following.
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• On the object side. At leastℓ among thek objects progress forever,1 ≤ ℓ ≤ k. This means that
an infinite number of operations is applied to each of theseℓ objects. This set ofℓ objects is not
predetermined, and depends on the execution.

• On the process side. The progress condition associated with processesis wait-freedom. That
is, a process that does not crash executes an infinite number of operations on each object that
progresses forever.

• An object stops progressing when no more operations are applied to it. Theconstruction guaran-
tees that, when an object stops progressing, all its copies stop in the same state (at the non-crashed
processes).

• The construction iscontention-aware. This means that the overhead introduced by using opera-
tions on memory locations other than atomic read/write registers is eliminated when there is no
contention during the execution of an object operation. In the absence ofcontention, a process
completes its operations by accessing only read/write registers.

• The construction isgenerouswith respect toobstruction-freedom. This means that each process is
able to complete its pending operations on all thek objects each time all the other processes hold
still long enough. That is, if once and again all the processes except one hold still long enough,
then all thek objects, and not justℓ objects, are guaranteed to always progress.

• Last but least, it is shown in [55] that(k, ℓ)-simultaneous consensus objects are necessary and
sufficient to implement a(k, ℓ)-universal construction, i.e. to ensure that at leastℓ amongk
objects progress forever while guaranteeing the wait-freedom progress condition to the processes.
Relations between(k, k−p)-SC objects and(p+1)-set agreement objects for0 ≤ p < k are also
investigated in [55].

6 Universal Construction vs Software Transactional Memory

A universal construction is on the distributed implementation of concurrent objects defined by a sequen-
tial specification. The concept of asoftware transactional memory(STM), introduced in [35], and later
refined in [57], is different. Its aim is to provide the programmers with a language construct (called
transaction) that discharges them from the management of synchronization issues. In this way, a pro-
grammer can concentrate his efforts on which parts of processes have tobe executed atomically and not
on the way atomicity is realized. This last issue is then the job of the underlying STM system. Among
others, main differences between universal constructions and STM systems are the following.

• Object operations are defined a priori (statically), and the universal construction knows them.
Differently, the transactions are defined dynamically, and the STM system has no priori knowledge
of their content and their effects.

Let us also notice that, despite the fact they have the same name, database transactions [28] and
STM transactions are not the same. Database transactions are constrained in the sense that they
are the result of a queries expressed in a given formalism. Differently, STM transactions can be
any piece of code produced by a programmer, which must be executed atomically. Moreover,
usually the code of the STM transactions is not known by the STM system.

• The consistency condition of concurrent objects (captured at run-time by linearizability [38]) and
the consistency conditions of STM systems (e.g., opacity [29], virtual worldconsistency [40], or
TMS1 [20]) are different. Among other points, this come from the fact thatany two transactions
are a priori independent.

• Due to their very nature, universal constructions consider failure-prone systems. Differently, some
STMs address failure-free systems while others address failure-prone systems.
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7 Conclusion

The aim of this article was to be a guided visit to universal constructions in asynchronous crash-prone
systems, where the processes communicate through a shared memory. As announced in the introduction,
its ambition is not to be an exhaustive catalog of the numerous universal constructions proposed so far,
but a relatively easy to understand introduction to the “universal construction” problem and the important
concepts, objects, and approaches, which constitute the foundations ofthe associated algorithms.

To this end, the article has first presented a simple construction based on hardware operations on
memory locations, namely the LL/SC pair of operations. It then moved from hardware-provided opera-
tions to agreement objects, and presented a simple consensus-based universal construction. Finally, the
article considered the case where the aim is not to address the constructionof a single object, but the
coordinated construction of several objects. It is important to realize that,if not all the objects which
are built are required to progress forever, hardware operations such as LL/SC or Compare&Swap are
stronger than necessary to build universal constructions.

As a final remark, let us notice that OB-compliant (obstruction-free) universal constructions do not
require to enrich the system with the additional computational power providedby instructions such as
LL/SC or agreement objects, i.e., they can be done in the basic system modelCARW[∅]. This remains
true even if the processes are anonymous. The algorithms presented in [11] build a consensus object and
a repeated consensus object respectively, in such an asynchronous crash-prone anonymous read/write
system with onlyn read/write atomic registers, which we conjecture to be optimal (it is proved in [63]
that at least(n− 1) registers are necessary).
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