
HAL Id: hal-01397393
https://inria.hal.science/hal-01397393

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Invasive Personalisation of a Cardiac
Electrophysiology Model from Body Surface Potential

Mapping
Sophie Giffard-Roisin, Thomas Jackson, Lauren Fovargue, Jack Lee, Hervé

Delingette, Reza Razavi, Nicholas Ayache, Maxime Sermesant

To cite this version:
Sophie Giffard-Roisin, Thomas Jackson, Lauren Fovargue, Jack Lee, Hervé Delingette, et al.. Non-
Invasive Personalisation of a Cardiac Electrophysiology Model from Body Surface Potential Mapping.
IEEE Transactions on Biomedical Engineering, 2017, IEEE Transactions on Biomedical Engineering,
64 (9), pp.2206 - 2218. �10.1109/TBME.2016.2629849�. �hal-01397393�

https://inria.hal.science/hal-01397393
https://hal.archives-ouvertes.fr


ACCEPTED IN TRANSACTIONS ON BIOMEDICAL ENGINEERING, 15 NOV. 2016 1

Non-Invasive Personalisation of a Cardiac
Electrophysiology Model from Body Surface

Potential Mapping
Sophie Giffard-Roisin, Thomas Jackson, Lauren Fovargue, Jack Lee, Hervé Delingette, Reza Razavi,

Nicholas Ayache, Maxime Sermesant

Abstract—Goal: We use non-invasive data (body surface po-
tential mapping, BSPM) to personalise the main parameters
of a cardiac electrophysiological (EP) model for predicting the
response to different pacing conditions. Methods: First, an effi-
cient forward model is proposed, coupling the Mitchell-Schaeffer
transmembrane potential model with a current dipole formu-
lation. Then we estimate the main parameters of the cardiac
model: activation onset location and tissue conductivity. A large
patient-specific database of simulated BSPM is generated, from
which specific features are extracted to train a machine learning
algorithm. The activation onset location is computed from a
Kernel Ridge Regression and a second regression calibrates the
global ventricular conductivity. Results: The evaluation of the
results is done both on a benchmark dataset of a patient with
premature ventricular contraction (PVC) and on 5 non-ischaemic
implanted cardiac resynchonisation therapy (CRT) patients with
a total of 21 different pacing conditions. Good personalisation
results were found in terms of the activation onset location for
the PVC (mean distance error, MDE=20.3mm), for the pacing
sites (MDE=21.7mm) and for the CRT patients (MDE=24.6mm).
We tested the predictive power of the personalised model for
biventricular pacing and showed that we could predict the new
electrical activity patterns with a good accuracy in terms of
BSPM signals. Conclusion: We have personalised the cardiac
EP model and predicted new patient-specific pacing conditions.
Significance: This is an encouraging first step towards a non-
invasive pre-operative prediction of the response to different
pacing conditions to assist clinicians for CRT patient selection
and therapy planning.

Index Terms—Cardiac Electrophysiology, ECG Imaging, In-
verse Problem of ECG, Parameter estimation, Personalisation.

I. INTRODUCTION

HEART Failure (HF) is a major health issue in Europe
affecting 6 million patients and growing substantially

because of the ageing population and improving survival
following myocardial infarction. The poor short to medium
term prognosis of these patients means that treatments such
as cardiac resynchronisation therapy can have substantial
impact [1]. However, these therapies are ineffective in 30%
of the treated patients and involve significant morbidity and
substantial cost. To this end, the precise understanding of the
patient-specific cardiac function can help predict the response
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to therapy and therefore select the potential candidates and
optimise the therapy.

In [2], Sermesant et al. proposed to personalize an electro-
mechanical model of the heart to predict the response to
CRT. The method requires to measure intra-cardiac electrical
potentials through an invasive endovascular procedure which
can be risky for the patient, and which is not suitable at a
patient selection stage. The aim of this article is to extend
this approach to non-invasive body surface potential mapping
(BSPM), which uses up to 256 sensors on both sides of
the torso, as the CardioInsight1 jacket now commercially
available. This has the potential to replace invasive measure-
ments however the ability to estimate parameters and predict
activation from such data still needs to be evaluated.

A. Cardiac EP Model Personalisation

Restricting our study to the ventricles, there are several
types of EP models describing the action potential [3]; from
complex ones (biophysical models) to very simplistic ones
(Eikonal models). In this study we used the Mitchell-Schaeffer
model [4] which is a phenomenological model of interme-
diate complexity with 2 variables and 6 parameters with a
biophysical interpretation. From an onset activation location,
the evolution of the transmembrane potential is computed at
each node of a tetrahedral mesh of the myocardium using the
finite element method.

The estimation of patient-specific parameters of a cardiac
EP model is crucial for understanding of pathologies and
predicting the response to therapies. The model personalisation
usually deals with local parameters. [5] used optical mapping
in an ex-vivo study to evaluate such algorithms. Personali-
sation using intra-cardiac potential mapping was investigated
by [6]–[8], also including epicardial recordings. Calibration
using non-invasive data was recently studied: [9] adjusted
two parameters of an atrial EP model using BSPM data.
[10] used two features from the 12-lead ECG to recover 3
electrical diffusivity parameters using a polynomial regression.
The method is novel and efficient, but it suffers from the fact
that the earliest activation site was fixed but actually unknown,
and only two features (QRS duration and electrical axis)
may not be sufficient to describe the cardiac activation. Such
approaches have explored the use of machine learning for EP
personalisation, but as no patient-specific database exists, they

1ECVUE, CardioInsight Technologies Inc., Cleveland, Ohio
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can only rely on simulated patient-specific samples covering
the parameter space. In terms of personalisation methodology,
[8] is based on an inference method combining polynomial
chaos and compressed sensing, [10] employs polynomial
regression into a statistical framework and [7] relies on a
Bayesian inference model.

B. The Forward Problem of Electrocardiography

The estimation of the ECG data from the cardiac potentials
is usually called the forward problem of electrocardiography
(in opposition to the inverse problem, see I-C). The two clas-
sical numerical approaches are based either on the Boundary
Element Method (BEM) or the Finite Element Method (FEM).
They both propagate the epicardial heart action potentials to
the surface of the body by taking into account the distance,
the null current across the body surface, and the different
properties of the tissues in between. Forward models differ
also by their incorporation of heterogeneous conductivity
regions associated with various organs within the torso. By
taking into account the physical properties of the different
tissues, the computed ECG account for more complex current
pathways. In [11], Keller et al. demonstrates the importance
of the torso inhomogeneity by ranking the influence of the
different tissue conductivities on forward-calculated ECGs.
Ramanathan et al. [12] showed, however, that at a first order
approximation the torso inhomogeneities are not necessary for
non-invasive reconstructions. Some techniques rely neither on
BEM nor on FEM and assume a homogeneous and infinite
torso domain using a dipole formulation [13]. While neglecting
some the null current flow constraint at the body surface, it
has been shown to be efficient on in-silico experiments.

C. The Inverse Problem of Electrocardiography

BSPM data has been widely used in the last decades to
directly compute the cardiac action potentials by solving an ill-
posed inverse problem: finding the transfer matrix linking the
torso potentials to the cardiac potential sources [14]. If most
of the methods are only estimating the potential on the surface
of the heart (e.g. [15], [16]), transmural-based methods have
been investigated in the last few years but are computationally
more demanding [17], [18]. Rather than estimating directly
the transmembrane potentials, the 3DCEI technique [19]–
[22] solves the inverse problem by estimating the equivalent
current density. Aside from standard regularization techniques,
some inverse problem studies have been investigated imposing
constraints in temporal and spatial domains [17], [23] or
trying to take advantage of the space/time coupling of the
electrical wave propagation [13], [24]. Some methods are
also looking into integrating physiological and model-based
priors in a Bayesian framework [25], [26]. The work by Li
and He [27] solves the inverse problem by means of heart-
model parameters (onset activation location) and was further
extended [28] and validated on rabbits [29] and swines [30],
[31]. A preliminary step is based on a priori knowledge using
artificial neural network and an optimization algorithm refines
the parameters. ECGI (Electrographic imaging) is already
is commercially available, as the CardioInsight Technologies

software [32] which was also used in recent ECGI studies
[33]. ECGI can help in understanding dyssynchony and se-
lecting CRT candidates : Varma et al. [34] and Ghosh et al.
[35] worked on characterizing the EP substrate and electrical
dyssynchony on HF patients undergoing CRT while Dawoud
et al. [36] investigated regional electromechanical uncoupling
in patients referred for CRT.

D. Proposed Approach
Our method is based on adjusting a forward model to

measured BSPM in order to estimate patient-specific pa-
rameters and activation maps. Our personalisation involves
identifying the parameters to predict new patient-specific
pacing conditions. In order to avoid local minima we used
a machine learning approach with the generation of a large
patient-specific database of simulated BSPM. Some relevant
shape descriptors were extracted from the simulated BSPM
and used as patient-specific training set. We first learned the
onset activation location using a Kernel Ridge Regression on
activation maps, then use a second regression to calibrate
the global ventricular conduction velocity. Because the onset
activation is a local parameter, this method can be associated
with a model personalisation. Our contributions are:

• A two-step algorithm that learns the parameters of the
simulation by estimating the onset activation location and
the global conduction velocity. The algorithm relies on
machine learning approaches based on a few QRS shape-
related features extracted from each BSPM sensor.

• A straightforward and efficient coupled forward model
based on the Mitchell-Schaeffer model and on a cur-
rent dipole formulation, allowing to simultaneously cal-
culate transmural cardiac potentials and BSPMs. The
Mitchell-Schaeffer model previously showed good pre-
dictive power in intra-cardiac studies [37].

• An evaluation (onset localisation and errors on the BSPM
signals) on 52 different cardiac beats from 6 patients
with 2 different types of pathologies: dyssynchrony and
premature ventricular contraction. All the results were
compared with standard inverse problem methods com-
mercially available or other state-of-the-art methods, out-
performing in a large majority of beats.

• A prediction of biventricular pacing activation maps and
BSPM from personalised EP model parameters on 14
settings from 5 patients. Predicted BSPM are compared
with measured BSPM.

• A quantification on the impact of myocardial geometry
quality and scar tissue, and an extension of our method
to standard 12-lead ECG data.

E. Outline of the Manuscript
In the following section II we will present our personali-

sation framework (Figure 1): clinical data, forward EP model
and machine learning algorithm. Section III is dedicated to
two evaluations on different datasets and to predictions of
biventricular pacing. Finally, section IV discusses different
aspects of the method, related in particular to the robustness
and to the influence of the myocardial geometry and scar
tissue.
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Fig. 1. Personalisation framework. Patient-specific geometrical data (section II-A) are used to build the coupled forward model (section II-B). Using Patient-
specific training sets, the two-step personalisation (section II-C) based on machine learning techinques estimates the earliest activation location and the global
conduction velocity from univentricular pacings or ectopic foci. The true location of the pacing lead is used for evaluation. A prediction of biventricular
pacings (section III-C) is performed using estimated parameters from sinus rhythm personalisation.

II. MATERIALS AND METHODS

A. Clinical Data

In this study, two datasets with different devices were used.
The pacing lead is either at the tip of a moving catheter on the
LV cavity or from a pacemaker device. The BSPM potentials
were acquired during the procedure at a sampling rate of
1kHz, with different number of torso sensors depending on the
device. The anatomy as well as the location of the torso sensors
and the pacing leads were extracted either with imaging (MRI
or CT scanner) or through the EP mapping system using
magnetic sensors. Fibre orientations were estimated with a
rule-based method (elevation angle between −60◦ to 60◦).
More details on the data will be provided in sections III-A1
and III-B1.

B. Simulating BSPM data: EP Forward Model

1) Mitchell-Schaeffer Cardiac Model: we simulated the
electrical activation of the heart using the monodomain version
of the Mitchell-Schaeffer’s EP model [4]. It has two variables,
the transmembrane potential v and z a secondary variable con-
trolling the repolarization phase. Their evolution is governed
by: 

∂tv = div(D∇v) + zv2(1−v)
τin

− v
τout

+ Jstim

∂tz =

{
1−z
τopen

if v < vgate
−z
τclose

if v > vgate

(1)

The parameters τopen and τclose define the gate opening and
closing depending on the change-over voltage vgate, and the
parameters τin and τout control the depolarisation upstroke and
repolarization downstroke. The diffusion term is defined by an
anisotropic diffusion tensor D = d · diag(1, r, r) where d is
the tissue electrical diffusivity. The anisotropy ratio r enables
conduction velocity in the fibre direction to be larger than in
the transverse plane (we used r = (1/2.5)2).

The diffusivity d (in m2s−1) can be expressed as a conduc-
tivity σ (in S/m) by using σ = Cmβ d with Cm the membrane
capacitance and β the surface-to-volume ratio. From [38],
we took Cm = 10−2 F/m2 and β = 105m−1. The local
conductivity σ can be written in terms of intracellular and
extracellular conductivities: σ = σiσe

σi+σe

The reduction of the monodomain model implies σi = λσe

for some scalar λ resulting in a linear relationship between
σ and σi. Finally, the diffusion d is linked to the conduction
velocity c in m/s by c = k

√
d, where the constant k was

estimated numerically in our simulations as 0.35 s−1/2.
2) From Cardiac Simulations to BSPM, Current Dipole

Formulation: we can compute simultaneously the cardiac
electrical sources simulated in section II-B1 and the BSPM.
As in [13], we modelled every myocardium volume element
(tetrahedron) as a spatially fixed but time varying current
dipole. We define the equivalent current density jeq as:

jeq = −σi∇v (2)

jeq is a current dipole moment per unit of volume and the local
dipole moment p in the volume V writes as p =

∫
V
jeqdV .

The torso is composed of different organs that behave as
different volume conductors. In a rough approximation, we
consider an homogeneous, infinite volume of conductivity
σT , and we took σT = 0.2S/m. According to the volume
conductor theory [39], the electric potential at a distance R in
a homogeneous volume conductor of conductivity σT is:

Ψ(R) =
1

4πσT

∫
V

jeq · ∇(
1

R
)dV (3)

We model the moving propagation front as a dipole field. The
infinitesimal dipole moment of the volume dVX located at
position X is defined as pX = jeq,X dVX = −σiX ∇vXdVX .
As we use linear tetrahedra in the FEM discretization of the
myocardium, the potential v is linear and ∇v is constant over
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the tetrahedron. We get the following formulation of the dipole
moment of the charge in the volume VH of tetrahedron H of
the myocardial mesh: pH = −σiH∇vHVH

The gradient of the electric potential ∇vH for a tetrahedron
H is estimated using the node positions Xk

H and the shape
vectors

−−→
Dk
H of the tetrahedron H [40]:

−−→
Dk
H =

s

VH
((Xk⊕2

H −Xk⊕1
H )× (Xk⊕3

H −Xk⊕1
H ) (4)

where s = 1 for k = 2, 4, s = −1 for k = 1, 3, and k ⊕ l =
(k−1+l) mod 3+1. The gradient of the electric potential in
the tetrahedron H is then computed from the potentials v(Xk

H)
at the nodes Xk

H as:

∇vH =

4∑
k=1

v(Xk
H)
−−→
Dk
H (5)

From Equation 3, the contribution ΨH of the tetrahedron H
to the potential field calculated at position XT is:

ΨH(XT ) =
1

4πσT

σiHVH (∇vH ·
−−→
HT )

‖
−−→
HT‖3

(6)

with
−−→
HT the vector from centre of the tetrahedron H to the

torso electrode location T . Finally, we sum over the whole
mesh to get the potential field at XT .

The implementation was done using the SOFA platform2,
with a direct coupling to the Mitchell-Schaeffer model. For
a generic volumetric mesh of 65 000 vertices, every coupled
simulation (cardiac model and dipole formulation) of 300 ms
runs in less than 6 minutes, with a time step of 0.01 ms
(using a dual-Xeon X5670 with 12 cores at 2.93GHz). With
GPU version of the implementation [41], the simulation was
performed in 2 minutes (using a dual-Xeon X5650 and a Tesla
C2050 with 112 cores at 1.147 GHz).

3) Comparison of the Current Dipole Results with BEM:
while being straightforward and efficient, this method includes
some simplifications as the absence of a null current flow
constraint at the body surface. To validate and estimate the
errors of our forward model, we compared our results with a
classical BEM forward formulation. We used the symmetric
BEM from the OpenMEEG software3 because it was shown
to provide an excellent accuracy [42]. As input, the isolated
dipole source were set at the center of each tetrahedra on
the myocardium and calculated the vector sources of each
tetrahedron at each time using Equation 2. We defined 3 do-
mains: the myocardium, the torso and the air outside the torso
(null conductivity). Their interfaces were defined using closed
surface meshes. The linear operator L which associates dipolar
sources to the resulting sensor measurements is calculated by
solving L = S G−1D, where D is the dipole matrix, S is
the sensor matrix and G is the geometry matrix. With a torso
surface mesh of 4K vertices, a heart surface mesh of 7K, 75K
dipolar sources and 52 sensors, the L matrix is computed in
7 hours. As an example, the potentials at 4 random sensor

2SOFA is an Open Source medical simulation software available at
http://www.sofa-framework.org

3OpenMEEG is an Open Source software that solves problems related to
EEG and MEG, available at http://openmeeg.github.io.

(a) (b)

Fig. 2. (a) Body surface potentials over one cardiac cycle (4 examples):
OpenMEEG (blue), dipole formulation (red). (b) positions of the 4 sensors
on the torso, the sensor a is on the back.

locations simulated with OpenMEEG (blue) and our dipole
formulation (red) are shown in Figure 2. In some surface
potentials the OpenMEEG ECG has larger amplitude as on
b and c, whereas on some other the amplitude is lower as on
a and d. The difference is due to the absence of boundary
conditions in our formulation. A key point to notice is that
the signal shape and sign are similar, while reducing the
computation time from 7 hours to a few minutes.

C. Personalising a Cardiac EP Model from BSPM

1) A Two-step Machine Learning-based Personalisation:
The two machine learning algorithms are two different re-
gressions, both using simulated patient-specific data as train-
ing sets.For the first step, a Kernel Ridge Regression is
estimating the onset activation location. From 250 random
onset activation locations, their respective activation maps are
simulated together with their simulated BSPM. After a feature
extraction on both the measured and the simulated BSPM,
the Kernel Ridge Regression estimates the cardiac activation
time corresponding to the measured BSPM on each node of
the cardiac mesh from the cardiac activation times of the
simulated BSPM with the closest features. The onset location
is identified as the node with the smallest activation time.
During the second step, 100 conduction velocity values and
their simulated BSPMs are used as a training set for a two-term
exponential regression. Once the unknowns of the regression
function are estimated, the conduction velocity of the true
signal is estimated (see Figure 1).

2) BSPM Feature Description: important aspects of the
torso electrical signal are the shape, the timing and the sign
of the QRS complex. Because the reference electrode is often
not localized, each signal (measured and simulated) was first
subtracted by the mean BSPM signal (measured or simulated).
Then each signal (measured or simulated) was normalized and
smoothed with a local Gaussian filter. We then defined 7×ns
descriptors (ns being the number of sensors in the jacket) of
the QRS window as (see Figure 3): (1) timing of the global
extremum, (2) absolute potential of the global extremum, (3)
sign the global extremum, (4) number of zero crossings, (5)
number of local extrema, (6) relative algebraic area, (7) sign
of the first extremum. This choice was inspired by previous
works on ECG analysis, e.g. [43].
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Fig. 3. Example of BSPM for one sensor. The extracted features are the
position of the global extremum (1: red arrow),the absolute potential of the
global extremum (2: red bar), the sign of the global extremum (3: red sign),
the number of zero crossings (4: blue lines), the number of local extrema (5:
green dots), the algebraic area (6: blue), the sign of the first extremum (7:
green sign).

3) First Step, Locate the Activation Onset with Kernel Ridge
Regression: the shape of the measured torso signals strongly
depends on the position of the onset activation. The first
step of the non-invasive cardiac model personalisation is an
automatic estimation of the onset activation site on the cardiac
mesh. From a list of 250 random nodes on the surface of the
cardiac mesh (epicardium and endocardium), we simulated a
set of activation maps and corresponding BSPM. We fixed the
global ventricular conduction velocity to a nominal value of
0.5m.s−1 and we only used the 6 features that are invariant
to a small change of the global conduction velocity (i.e. we
excluded the timing of the global extremum). The training
feature database was normalized along each feature. We used
a Kernel Ridge Regression between features extracted from
the BSPM to predict the activation time on each node of the
cardiac mesh. A Ridge Regression is a regularized least square
method which is suited for a reasonable number of training
examples. The kernel trick is useful here because the number
of features (roughly 1500) is larger than the number of samples
(250). We simulated a database composed of 250 couples
(xi, yi) of feature vectors xi and corresponding depolarization
time vectors yi. The predicted target y for a new test point x
was estimated using:

y = y(K +
1

γ
In)−1κ(x)

where y is the matrix of the sampled targets yi, K(xi, xj) =
exp(−(xi−xj)2/σ2) is a Gaussian kernel of bandwidth σ, and
the i-th coordinate of the vector κ(x) is defined as (κ(x))i =
K(xi, x). γ is the coefficient balancing the smoothness and the
adherence to the data. The tuning of σ and γ was performed
by a ten fold cross-validation. The same values were used for
other patients. For each couple of parameters (σ, γ) the mean
distance to the synthetic onset location is plotted in Figure 4a.
It represents the error, since a perfect initial position estimate
would result in a null distance. The estimated prediction error
is 5.7mm for the couple (σ = 103.5, γ = 10) . We notice
that the value of σ is of the same order of magnitude as the
size of the feature vector xi. This is coherent, because each
component of xi belongs to a distribution with unitary standard
deviation, so the distance between xi and xj is also of the
order of their size. Figure 4b shows the distance error to the

true pacing location for a clinical case when varying dataset
size (result unchanged after 200 samples).
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Fig. 4. First Step. (a) Cross-validation: error in terms of mean distance to
the synthetic true initial activation when varying the two parameters of the
Kernel Ridge Regressor. (b) Distance error to the true onset for one clinical
case with respect to the size of the database (retained size is 250 samples).

4) Second Step, Estimate the Ventricular Cardiac Con-
duction Velocity with Two-term Exponential Regression: the
previous estimation of the onset location allowed us to further
calibrate the EP model. We modelled the ventricles as an
homogeneous tissue with a uniform conduction velocity (CV)
that we want to estimate. We randomly sample 100 CV in
the range [0.2, 1.5]m.s−1. We generated the corresponding
personalised BSPM database with fixed onset location. We
extracted from the simulated BSPM one type of feature
directly related to the CV: the position of the global extremum.
The size of one feature vector is thus 1×ns, and the database
was composed of 100 couples (xi, yi) of feature vectors xi
and corresponding CV parameters yi. The predicted target y
for a new test point x was estimated by a regression between
the first mode of the PCA of the training feature vectors
X1,i and the conduction velocities yi. The estimated function
f(X1) = y was fitted using a two-term exponential regression:

f(x) = aebx + cedx (7)

In some cases, a too small conductivity can make the ex-
tremum of the signal exceed the QRS time frame; so the
corresponding samples were automatically excluded. Finally,
the measured BSPM can be projected into the PCA space and
the CV is estimated from the regression (Figure II-C4).
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Fig. 5. Second Step. Example for one patient and one pacing. 2-term
exponential regression using the first principal component with automatic
exclusion of outliers (small conductivities). The red star is the measured
BSPM projection.

5) Iterating and Final Simulation Using Estimated Pa-
rameters: step 1 and 2 are then iterated until convergence
(∆c < 0.05m/s). The final step consists in re-running the
EP model during one cardiac cycle using the estimated onset
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location and the estimated global CV. The final result consists
in a transmural activation map, where the depolarisation times
are computed at each node of the mesh. In addition we
simulate the corresponding BSPM. An estimation of the result
confidence is given by the averaged correlation coefficient
(CC) between the simulated and measured BSPM.

III. PERSONALISATION EXPERIMENTS AND RESULTS

A. Evaluation on PVC Benchmark Clinical Dataset

1) BSPM and Intracardiac Acquisitions: we tested our
method on a benchmark study of the ECGI community which
provides clinical data from 63 BSPM electrodes on one non-
ischaemic patient recorded during an Premature Ventricular
Contraction (PVC) ablation procedure. Ventricularly paced
beats from a catheter were also recorded. The dataset4 includes
the geometry of the myocardium, the location of the 63 torso
electrodes and the 7 pacing sites, as well as an estimation
of the PVC site, see Figure 6. For the PVC ground truth,
both the earliest measured local activation time measured by
intracardiac CARTO system and the latest successful ablation
site were recorded: they do not match but they both give an
indication about the real PVC location. The BSPMs consist
in several QRS time windows at a sampling rate of 1kHz.
The QRS without pacing (marked as ’PVC’) was recorded 10
times (10 runs), while for the 7 pacing sites the number of
runs varies from 1 to 14. A volumetric myocardial mesh of
roughly 10K elements was created from the provided surface
mesh using the CGAL5 meshing software, and fibre directions
were estimated (see Section II-A).

(a) (b)

Fig. 6. PVC data geometry. (a) myocardial mesh with measured pacing
locations (red) and PVC location as the earliest activation time measured
(green). (b) 64 BSPM electrodes (black), myocardial mesh (pink).

2) Results for PVC and Pacing Sites Localisation: our
personalisation pipeline was launched for every run, and we
compared the localization errors with those of the inverse
method of [44]. Figure 7a presents the error distances for
the PVC (mean distance error or MDE = 20.3mm) and
for 7 catheter pacing locations (MDE = 21.69mm among
all pacings). The error distances have to be compared to

4This dataset was provided by the Institute of Biomedical Engineering,
Karlsruhe Institute of Technology (KIT), Germany and the First Department
of Medicine (Cardiology), University Medical Centre Mannheim, Germany.

5CGAL is a Computational Geometry Algorithms Library, available at
www.cgal.org

TABLE I
CRT PATIENTS. BASELINE INFORMATION OF THE 5 PATIENTS TREATED.

Id Age Gender Sinus rhythm MRI Presence of scar
1 82 M X
2 49 F X
3 87 M
4 69 F
5 49 M X X X

the distance of the measured excitation onset point to the
closest point of the mesh (11.8mm for the PVC, pink dotted
line), showing that the registration between the intra catheter
localisation and the pre-operative imaging is not very accurate.
From Figure 7a, our personalisation method provides results
comparable to other state-of-the art inverse problem methods
like [44], with better results for a majority of pacing sites
locations. Global CV for all PVC runs was found in the range
[0.33, 0.38]m/s. Looking at Figures 7b and 7c, the estimated
PVC location is found to be close to the location of the earliest
activation time measured and the latest successful ablation
site lying in the aorta. The former was measured by catheter,
while the latter is the location where the ablation procedure
succeeded.

B. Evaluation on Five Implanted CRT Patients

Fig. 8. CRT patients geometry. CardioInsight geometries from hand segmen-
tation of CT image: Torso sensors (black dots), left and right pacing sites
(red), epicardial surface (pink).

1) BSPM Acquisitions with CardioInsight Jackets: The
second dataset was acquired at St Thomas’ Hospital, London.
The CardioInsight jacket is able to acquire simultaneously 256
signals on the torso surface. The dataset consists of 5 patients,
all being implanted CRT patients and non ischaemic. In
the optimisation procedure, the cardiologists performs several
recordings corresponding to different pacing combinations and
delays between the right ventricle (RV pacing, endocardial)
and the left ventricle (LV pacing, epicardial) pacing leads. In
total, 114 different settings were recorded. For all patients, an
LV pacing and an RV pacing were performed, together with
several biventricular pacings where the two stimulations are
either simultaneous or separated by a delay. A sinus rhythm
sequence is also recorded on patients that do not have complete
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Fig. 7. PVC results. (a) Error distances (mm) of estimated onset location to the measured location by the CARTO system for the PVC (9 runs) and to the
catheter pacings for the 7 pacing sites of Figure 6 (29 runs in total). Comparison between our personalisation and the KIT inverse method. ’Minimal distance
valid’: distance of the measured excitation origin to the closest point in the mesh. Mean values are represented by the lines. (b) Personalised PVC transmural
activation map. (c) Long and short axis zooms showing the estimated 9 PVC activation onset locations from KIT (black) and from our personalisation (red).
Ground truth is taken as the earliest measured local activation time (brown). The latest successful ablation site (dark brown) was found in the aorta.

heart blocks, see Table I. The QRS time window was recorded
at a sampling rate of 1kHz. From the information given on
the state of every sensor (good, disconnected, missing, bad),
the non reliable sensors of each recording was removed. The
number of sensors used in our personalisation varied between
175 and 220.

The relative position of electrodes and pacing sites with
respect to an epicardial geometry were hand-extracted from
a CT scanner performed the day of the intervention (Fig-
ure 8). Important artifacts on the CT scanner coming from
the pacemaker prevents creating a better segmentation. The
CardioInsight Technologies software is solving the inverse
problem on this epicardial surface. The method estimates the
epicardial potentials based on the standard formulation using a
Tikhonov regularization and the generalized minimal residual
algorithm [32]. Clinicians can use the activation maps from
the CardioInsight software for diagnosis or therapy planning.
In this work, we used these activation maps to evaluate our
personalisation algorithm.

For patient 5 the precise geometry of the heart was ex-
tracted using Magnetic Resonance Imaging (MRI), allowing
us to segment properly the myocardium. In addition, delayed
contrast enhancement MRI (DCE-MRI) was also acquired and
a scar region was segmented (patient 5 has a non-ischaemic
cardiomyopathy, NICM). The other patients with recorded
BSPM did not undergo MRI as they were already implanted
(Table I). We used this patient to evaluate the effects of the
precise myocardium geometry and the presence of scar tissue.

2) Pre-processing: for Patient 5, the myocardial mesh
was generated using the VP2HF 6 platform and the VP2HF
meshing pipeline [45] creating a tetrahedral mesh with roughly
150K elements. The scar was semi-automatically segmented
by a clinician and registered to the myocardial mesh. We

6VP2HF is a European Seventh Framework Program, http://www.vp2hf.eu

imposed the scar tissue to have no reaction term in the
Mitchell-Schaeffer model by setting much higher values of
τin and τout (cf. Eq. 1) and a small conduction velocity of
0.2m/s. We manually rigidly registered this volumetric mesh
to the epicardial surface extracted from the CT scanner. For
other patients, as no precise geometry was available a generic
volumetric myocardial mesh of roughly 65K tetrahedra was
manually registered to the CT image. Even if the shape of the
myocardium is generic, its orientation, its position and its size
is patient-specific.

3) Error on Onset Activation Location: Figure 9 shows
for the 5 patients the Euclidean distance between the onset
activation location and the true pacing lead. For all patients,
3 iterations were necessary and the mean improvement in
terms of localization error was 2mm. The CardioInsight onset
location is constrained to lie on the CardioInsight epicardial
mesh whereas our method constrain it to lie on the volumetric
mesh (but often generic), so both models include geometry
uncertainties. The MDE for both LV and RV pacings were
found at 24.6(std = 11.9)mm for our personalisation results,
and 39.3(std = 15.8)mm for the CardioInsight inverse solu-
tion. Patient 2 has very poor data quality (obese person with
20% of torso sensors disconnected and located in the sensitive
zone) explaining the poor result in terms of localization by the
personalisation (43mm for RV/LV) as well as by CardioInsight
(RV:62mm, LV:52mm).

4) Results on Conduction Velocity: The estimated CV could
not be quantitatively evaluated because the ground truth is not
available but we can look at the coherence between several
acquisitions with different pacing conditions for the same
patient. Figure 10 shows the CV values for the sinus rhythm,
the LV pacing and the RV pacing. We can see that based on a
broad range of possible values (uniformly in [0.2,1.5]m/s), all
CVs lie within a clinically acceptable range ([0.29,0.62]m/s)
[46]. Moreover, the global CV found with different pacing
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Fig. 9. CRT patients. Error distances of estimated onset location to the
true pacing lead position for every patient. Comparision of the proposed
personalisation (red) to the CardioInsight inverse solution (black). The means
(med) are represented by the lines.

patient Id
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0
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Pacing LVonly

Fig. 10. CRT patients. Estimated conduction velocity for every patient, using
the LV pacing (red), the RV pacing (blue) and the sinus rhythm (green) when
available.

locations on the same patient are usually in good agreement.
5) Comparison of the Estimated Activation Maps: Figures

11a, 11c, 11e show for Patient 5 the estimated transmural
activation maps obtained after our personalisation for the
sinus rhythm, the RV pacing and the LV pacing. The red
dot indicates the true pacing lead position as segmented from
the CT scanner. The early activation zones were found near
the true pacing lead. We are also showing the CardioInsight
epicardial solution (Figures 11b, 11d, 11f). If the comparison
shows a good agreement, on this case our personalisation gives
a more precise solution. For example, we can see that the sinus
rhythm onset was found on the septum, which is not visible
in the CardioInsight solution.

6) Results in terms of BSPM signals: the simulated and the
measured BSPMs of patient 5 are represented in Figure 12 for
6 sensors uniformly chosen. The simulated BSPM has been
scaled by its total norm and multiplied by the measured BSPM
total norm. We calculated for each recording the averaged
CC between measured and estimated BSPM. We can see
a good agreement for the RV pacing and the LV pacing,
while the signals of the sinus rhythm are more difficult to
reproduce for this patient (CC = 0.32). It may be due to
the fact that this sinus rhythm sequence is complex (presence
of scar, possibly multiple onsets). For the two other sinus
rhythm personalisations (patients 1 and 2) we found a better
agreement with a CC of 0.58 and 0.62. Figure 13 depicts the
evolution of the estimated signal during the different steps of
our personalisation for the RV pacing. The averaged CC is
improved after each step (from -0.15 to 0.83).

C. Prediction of Stimulation Results from Personalised Model

While our approach does provide an activation map of the
myocardium, the main aim of this personalisation is to benefit
from the predictive power of the underlying forward model.
We therefore tested in this section how well the personalised
models could predict different pacing conditions. To this end,
we used the CV results of our personalisation from the sinus
rhythm (estimated in section III-B4) to simulate biventricular
pacing (when the sinus rhythm was not available, we took
the mean of the LV pacing and RV pacing). In the clinical
procedure several types of biventricular pacings were tested by
changing the timing between the two stimuli. The 3 classical
combinations are: simultaneous pacings; LV stimuli ahead by
40 ms (LV40); RV stimuli ahead by 40 ms (RV40). Results
are shown on Figure 14 for the RV40 of Patient 5 and for the
LV40 of Patient 4, indicating a reasonably correct prediction
in terms of BSPM shape, timings and averaged CC.

IV. DISCUSSION

A. Personalisation using 12-lead ECG data

From the BSPM electrodes of the CRT dataset, we extracted
for each patient 9 electrodes roughly located at conventional
ECG placement in order to derive the 12-lead ECG (Figure
15). The derivations were performed on the simulated and
on the ground truth signals. We applied our personalisation
for the 12-lead ECG data to the 5 CRT patients. The MDE
was 29.8mm, which is higher than the BSPM personalisation
(24.6mm). However by looking closely at the results, the
errors were particularly important on patient 2 (RV lead:
57mm, LV lead: 64mm), while small errors were obtained on
patient 5 (RV lead: 10mm, LV lead: 12mm). Knowing that the
data from patient 2 was of very poor quality and that patient
5 is the only one having a personalised geometry, the 12-
lead ECG may be less robust than BSPM personalisation. The
fact that the location was well located on cases with correct
data quality seems to show that our method is sufficiently
constrained such as to work with few signals.

Fig. 15. Comparison with 12-lead ECG data. The 9 electrode locations used
for the derivation of the 12-lead ECG are taken from the BSPM electrodes.

B. Quantifying the Impact of a Precise Myocardial Geometry

Only the data from Patient 5 of the CRT database included
MRI and thus allowing a precise myocardial segmentation.
For other patients, a generic heart mesh was rigidly registered
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(a) Sinus rhythm (b) Sinus rhythm (CardioInsight)

(c) RV pacing (d) RV pacing (CardioInsight)

(e) LV pacing
(f) LV pacing (CardioInsight)

Fig. 11. CRT Patient 5 activation maps, the red dot corresponds to the true pacing lead position. (a)(c)(e) Our personalisation result (transmural), (b)(d)(f)
CardioInsight solutions (epicardial). (a)(b) Sinus rhythm, (c)(d) RV pacing and (e)(f) LV pacing.
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(a) Sinus rhythm (CC = 0.32)
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(b) RV pacing (CC = 0.83)
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(c) LV pacing (CC = 0.48) (d)

Fig. 12. CRT Patient 5. Example of 6 BSPM sensors of the QRS measured (black) and personalised (red) in mV per ms. (a) Sinus rhythm (b) RV pacing
only (c) LV pacing only. The averaged correlation coefficient are indicated below. (d) Locations of the 6 chosen BSPM sensors, the blue ones are on the back.
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(b) After preprocess(CC = −0.15)

m
V

-2

-1

0

1

2
n.2 n.45

m
V

-2

-1

0

1

2
n.82 n.126

ms

0 100 200

m
V

-2

-1

0

1

2
n.170

ms

0 100 200

n.207

(c) After step 1 (CC = 0.65)
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(d) After step 2 (CC = 0.83)

Fig. 13. CRT Patient 5. Example of 6 BSPM sensors for the RV pacing in mV per ms. (black) QRS measured. (green) Pre-processing: simulated QRS using
patient-specific geometry with random onset location. (orange) Step 1: simulated QRS after activation onset location estimation. (red) Step 2: simulated QRS
after CV estimation. The averaged correlation coefficient are indicated below.
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Fig. 14. CRT Patients 4 and 5: predictions. (a)(b) Patient 4: biventricular pacing with LV lead ahead by 40ms, using the parameters estimated by our
personalisation of the LV only and RV only. (a) example of 6 BSPM sensors of the QRS measured (black) and estimated (red). (b) activation map (generic
mesh). (c)(d) Patient 5: biventricular pacing with RV lead ahead by 40ms, using the parameters estimated by our personalisation of the sinus rhythm. (c)
example of 6 BSPM sensors of the QRS measured (black) and estimated (red). (d) activation map. The red dots corresponds to the true pacing lead positions.

(a) LV pacing (b) LV pacing (generic mesh) (c) LV pacing (no scar)

Fig. 16. CRT Patient 5 estimated activation maps for LV pacing, the red dot corresponds to the true pacing lead position. (a) Result with a personalized
geometry and scar (same as Figure 11e), (b) result with a generic geometry and scar, (c) result with a personalized geometry but no scar.
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Fig. 17. CRT patient 5. Onset location distance error. Result with a
personalised geometry and scar, result with a personalised geometry but no
scar and result with a generic geometry and scar.

and scaled to the myocardial shape from a CT scanner with
important artifacts. In this section we want to quantify the
impact of a precise myocardial geometry to our personalisation
results in terms of onset location and errors on BSPM. The
results of patient 5 using the MRI segmentation were com-
pared to the results using the generic heart manually rigidly
registered and scaled to the same location. Since Patient 5
has a scar segmentation available (see Section III-B2), the
scar region was also mapped to the generic heart mesh. From
Figure 17, the onset location was found to be less accurate
with the generic mesh for the LV pacing (error is 43.4mm
for the generic heart, 13.7mm for the MRI segmentation) as
well as for the RV pacing (24.3mm for the generic heart,
16.0mm for the MRI segmentation). The activation map using
the generic mesh for the LV pacing can be seen in Figure16b.
We can notice that the estimated onset locations using a
generic heart are still in an acceptable error range. We can
conclude that a patient-specific geometry leads to a more
accurate personalisation while the use of a generic mesh is
still a fair approximation on this case.

C. Modelling Scar Tissue: Its Impact on our Personalisation

The 6 patients from both datasets were identified as non-
ischaemic. However, patient 5 has a NICM with an annotated
scar from DCE-MRI. In the presence of scar tissues we
suppress the reaction term in the Mitchell-Schaeffer model
and reduce the conductivity of the tissues to 0.2m/s. In
order to measure the impact of a scar on the personalisation
process, we compared in Figure 17 the precision obtained with
and without the scar information. We can see that including
the scar information yields better results for the LV pacing,
where the pacing lead is closer to the scar region (see Figure
16c for the estimated activation map). By incorporating some
structural information, we were able to improve the personal-
isation results. However, as the scar information is not always
available we believe that it could be learned directly through
the personalisation process, by detecting regions where the
conductivity has to be locally reduced.

D. Future Works

We have been estimating the parameters of singular pacing
sites and predicting the response to multiple pacings. We are
now interested in extending the study to the estimation of the
location of more than one activation site, and we believe it

would only require more computation time for increasing the
training database. A future goal is to help the clinicians in pre-
dicting the best combination and the best lead locations among
the possible and reachable zones before the implantation. As
the work by Swenson et al. [47] reveals the importance of the
cardiac position in the ECG forward problem, we believe that
a more precise registration of the myocardial mesh to the CT
scanner would have a positive impact. Finally, in this study we
did not include a Purkinje system model as most of the patients
have bundle branch blocks, but we believe it to be an important
improvement. To account for more drastic variations of onset
and conductivities, we may also reconsider the methodology
as the use of advanced non-linear dimensionality reduction
techniques. Even if the current difficulty of the personalisation
is to understand and model to complex pathologies, we do
think that it could help the analysis of ECGI because the
problem is more physiologically constrained.

V. CONCLUSION

From non-invasive measures including BSPM signals, we
were able to personalise the location of the onset activation
location and the global conduction velocity of the myocardium
with a two-step algorithm. We built a large database of
simulated BSPM in order to train a machine learning algorithm
based on a few QRS shape-related features from each BSPM
sensor. The simulated BSPM relies on a transmural forward
model based on the Mitchell-Schaeffer model and a current
dipole formulation. We validated our approach on a PVC lo-
calisation (MDE = 20.3mm), on 29 runs from 7 pacing sites
by catheter (MDE = 21.6mm) and on 10 different pacing
sequences from 5 CRT patients (MDE = 24.6mm). A com-
parison with two standard inverse methods revealed that our
personalisation provides comparable results. We also showed
that we were able to predict the response to biventricular
pacings based on our personalised models with concordance
in the BSPM signals. Finally, we showed on limited cases
that personalised scar and myocardial geometry improved the
results and we studied the extension of our method to standard
12-lead ECG data. This is an encouraging first step towards a
pre-operative prediction of different pacing conditions in order
to assist clinicians for CRT decision and procedure.
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