M. G. Sutton, Effect of Cardiac Resynchronization Therapy on Left Ventricular Size and Function in Chronic Heart Failure, Circulation, vol.107, issue.15, pp.1985-1990, 2003.
DOI : 10.1161/01.CIR.0000065226.24159.E9

M. Sermesant, Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation, Medical Image Analysis, vol.16, issue.1, pp.201-215, 2012.
DOI : 10.1016/j.media.2011.07.003

A. E. Pollard, From myocardial cell models to action potential propagation, Journal of Electrocardiology, vol.36, pp.43-49, 2003.
DOI : 10.1016/j.jelectrocard.2003.09.014

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

J. Relan, Personalization of a Cardiac Electrophysiology Model Using Optical Mapping and MRI for Prediction of Changes With Pacing, IEEE Transactions on Biomedical Engineering, vol.58, issue.12, pp.3339-3349, 2011.
DOI : 10.1109/TBME.2011.2107513

URL : https://hal.archives-ouvertes.fr/inria-00616184

M. Wallman, N. P. Smith, and B. Rodriguez, Computational methods to reduce uncertainty in the estimation of cardiac conduction properties from electroanatomical recordings, Medical Image Analysis, vol.18, issue.1, pp.228-240, 2014.
DOI : 10.1016/j.media.2013.10.006

E. Konukoglu, Efficient probabilistic model personalization integrating uncertainty on data and parameters: Application to Eikonal-Diffusion models in cardiac electrophysiology, Progress in biophysics and molecular biology, pp.134-146, 2011.
DOI : 10.1016/j.pbiomolbio.2011.07.002

URL : https://hal.archives-ouvertes.fr/inria-00616198

O. Zettinig, Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals, Medical Image Analysis, vol.18, issue.8, pp.1361-1376, 2014.
DOI : 10.1016/j.media.2014.04.011

D. U. Keller, Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs, IEEE Transactions on Biomedical Engineering, vol.57, issue.7, pp.1568-1576, 2010.
DOI : 10.1109/TBME.2010.2046485

C. Ramanathan and Y. Rudy, Electrocardiographic Imaging: II. Effect of Torso Inhomogeneities on Noninvasive Reconstruction of Epicardial Potentials, Electrograms, and Isochrones, Journal of Cardiovascular Electrophysiology, vol.12, issue.2, pp.241-252, 2001.
DOI : 10.1046/j.1540-8167.2001.00241.x

C. E. Chávez, Inverse Problem of Electrocardiography: Estimating the Location of Cardiac Ischemia in a 3D Realistic Geometry, International Conference on Functional Imaging and Modeling of the Heart, pp.393-401, 2015.
DOI : 10.1007/978-3-319-20309-6_45

A. J. Pullan, The inverse problem of electrocardiography, Comprehensive Electrocardiology, pp.299-344, 2010.

G. Huiskamp and A. Van-oosterom, The depolarization sequence of the human heart surface computed from measured body surface potentials, IEEE Transactions on Biomedical Engineering, vol.35, issue.12, pp.1047-1058, 1988.
DOI : 10.1109/10.8689

S. Ghosh and Y. Rudy, Application of L1-Norm Regularization to Epicardial Potential Solution of the Inverse Electrocardiography Problem, Annals of Biomedical Engineering, vol.289, issue.5, pp.902-912, 2009.
DOI : 10.1007/s10439-009-9665-6

B. Messnarz, A New Spatiotemporal Regularization Approach for Reconstruction of Cardiac Transmembrane Potential Patterns, IEEE Transactions on Biomedical Engineering, vol.51, issue.2, pp.273-281, 2004.
DOI : 10.1109/TBME.2003.820394

Y. Jiang, D. Farina, and O. Dössel, Localization of the Origin of Ventricular Premature Beats by Reconstruction of Electrical Sources Using Spatio-Temporal MAP-based Regularization, 4th European Conference of the International Federation for Medical and Biological Engineering, pp.2511-2514, 2009.
DOI : 10.1007/978-3-540-89208-3_602

Z. Liu, C. Liu, and B. He, Noninvasive reconstruction of 3d ventricular activation sequence from the inverse solution of distributed equivalent current density, IEEE transactions on medical imaging, vol.25, issue.10, pp.1307-1318, 2006.

C. Han, Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia, Heart Rhythm, vol.8, issue.8, pp.1266-1272, 2011.
DOI : 10.1016/j.hrthm.2011.03.014

L. Yu, Z. Zhou, and B. He, Temporal sparse promoting three dimensional imaging of cardiac activation The use of temporal information in the regularization of the inverse problem of electrocardiography, IEEE transactions on medical imaging, pp.2309-2319, 1992.

A. R. Dehaghani, Examining the impact of prior models in transmural electrophysiological imaging: A hierarchical multiple-model bayesian approach, IEEE transactions on medical imaging, vol.35, issue.1, pp.229-243, 2016.

L. Wang, Noninvasive Computational Imaging of Cardiac Electrophysiology for 3-D Infarct, IEEE Transactions on Biomedical Engineering, vol.58, issue.4, pp.1033-1043, 2011.
DOI : 10.1109/TBME.2010.2099226

G. Li and B. He, Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach, IEEE Transactions on Biomedical Engineering, vol.48, issue.6, pp.660-669, 2001.
DOI : 10.1109/10.923784

B. He, G. Li, and X. Zhang, Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation model, Physics in Medicine and Biology, vol.47, issue.22, p.4063, 2002.
DOI : 10.1088/0031-9155/47/22/310

X. Zhang, Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence, AJP: Heart and Circulatory Physiology, vol.289, issue.6, pp.2724-2732, 2005.
DOI : 10.1152/ajpheart.00639.2005

C. Liu, Estimation of Global Ventricular Activation Sequences by Noninvasive Three-Dimensional Electrical Imaging: Validation Studies in a Swine Model During Pacing, Journal of Cardiovascular Electrophysiology, vol.113, issue.5, pp.535-540, 2008.
DOI : 10.1111/j.1540-8167.2007.01066.x

C. Ramanathan, Noninvasive Electrocardiographic Imaging (ECGI): Application of the Generalized Minimal Residual (GMRes) Method, Annals of Biomedical Engineering, vol.31, issue.8, pp.981-994, 2003.
DOI : 10.1114/1.1588655

R. Dubois, Non-invasive cardiac mapping in clinical practice: Application to the ablation of cardiac arrhythmias, Journal of Electrocardiology, vol.48, issue.6, pp.966-974, 2015.
DOI : 10.1016/j.jelectrocard.2015.08.028

N. Varma, P. Jia, and Y. Rudy, Electrocardiographic imaging of patients with heart failure with left bundle branch block and response to cardiac resynchronization therapy, Journal of Electrocardiology, vol.40, issue.6, pp.174-178, 2007.
DOI : 10.1016/j.jelectrocard.2007.06.017

S. Ghosh, Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy, Heart Rhythm, vol.8, issue.5, pp.692-699, 2011.
DOI : 10.1016/j.hrthm.2011.01.017

F. Dawoud, Non-invasive electromechanical activation imaging as a tool to study left ventricular dyssynchronous patients: Implication for CRT therapy, Journal of Electrocardiology, vol.49, issue.3, pp.375-382, 2016.
DOI : 10.1016/j.jelectrocard.2016.02.011

Z. Chen, Biophysical modelling predicts VT inducibility and circuit morphology, Journal of Cardiovascular Electrophysiology, 2016.

M. Potse, A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2425-2435, 2006.
DOI : 10.1109/TBME.2006.880875

J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, 1995.

H. Delingette and N. Ayache, Soft Tissue Modeling for Surgery Simulation, Handbook of Numerical Analysis, vol.12, pp.453-550, 2004.
DOI : 10.1016/S1570-8659(03)12005-4

URL : https://hal.archives-ouvertes.fr/inria-00615656

H. Talbot, Towards Real-Time Computation of Cardiac Electrophysiology for Training Simulator, STACOM International Workshop, pp.298-306, 2012.
DOI : 10.1007/978-3-642-36961-2_34

URL : https://hal.archives-ouvertes.fr/hal-00750835

J. Kybic, A common formalism for the Integral formulations of the forward EEG problem, IEEE Transactions on Medical Imaging, vol.24, issue.1, pp.12-28, 2005.
DOI : 10.1109/TMI.2004.837363

L. G. Tereshchenko, A new electrocardiogram marker to identify patients at low risk for ventricular tachyarrhythmias: sum magnitude of the absolute QRST integral, Journal of Electrocardiology, vol.44, issue.2, pp.208-216, 2011.
DOI : 10.1016/j.jelectrocard.2010.08.012

W. H. Schulze, ECG imaging of ventricular activity in clinical applications, K. I. of Technology / Institute of Biomedical Engineering, 2015.

A. Groth, J. Weese, and H. Lehmann, Robust left ventricular myocardium segmentation for multi-protocol MR, Medical Imaging 2012: Image Processing, p.83142, 2012.
DOI : 10.1117/12.911201

D. Durrer, Total Excitation of the Isolated Human Heart, Circulation, vol.41, issue.6, pp.899-912, 1970.
DOI : 10.1161/01.CIR.41.6.899

D. J. Swenson, Cardiac Position Sensitivity Study in the Electrocardiographic Forward Problem Using Stochastic Collocation and Boundary Element Methods, Annals of Biomedical Engineering, vol.2, issue.1, pp.2900-2910, 2011.
DOI : 10.1007/s10439-011-0391-5