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Abstract

We present CIDANE, a novel framework for genome-based transcript reconstruction and quantification from RNA-seq
reads. CIDANE assembles transcripts efficiently with significantly higher sensitivity and precision than existing tools.
Its algorithmic core not only reconstructs transcripts ab initio, but also allows the use of the growing annotation of
known splice sites, transcription start and end sites, or full-length transcripts, which are available for most model
organisms. CIDANE supports the integrated analysis of RNA-seq and additional gene-boundary data and recovers
splice junctions that are invisible to other methods. CIDANE is available at http://ccb.jhu.edu/software/cidane/.

Background However, the step from sequencing to profiling the cel-
High-throughput sequencing of cellular RNA (RNA-seq) lular transcriptome involves solving a high-dimensional
aims at identifying and quantifying the set of all RNA complex puzzle, which poses major challenges to bioin-
molecules, the transcriptome, produced by a cell. Despite formatics tools as every single short read carries little
having largely identical genomes, the RNA content of cells information by itself. In particular, repeat and paralogous
differs among tissues, developmental stages, and betweesequences, as well as low-expressed regions and minor
disease and normal condition. For eukaryotes, differencesisoforms, are difficult to assemble. Notice that transcripts
are determined by the set of genes being expressed, buthat are moderately expressed only in a subpopulation of
also by the different mMRNA isoforms each gene may pro- cells manifest an overall low expression level, as might be
duce; alternative splicing, alternative transcription and the case for long noncoding RNAs (IncRNAs) [4].
polyadenylation define and combine exons in distinct Unlike de novo transcript assembly approaches, which
ways. assemble reads solely based on the overlap of their
RNA-seq technology can generate hundreds of millions sequences, genome-based methods employ a high-quality
of short (50...250 bp) strings of bases, called reads, fromeference genome to resolve better ambiguities imposed
expressed transcripts at a fraction of the time and cost by highly similar regions of the genome and to recover
required by conventional Sanger sequencing. The wealthlower expressed transcripts. Genome-based methods first
of RNA-seq data produced recently has revealed novelalign reads to the genome to determine where each of
isoforms [1...3] and new classes of RNA [4], allowed &he reads originated and then assemble the alignments
better characterization of cancer transcriptomes [5, 6], into transcript models. This in turn introduces a critical
and led to the discovery of splicing aberrations in diseasedependence on the accuracy of the read alignment, which
[7, 8]. is affected by sequencing errors, polymorphisms, splic-
ing, and ambiguous reads that belong to repeats. Reads
spanning splice junctions between exons are particularly
*Correspondence: canzar@ttic.edu informative since they provide an explicit signal for the
Knut Reinert and Gunnar W. Klau are shared last authors. detection of splice donor and acceptor sites. At the same
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genomic positions. Guessing the true origin can be fur-
ther hampered by polymorphisms near the splice site.
Besidesdncorrectspliced alignments, this can also lead to
missedsplice junctions, i.e., exon...exon junctions that are
not supported (covered) by any spliced alignment. Missed
junctions can also result from read coverage fluctuations
(biases) or a generally low transcript abundance. While
some of the existing methods do take into account incor-
rect alignments by applying ad hoc filters (Scripture [9]
and CLIIQ [10]) or by not requiring the isoform selection
model to explain all input alignments (MITIE [11]), none
of the existing approaches is able to deal with missed junc-
tions. In this work we present a novel framework CIDANE
(comprehensive isoform discovery and abundance esti-
mation), which, for the first time, allows us to recover
isoforms with uncovered splice junctions that are invisible
to all existing approaches.

On a high level, existing methods for genome-based
transcript assembly adhere to the following scheme: First,
a set of candidate isoforms is defined as paths in a graph
representing the base or exon connectivity as indicated
by the aligned reads. Then, amall subset of isoforms is
selected that explains the read alignmenigell. Since only
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problem. The most immediate measure, the number
of predicted transcriptsi(® norm), leads to
non-convex objectives and a computationally
intractable optimization problem. Methods like
MITIE, StringTie, Montebello [19], and iReckon,
which employs a novel non-convex minimality
measure, therefore resort to a forward stepwise
regression strategy, a Monte Carlo simulation, or
numerical optimization combined with random
restarts, that generally do not find the best solution
in this model. Methods like SLIDE and IsoLasso thus
replace the.? norm by the convex_.! norm, i.e., the
sum of transcript abundances.

. Concerning the measure of accuracy, methods apply

a least-squares loss function (e.qg., IsoLasso, SLIDE, or
TRAPH), least absolute deviation (not explicitly
modeled in StringTie), or compute more generally a
maximum likelihood assignment of reads to
candidate isoforms. The latter typically requires a
preselection of transcripts (Cufflinks) or leads to the
intractability of the resulting problem (iReckon and

Montebello).

a small number of transcripts is typically expressed in a Here we present CIDANE, a comprehensive tool for

given cell type (compared to the number of candidates),

the restriction to few isoforms prevents fitting noise in the
data.

Current methods mostly differ in the trade-offs they
apply between the complexity of the model and the
tractability of the resulting optimization problem, which
largely determines the quality of the prediction:

1. Since the number of potential isoforms grows
exponentially with the number of exons of the locus,
all existing methods restrict either implicitly or
explicitly the number of candidates they consider.
Methods that do not enumerate isoforms explicitly
either employ a simplified model with transcript-
independent coefficients (e.g., MITIE and Traph
[12]) or separate the intrinsically interdependent
minimality and accuracy objectives (Cufflinks [2]).

2. A second crucial algorithmic design decision is how
to balancethe two concurrent objectives. In an
extreme case, the two objectives are treated
independently (e.g., Cufflinks, CLASS [13], CLIIQ,
Traph, and Isolnfer [14]). More recent
state-of-the-art methods (e.g., MITIE, iReckon [15],
SLIDE [16], IsoLasso [17], and StringTie [18]) have
recognized the importance of optimizing both
objectives simultaneously and balance minimality
and accuracy heuristically.

3. Among methods that simultaneously optimize for
both objectives, the measure of minimality has an
enormous impact on the tractability of the resulting

genome-based assembly and quantification of transcripts
from RNA-seq experiments. The central idea of CIDANE
is to trade the ability to determine the provably best tran-
script prediction in the underlying model for a slight
approximation of the loss function. Intuitively, the accu-
racy and minimality measure (see (3) and (4)) fit noisy
observations (read alignments) and thus, the impact of
their (adjustable) approximation on the overall prediction
performance is expected to be rather limited. CIDANE
therefore minimizes a least-squares loss function based
on full-length transcripts and replaces the.? minimal-
ity measure by the convex! norm, which, in fact, selects
a subset of transcripts with non-zero expression levels
that is predicted to be expressed in a given cell type.
A formulation based on full-length isoforms enables us
to develop a comprehensive linear model (like SLIDE),
which, among other things, takes into account the depen-
dence of the distribution of read pairs along a given
transcript on the estimated fragment length distribution.
In contrast to previous methods, we employ a state-of-
the-art machine-learning algorithm to compute the opti-
mal balance (according to a strict mathematical measure)
between accuracy and minimality at essentially no addi-
tional computational cost. In a second phase, CIDANE
linearizes the least-squares loss function with bounded
error, which allows us to formulate our model based on all
possible candidate transcripts, including transcripts with
uncovered splice junctions, without having to enumerate
them explicitly. Following the principle ofdelayed column
generation[20], we only add isoforms to our model on
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demand, i.e., if they help to strictly improve the overall perfect mapping fileswe make an attempt to quantify the
prediction. dependence of current genome-based transcript assem-
CIDANE implements a design that separates the assem-bly tools on the accuracy of the read mapping (Additional
bly of full-length transcripts from the identification of ele-  file 1: Figures S1 and S2). We demonstrate the superiority
mentary components, i.e., exons or retained introns. This of CIDANE in the ab initio analysis of two human RNA-
separation facilitates the incorporation of novel methods seq data sets from the ENCODE project [21], and through
for splice site detection as well as additional sources ofan integrated analysis of modENCODE RNA data, includ-
information to yield transcript assemblies that are more ing RNA-seq, cap analysis of gene expression (CAGE),
accurate. Not only a growing annotation of known splice and poly(A) site sequencing (PAS-seq), obtained from
sites, exon junctions, transcription start and end sites the heads of 20-day-old adulDrosophila melanogaster
(TSSs and TESS) or even full-length isoforms can guideCAGE and PAS-seq data facilitate the mapping of TSSs
the assembly for most model organisms, but also addi- and TESs, which are very difficult to infer from RNA-seq
tional gene boundary data can aid the interpretation of data alone. Furthermore, we illustrate CIDANEe-s ability
RNA-seq data. Our experiments demonstrate the superior to (i) incorporate prior knowledge to improve substan-
performance of CIDANE in all these different scenarios tially the prediction in various realistic scenarios and
of optionally available levels of annotation as well as in (ii) recover (nvisible) transcripts with uncovered splice
the interpretation of additionally available gene boundary junctions.
data. The general work flow of CIDANE is illustrated in ~ We compared the prediction to a reference transcrip-

Fig. 1. tome, referred to asground truth, containing the true
transcripts Where not specified otherwise, we consider
Results and discussion a true transcript asrecoveredby a predicted transcript

We compared the performance of CIDANE in recon- if their sequences of introns (intron chains) are identi-
structing transcripts from RNA-seq data to existing state- cal. A true single-exon transcript is scored as recovered if
of-the-art methods. We evaluated the prediction quality it overlaps a predicted single-exon transcript. Every pre-
on the transcript level based on both simulated and real dicted transcriptis matched to at most one true transcript
data. While simulated data capture the characteristics and vice versa. If rec, true, and pred denote the number
of real data only to the extent that we understand the of recovered, true, and predicted transcripts, respectively,
specifics of the experimental protocol, the performance we applied recall (rettrue), precision (reépred), andF
analysis based on real RNA-seq data today still lacks a goldcore, the harmonic mean of recall and precisiorfq x
standard RNA-seq library along with annotated expressed precision x recall)/( precision+ recall)), as a measure of
transcripts. Therefore, the results of both types of experi- prediction quality. Not to penalize potential novel dis-
ments together provide a more meaningful picture of the coveries, the calculation of precision ignores predicted
true performance of a transcript assembly method. transcripts that do not overlap any of the true transcripts.
Using simulated data, we investigated the impact of The version number of each tool and the parameters used
transcript abundance on the prediction quality and con- in our experiments are specified in Additional file 1.
sidered the scenario where a partial annotation of the
(human) transcriptome is available to guide the recon- Isoform reconstruction from simulated data
struction. We assessed both the mere absence or presencé&o obtain data as realistic as possible, we used FluxSim-
of a (true) transcript in the prediction as well as the accu- ulator [22] to generate RNA-seq data sets based on
racy of the estimation of their abundances. Generating 78,000 UCSC-known (February, GRCh37/hg19) human

. — |
A ]
mmapped reads Preprocessing Phase | ‘r _ _Phasell |
segment cover = Model fitting [Caccmanc
| isoform generation
C— _.:
splicing graph — expressed isoforms I new isoforms
_ + ! improving solution
i >0 = .
AR, abundance estimates ! ! of Phase |

........... o

Fig. 1 General work flow of CIDANE. Mandatory inputs (mapped RNA-seq reads and exon boundaries) and optional inputs (TSS, TES, and known
transcripts) are used to summarize read alignments into segment covers, which count reads falling into non-ambiguously spliced segments of
genes. From the corresponding splicing graph representation [37], an initial set of candidate isoforms is derived and a subset of expressed isoforms
with estimated abundances is predicted by a regularized regression method during phase I. This set forms the input to the optional phase |Il, where
improving isoforms are built on demand by a delayed column generation approach. New candidates inferred in phase Il are then added to the

initial candidate set to achieve a better fit of the model. After re-estimation of abundances and filtering (post-processing), a list of iseforms|wit
abundance estimates is returned in gtf format
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transcripts [23]. After assigning randomized expression 4 % lower than StringTie (74.9 %). When the same num-
levels to all annotated transcripts following a distribu- ber of 100-bp reads is generated (Fig. 2b), the precision
tion observed in real data, FluxSimulator simulates the of StringTie and Cufflinks decreases significantly and is
individual steps of an RNA-seq experiment, including then lower than CIDANEe®s precision by 13.6 % and 9.9 %,
reverse transcription, fragmentation, size selection, and respectively.
sequencing. For all simulated data sets used in this section, IsoLasso seems to suffer from a heuristic determination
the parameter files specifying the model of the RNA-seq of the regularization penalty. SLIDE showed the low-
experiment and the alignments are available from [24].  est F score on all four data sets and was not included
in the plots. Note that Cufflinks and CLASS model the
Ab initio transcript assembly transcript reconstruction problem as acoveringproblem
Mimicking the characteristics of real RNA-seq data, we minimizing the number of transcripts required to explain
generated four data sets comprising 40 and 80 million the input read alignments qualitatively. Neglecting quan-
read pairs (i.e., 80 and 160 million reads) of length 75 andtitative information at this stage, it is not surprising that
100 bp, respectively. The fragment lengths observed afterthe two methods yield rather conservative predictions.
gel electrophoresis are modeled by a normal distribution Sections sTranscript assembly with partial annotationZ,
N (250, 25 for the 75-bp reads andN (300, 3Q for the 100-  +Ab initio predictionZ, and sIntegrating real RNA-seq,
bp reads. We mapped each set of paired-end reads to theCAGE, and PAS-seqZ show that the superior performance
set of known transcripts using TopHat2 [25]. We defined of CIDANE compared to StringTie and Cufflinks can-
the ground truth as the set of all annotated transcripts not be attributed (only) to the additional exon boundary
(UCSC) for which at least one paired-end read has beeninformation. When provided with the exact same partial
produced. annotation of transcripts (Section sTranscript assembly
We compared the performance of CIDANE to the tran- with partial annotationZ) or when exon boundaries are
scriptome reconstruction quality of StringTie [18], Cuf- inferred from the read data alone (Sections ¢Integrating
flinks [2], CLASS [13], IsoLasso [17], SLIDE [16], and real RNA-seq, CAGE, and PAS-seqZ and *Ab initio predic-
MITIE [11]. All recall and precision values achieved by tionZ), CIDANE still outperforms all existing methods.
CIDANE include transcripts with uncovered splice junc-  The relative performance of the tools is similar on the
tions predicted in phase Il. We did not include iReckon larger data sets (Additional file 1: Figure S3). Cufflinks,
and GRIT [26] in this first benchmark as both methods however, seems to have difficulties assembling the 80 mil-
require TSSs and TESs to be provided, which, as showrlion 100-bp read pairs. Recall and precision achieved by
by the experiments in Sections e<Annotation-guided the tools for the four different experimental designs are
assemblyZ and «Integrating real RNA-seq, CAGE, andisted in Additional file 1: Tables S1, S2, S3, and S4.
PAS-seqZ provides valuable guidance in transcript recon-
struction. While IsoLasso, SLIDE, and CIDANE employ Dependence on transcript abundance Further, we
known exon...intron boundaries, Cufflinks, CLASS, andanalyzed the influence of transcript abundance on the
StringTie do not allow for the incorporation of pre- reconstruction capability of the different methods. We
computed or annotated splice sites. Cufflinks and removed all transcripts that have many of their bases
StringTie do accept annotated full-length transcripts [27], uncovered € 0.1 fragments per kilobase of transcript per
a scenario that we will investigate in Section Transcript million fragments sequenced or FPKM) from the ground
assembly with partial annotationZ In this experiment, we truth and split the remaining isoforms into three groups:
disable the ability of CIDANE to recombine acceptor and low comprises the 20 % fraction of transcripts with lowest
donor sites to form novel exons. Since exon boundary simulated expressionhigh the highest 5 % fraction, and
information could be used to infer the originating strand, med contains the remaining 75 % of true transcripts. This
in the following we apply strand-unspecific evaluation cri- subdivision corresponds to cutoffs in relative expression
teria. To eliminate a potential source of inaccuracy priorto of 1.5x 1056and  2.5x 1054 molecules, respectively. As
the reconstruction algorithm, we provided IsoLasso and expected, a higher abundance facilitates the reconstruc-
SLIDE with the fragment length distribution parameters tion of isoforms (Fig. 3). From the 75-bp reads, however,
as estimated by Cufflinks. CIDANE and SLIDE recover almost twice as many lowly
For the data set comprising 40 million 75-bp read pairs expressed isoforms (recall 31 % and 30 %, respectively)
(Fig. 2a), CIDANE reconstructed transcripts with a recall as Cufflinks (recall 6.1 %), the next best method, where-
value of 54.4%, a more than 14 % increase over theas StringTie, CLASS, and IsoLasso recover only
recall achieved by StringTie (47.7 %), Cufflinks (45.9 %),or 8 %, 6 %, and 3 %, respectively. We observe similar
CLASS (43.7 %), and a30 % improvement over IsoLasso results for the 100-bp data set. Not surprisingly, a higher
(41.7 %). At the same time, CIDANE predicts transcripts number of reads facilitates the recovery of low-expressed
with a precision like that of Cufflinks (71.6 %), and only transcripts (Additional file 1: Figure S4).
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The ability of CIDANE to reconstruct, to some extent, transcripts, FluxSimulator generated 4 million read pairs
even lowly expressed isoforms is likely due to its two core (75 bp) from a randomly selected subset of 70 % expressed
algorithmic improvements: First, CIDANE computes the transcripts, which were mapped back by TopHat2. All
entire regularization path in phase | (see Section *Model recall and precision values are listed in Additional file 1:
fittingZ) to find the right balance between prediction Table S5.
accuracy and sparsity. An objective that is skewed Overall, CIDANE achieves the best trade-off between
towards sparsity typically yields predictions that miss low- recognizing known and predicting novel transcripts. With
expressed transcripts. Second, our approach considers aespect to the complete set of expressed transcripts
wider range of candidate transcripts than existing meth- (Fig. 2c¢), CIDANE correctly assembles 20 % more tran-
ods in phase Il (Fig. 1). These include isoforms whose lowscripts than Cufflinks (77.2 % vs 64.1 %), combined
abundance might cause splice junctions to be uncoveredwith a 12 % higher precision than StringTie (85.4 % vs
by reads rendering them invisible to other approaches. 76.3 %). StringTiess slightly higher recall (5 %) is entirely
We investigate this effect in Sections Delayed recoverybased on setAnnot of transcripts known to each tool.
of transcriptsZ and *Recovering invisible transcriptsZ NoteStringTie assigns non-zero expression levels to the vast
that for the two 40-million read-pair data sets, SLIDE majority of provided transcripts and therefore, not sur-
achieves a similar recall on low-expressed isoforms onlyprisingly achieves a recall of 99 % with respect to known
at the cost of a significantly lower precision and incurs transcripts, but only 49 % with respect to novel tran-
a several orders of magnitude higher computational cost scripts (Fig. 2d). CIDANE discovers more than 14 % and
than CIDANE (see Section *Running timesZ). From the 39 % more novel transcripts than StringTie and Cufflinks,
two 80-million read-pair data sets, CIDANE reconstructs respectively, combined with a 34.6 % higher precision than
low-expressed transcripts with a 13 % to 17 % higher StringTie. Only GRIT and iReckon find a greater number
recall compared to SLIDE. All expression-level dependent of novel transcripts than CIDANE, but at the cost of a very
recall values can be found in Additional file 1: Tables S1, low precision of 40...42 % (vs 70 % for CIDANE) and a low
S2, S3, and S4. sensitivity with respect to known transcripts (68 % GRIT

vs 89 % CIDANE).
Transcript assembly with partial annotation
We investigated the ability of Cufflinks, using the
RABT approach presented in [27], iReckon [15], MITIE,

Abundance estimation accuracy
In addition to evaluating the absence and presence of true

StringTie, GRIT [26], and CIDANE to exploit an exist-
ing but incomplete annotation of transcripts. No other
assembly tool allowed us to provide annotated transcripts.
Such a partial annotation, available for the human tran-
scriptome and many other studied organisms, can pro-
vide valuable guidance for the reconstruction of known
isoforms, but algorithms must properly balance the pref-
erential prediction of known transcripts and the detection
of novel unknown isoforms.

Our algorithmic scheme allows the incorporation of

transcripts in the prediction, we compared the accuracy
of the abundance estimation of CIDANE to existing meth-
ods. We restrict this analysis to seAnnot (see previous
section) to reduce the impact of the performance of iso-
form inference on the measure of abundance estimation
quality. For every transcript in setAnnot, we compared
the predicted FPKM to the true FPKM calculated from the
number of simulated paired-end reads. True transcripts
that were not predicted by a method were considered as
reconstructed with zero abundance. To reduce side effects

annotated TSSs and TESs during the isoform inferenceon the abundance estimation due to very short transcripts,
(see Sections sCandidate isoformsZ and sTranscriptionwe limit the analysis to transcripts of length at least 500
start and end sitesZ). CIDANE accounts for a higherbp ( 98.5 %).

confidence in annotated vs novel transcripts by adjust-

We observe similar Pearson correlation coefficients

ing model parameters (see Sections *Model fittingZ andbetween true and predicted abundances for Cufflinks

*Phase IlI: fine-tuning and post-processingZ).

(0.96), GRIT (0.97), iReckon (0.98), and CIDANE (0.99), a

From 1440 genes on chromosomes 1 and 2 for whichslightly lower value of 0.91 for StringTie, and a much lower

between two and eight isoforms have been annotated,

value of 0.31 for MITIE (see correlation plots in Additional

we randomly removed, while preserving all exons, at file 1: Figure S5). To obtain a more detailed picture of the
least one and at most 50 % of the known isoforms and abundance estimation accuracy, we evaluated the relative

provided each tool with the remaining 65 % Annot) of
the originally 6300 known transcripts. The hidden
35 % of annotated transcriptsNove) constitutes the
reference set (ground truth) in evaluating the ability of
each method to infer novel isoforms in the presence of
an incomplete annotation. Among the original 6300

error of predicted transcript abundances. Adopting the
definition in [28], the relative error for a transcriptt with
non-zero true abundance, and predicted abundance,
is defined as| ; S |/ . For ; = | = 0, the rela-
tive error is zero and for ; > | = O, the relative error
is



Canzartal. Genome Biology(2016) 17:16 Page 7 of 18

Figure 4 displays the fraction of annotated transcripts known exon boundaries and the mapped reads as input.
(Annot) for which the predicted abundance has a rel- For performance reasons, the delayed generation of tran-
ative error below a certain threshold. Besides iReckonscripts was applied only to genes containing at most 50
with its very small error rates, CIDANE computes the exons, covering more than 99 % of the genes. For larger
most accurate estimates of expression levels. By runninggenes, CIDANE outputs the initial solution returned by
a tool developed specifically for the statistical estima- our regularized linear regression approach (phase | in
tion of abundances on the set of transcripts assembledFig. 1).
by CIDANE, we expect a further improvement in accu-  CIDANE successfully recovered 24.6 % of the invisible
racy. A known (or reconstructed) set of expressed tran- transcripts expressed in our simulated cellular transcrip-
scripts allows for more involved statistical models that tome. StringTie, Cufflinks, MITIE, and IsoLasso (provided
often operate, like iReckones expectation-maximization with exon boundaries) did not predict a single invisible

algorithm, at single-read resolution. isoform (as expected), while SLIDE recovered5 %. In
rare cases, SLIDE in fact considers candidates with uncov-
Delayed recovery of transcripts ered junctions if otherwise only short candidates with at

In this benchmark, we demonstrate the capability of mosttwo exons exist [29]. We suspect that this strategy is
CIDANE to recover in phase Il (see Fig. 1) isoforms con- one of the main causes for the very slow running time of
taining splice junctions that are not supported by any SLIDE (see the next section).

read. Note that a junction between neighboring exons can  When provided with a partial annotation Annot) as in
also be supported (scovered?Z) by a read pair that maps tathe previous benchmark, iReckon and Cufflinks recovered
the two exons, even if none of the reads span the junc- only one and two isoforms, respectively, whereas CIDANE
tion. From the 6300 transcripts expressed by the genesrecovered 17 ( 40 %) out of 42 invisible transcripts not
selected in the previous benchmark set, we simulated 2contained in setAnnot. StringTie and MITIE again did
million 75-bp read pairs. In all, 118 transcripts had at least not predict any invisible transcripts. For each of the three
one splice junction uncovered and are, therefore, invisible invisible isoforms recovered by iReckon and Cufflinks,
to any method that derives candidate transcripts from a the provided annotation Annot) reveals the uncovered
splicing graph representation of the read alignments (seesplice junction within an alternative isoform. Neither of
Section *Candidate isoformsZ). We note that this simula- the methods was able to reconstruct any uncovered novel
tion neglects sequencing errors and any sequence-specifisplice junction.

or positional fragment biases. Furthermore, the mapping

of reads to known transcripts is less error-prone than Runningtimes

the spliced mapping to a reference genome and, thus,CIDANE in basic mode (omitting phase Il) took 29 min
the number of such invisible isoforms is expected to be to assemble 80 million read pairs (75 bp), compared to
larger in practice. As before, CIDANE is given only the 23 min and 42 min required by StringTie and IsoLasso,
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respectively. Considering the 2.5 hours TopHat2 took not included in this benchmark since they both require
to align the reads, these methods do not constitute the TSSs and TESs to be provided.

bottleneck of this analysis pipeline. The remaining tools On both data sets, CIDANE reconstructed transcripts
required between 1 hour (Cufflinks) and slightly more with significantly higher sensitivity than all competing
than 2 hours (CLASS and MITIE), except for SLIDE, methods, while at the same time producing the low-
which took more than 62 hours. CIDANEess optional est number of false positive predictions (Fig. 5a, b)
search for invisible transcripts in phase Il requires an and Additional file 1: Table S7). Compared to StringTie
additional 42 min of computation. In contrast to methods and Cufflinks, the two next most sensitive assemblers,
like StringTie and Cufflinks, the current implementation CIDANE recovered 28.2 % and 81.1 % more transcripts
of CIDANEe-s optimization algorithm applied in phase | expressed in the monocyte sample, and 29.7 % and
uses only one thread and can be further enhanced by92.9 % more transcripts expressed in the blood sample.
multi-threading support. The running times of all toolson CIDANEes improvement in recall over StringTie trans-
all five simulated data sets are shown in Additional file 1: lates into an increase of 3412 (14,885 vs 11,473) and

Table S6. 3137 (14,254 vs 11,117) correctly predicted transcripts
in the blood and monocyte samples, respectively. The
Real human RNA-seq generally low values in sensitivity and precision are due

We illustrate key features of CIDANE on two human to alignments contributing to the coverage of multiple
RNA-seq data sets from the ENCODE project [21]. alternatively spliced isoforms in the definition of our ref-
Besides the overall performance in terms of recall and pre- erence set and an incomplete annotation of human tran-
cision, we demonstrate CIDANEes capability to recover scripts. CIDANE (single-threaded) took 2 and 3.5 hours
transcripts invisible to existing methods and its ability to assemble the blood and monocyte reads (Additional
to exploit different levels of annotation to improve the file 1: Table S6). Only StringTie (using up to 16 threads)
assembly. was considerably faster. Again, following the analysis
The two strand-specific samples obtained from whole pipeline in [18], the preceding alignment of 180 million
B cells in blood (GEO accession GSM981256) and CD14+blood) and 240 million (monocyte) reads by TopHat2
positive monocytes (GSM984609) comprise 90 million required 14 and 20 hours, respectively, and constitutes
and 120 million 76-bp paired-end reads, respectively, andthe (computational) bottleneck in this analysis. Neverthe-
were aligned using TopHat2. The same data sets wereess, multi-threading support will further scale CIDANE-s
used in [18] to assess StringTiess performance and weperformance since its core algorithms operate on each
apply, consistently with our other benchmarks, the same locus independently. Cufflinks, for example, achieved a
evaluation criteria as [18]. We compared transcript pre- tenfold speedup by using up to 16 threads. Experiments
dictions to a collectionH of well-curated 171,904 tran- (not shown) on a more sparse formulation of our opti-
scripts in 41,409 protein-coding and noncoding genes mization model (*MethodsZ, Eq. 1) did improve the run-
that was created by the authors in [18] by merging all ningtime, but only at the cost of accuracy.
annotated genes from databases RefSeq [30], Ensembl
[31], and the UCSC Browser [32]. Consistent with [18], Annotation-guided assembly
we included in the reference set (ground truth) all tran- Any ab initio prediction has to cope with the highly under-
scripts in H that had all internal exons and introns determined nature of the RNA-seq puzzle. Depending
covered by (spliced) alignments. As in our other exper- on the studied species and the specific biological ques-
iments, we considered a (presumably) expressed tran-tion addressed by the RNA-seq experiment, additional
script in the reference set as successfully recovered ifinformation is often available that can guide the assem-
the sequence of introns matches perfectly. The preci- bly and potentially improve the prediction. As for many
sion is defined with respect to all annotated transcripts well-studied model organisms, well-curated annotations

inH. describe the experimentally validated exon...intron struc-
ture of human genes. Known splice junctions, for example,
Ab initio prediction are routinely used in the preceding alignment step to

In our ab initio experiment, only the TopHat2 alignments facilitate the spliced alignment across introns. Our exper-
were provided to CIDANE, StringTie, Cufflinks, IsoLasso, iments demonstrate (Fig. 5c, d and Additional file 1:

MITIE, and CLASS. SLIDEes excessive running time did Table S8) that the transcript assembly itself can benefit
not allow us to include it in the results below. CIDANEss from such an additional input too. Combined with a small

assembly algorithm was preceded by the algorithm devel-gain in sensitivity, CIDANEe®s precision increased by more
oped in [26] to detect exon boundaries from (spliced) than 40 % and 44 % in the blood and monocyte sam-
alignments (for more details see Section sIntegrating real ples, respectively. Even employing exon boundary infor-
RNA-seq, CAGE, and PAS-seqZ). GRIT and iReckon werenation alone without the donor...acceptor pairing can
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reduce the number of false positive transcript predictions respectively, and thus, helps to improve significantly both
considerably. the sensitivity and precision of CIDANE-s prediction. Not

However, not only an annotation can provide such surprisingly, combining exon boundary, splice junction,
valuable guidance. Native elongating transcript sequenc-gene boundary, or TSS and TES information yields even
ing (NET-seq), for example, contains an explicit sig- more accurate transcript reconstructions. At the extreme
nal on the location of exon boundaries [33]. Strong end of the spectrum, allowing CIDANE to exploit the full
RNA polymerase Il pausing at exon borders manifests in information content of the annotated transcriptome yields
sharp peaks in NET-seq read coverage. Similarly, CAGEassemblies of the blood and monocyte reads that contain
and PAS-seq can help to identify TSSs and TESs (sed 0,883 (25,769 vs 14,886) and 14,724 (25,970 vs 14,246)
Section *Integrating real RNA-seq, CAGE, and PAS-seqZ)more correctly discovered transcripts than CIDANEss ab
Consistent with our observations in Section sIntegrating initio prediction, combined with a precision of around
real RNA-seq, CAGE, and PAS-seqZ information available80 %. Note that the latter mode of CIDANE does not
on TSSs and TESs also significantly enhances CIDANE«®nly estimate the abundance of annotated transcripts. As
assembly of transcripts. If the biological question involves in Section «Transcript assembly with partial annotationZ,
a known set of genes, for example, then gene bound-CIDANE selects a subset of these transcripts that it
ary information prevents fragmentation and fusion of believes are expressed and at the same time constructs
genes caused by missing and ambiguous read alignmentsjovel isoforms not yet annotated.
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Recovering invisible transcripts visible transcripts (phase 1) but even higher than the
In a real data set, it is impossible to distinguish invisi- precision achieved by all competing methods on this less-
ble transcripts from transcripts in the curated seH that  challenging set of transcripts (Additional file 1: Table S7).
are simply not expressed. On the other hand, expressedTranscripts in the monocyte sample generally seem to be
transcripts that can be correctly identified in a given more difficult to reconstruct than in the blood sample.
RNA-seq data set might be invisible in a lower coverage Invisible transcripts in the monocyte data set have a lower
experiment. We, thus, design the experimental evalua- read coverage than in the blood data set (Additional file 1:
tion in this section in the reverse way. Starting from a Figure S6).
set of (correctly) assembled transcript$ , we uniformly In Additional file 1: Tables S11 and S12, we show
subsample the set of all concordant read-pair alignments the results for the recovery of invisible transcripts for
(genome-wide) usingsgamtools which renders a subset of samples of size 20 %, 30 %,,90 %. Overall, CIDANE
transcripts in T invisible. Additional file 1: Tables S9 and performs better on larger samples. The smaller the frac-
S10 show the number of invisible transcripts for differ- tion of sampled alignments, the lower the read cover-
ent fractions of sampled reads when the four initial sets age of invisible transcripts (Additional file 1: Figure S6),
of transcripts T contain all transcripts that were correctly which makes their recovery even harder. Similarly, relative
assembled by one of the four most accurate methodsexpression has an impact on CIDANE-ss ability to detect
based on the full set of 180 million (blood) and 240 million invisible transcripts. Among the 5 % highest expressed
(monocyte) read alignments, respectively. The numbersinvisible transcripts in the monocyte sample, CIDANE
shown are conservative estimates of the true numbersrecovered 39 %, while it reconstructed 10 % among the
of invisible transcripts. They do not include transcripts 20 % lowest expressed invisible transcripts (Fig. 6a). A
invisible in the full set of alignments and most methodsfil- similar pattern can be observed for different sampling
ter the lowest-expressed transcripts for each gene, whichfractions, except for large samples (70 %) of the mono-
would become invisible even if large fractions are sampled.cyte fragments. There, the left tail of the distribution of
Furthermore, invisible transcripts among false negative their expression levels drops less sharply towards tran-
predictions are not taken into account either. Neverthe- scripts with extremely low read coverage (Additional file 1:
less, even in real RNA-seq data sets containing 54 mil-Figure S6b), and the small number of invisible transcripts
lion (blood) and 72 million (monocyte) reads, between (Additional file 1: Table S10) with estimated reference
656 and 949 transcripts that were correctly assembled byexpression is prone to a higher variance.
StringTie or CIDANE from the full set of reads are invis-  Finally, we demonstrate the effect an adjusted regu-
ible (Additional file 1: Tables S9 and S10). More sensitive larization penalty in phase Il (*MethodsZ threshold in
methods provide a more comprehensive set of transcripts Eq. 4) has on the recall/precision trade-off of CIDANE-s
T, yielding a higher number of invisible transcript$ as invisible transcript recovery (Fig. 6b). When increasing
reads are removed. (in steps of 5 units) the multiplicative factor that con-
To investigate the utility of CIDANEes delayed recovery trols the cost of transcripts generated in phase Il (option
of invisible transcripts, we do not rely on the prediction -rl ), the precision increases to up to 39 % (blood) and
of any single method, but start from a high-confidence 36 % (monocyte), combined with a decrease in recall by
set of transcripts T that contains all transcripts in the less than 2 percentage points. Again, similar behavior
curated setH that were predicted by both StringTie and can be observed for other sample sizes (Additional file 1:
CIDANE, the two best-performing methods. As CIDANE Tables S11 and S12).
and StringTie will agree mostly on highly expressed
transcripts, we have to sample randomly fewer read align- Integrating real RNA-seq, CAGE, and PAS-seq
ments to obtain a reasonable number of invisible tran- RNA-seq data provide an explicit signal for the detection
scripts (last columns in Additional file 1: Tables S9 and of introns that is more informative than mere read cov-
S10). Among loci that express transcripts with at least one erage. Spliced alignments span splice junctions between
splice junction uncovered by the 54 million (blood) and exons and can be leveraged to infer splice donor and splice
72 million (monocyte) read alignments, CIDANE success- acceptor sites and thus, the boundary of internal exons.
fully recovers 21.4 % and 21.1 % of invisible transcripts, atin contrast, the reconstruction of transcript boundaries,
a precision of 34.1 % and 31.6 %, respectively. CIDANE+ge., the TSS at the 5end and the TES at the 3end, relies
recall is just slightly lower than the one it achieves on on a read coverage drop that is blurred by biases in the
the simulated data (see Section *Delayed recovery of tran-RNA-seq assay and is thus error-prone.
scriptsZ), despite additional error sources in the real data The conceptual separation of (i) the discovery of exons
sets. CIDANE recovers invisible transcripts (phase Il) in and (ii) the assembly of exons into transcripts allows
the blood sample with a precision that is less than 3 CIDANE to employ additional sources of information in
percentage points lower than its precision in predicting both modules. Not only a comprehensive (yetincomplete)
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expressed 5 % (high), lowest expressed 20 % (low), and all remaining transcriptb Read)l/precision trade-off. The precision increases
significantly for larger regularization penalties (optibn ), at the cost of a small decrease in recall

annotation available for most model organisms can guide Candidate transcripts considered by CIDANE corre-
tasks (i) and (ii) (see Sections sTranscript assembly with spond to paths in the splicing graph (see Section «Candi-
partial annotationZ and *Annotation-guided assemblyZ), date isoformsZ). Only paths from exons whosed®undary
but additional gene boundary data can aid the interpreta- coincides with an identified TSS (and ends with a splice
tion of RNA-seq data [26]. donor site) to exons whose 3boundary coincides with
By integrating Drosophila melanogasterRNA-seq, an identified TES (and begins with a splice acceptor site)
CAGE, and PAS-seq data, GRIT [26] assembled tran-are considered. Single-exon transcripts are bounded by an
scripts with a considerably higher recall and precision identified TSS and TES on the Jand 3 ends, respectively.
than Cufflinks. CAGE and PAS-seq produce reads from We compared the performance of CIDANE, GRIT (lat-
the 5 ends and polyadenylation sites of mMRNAs, respec-est version 1.1.2c), StringTie, and Cufflinks on four repli-
tively, and thus facilitate the mapping of TSSs and TESs.cates, two male and two female (see [26] or Additional
Since reconstructing transcripts from RNA-seq data alone file 1: Table S13). In the experiments performed in [26] on
is intrinsically underdetermined [34], a mapped TSS/TES the same data sets, GRIT drastically outperformed anno-
can reduce the search space significantly, particularlytation tools Scripture [9] and Trinity+Rsem [35] in terms
for complex loci, and this is, thus, expected to yield of recall and precision. Here we apply the same evaluation
more accurate transcriptome predictions. In fact, exper- criteria as in [26] and thus, refrain from benchmark-
iments on simulated data performed in [14] suggest ing CIDANE against tools Scripture and Trinity+Rsem.
the importance of TSS/TES information in transcript Like [26], we assumed a FlyBase 5.45 [36] transcript to
assembly. be expressed in our sample if it is composed of a single
In this section, we demonstrate the superiority of exon or if otherwise every splice junction is supported
our comprehensive transcript assembly approach on the by at least one read. Since transcripts contained in the
integrated analysis of mModENCODE RNA data, com- resulting ground truth by definition had no uncovered
prising stranded RNA-seq, CAGE, and PAS-seq datasplice junctions, we disabled the delayed transcript recov-
obtained from 20-day-old adultD. melanogastetheads ery mode (phase Il in Fig. 1) of CIDANE. Applying the
[26]. We reconstruct transcripts ab initio without relying above criteria, between 8200 and 10,000 transcripts
on any elements of the annotation of th®. melanogaster were expressed in each of the fold. melanogastehead
genome. Instead, we compute exon and transcript bound- samples.
aries using the boundary discovery procedure of GRIT. We considered an expressed transcript in the resulting
Exons and introns are identified by read coverage andground truth as successfully recovered if the sequence of
spliced alignments, respectively. Gene regions then con-introns (intron chain) matches perfectly (same criteria as
tain exons that are connected by introns. In addition to in Sections Isoform reconstruction from simulated dataZ
splice donor and splice acceptor sites, the TSS and TESand *Real human RNA-seqZ) and if optionally the tran-
are identified from read coverage peaks in the CAGE and script boundaries, i.e., TSS and TES, lie within 50 or 200
PAS-seq data. For details, we refer the interested reader taop of each other. The precision is defined with respect to
the original description of the procedure in [26]. the set of all transcripts annotated in FlyBase.
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Figure 7 depicts recall, precision, anl score achieved  Concerning the efficiency, CIDANE and StringTie ran
by Cufflinks, StringTie, GRIT, and CIDANE on the identi- for less than 12 and 6 minutes per sample, respectively,
cally colored four replicates. Their precise coordinates are while GRIT (allowing up to 16 threads) took 3 h of com-
listed in Additional file 1: Tables S14, S15, and S16. As wagutation, including the discovery of exon and transcript
done in [26], we filtered transcripts predicted by GRIT boundaries. Cufflinks required slightly more than 1 h of
with expression score lower bounds less thanxl 1056  computation per sample.
estimated FPKM at a marginal 99 % significance level.

Figure 7a, b takes into account the accuracy of transcript Conclusion
boundaries with different tolerances. If the predicted and We present CIDANE, which provides major improve-
annotated TSS/TES are required to lie within 50 bp of ments in cellular transcriptome reconstruction from
each other (Fig. 7a), the lack of read data ontheemds and RNA-seq over existing assembly tools. Through a
polyadenylation sites of mMRNAS results in a significantly carefully chosen trade-off between model complexity
poorer performance of StringTie and Cufflinks compared and tractability of the resulting optimization problem,
to GRIT. Employing the same amount of data as GRIT, and by applying state-of-the-art algorithmic techniques,
however, CIDANE achieves a recall of 29...31 %, com- CIDANE builds full-length transcript models from short
pared to 15...21 % for GRIT, combined with a slightly sequencing reads with higher recall and precision than
higher precision. Utilizing the additional CAGE and PAS- was possible before. CIDANE is engineered not only to
seq data, CIDANE reconstructs transcripts with around assemble RNA-seq reads ab initio, but also to make use
threefold to eightfold higher precision than StringTie and of the growing annotation of known splice sites, TSSs and
fourfold to 12-fold higher precision than Cufflinks. If we TESs, or even full-length transcripts, available for most
relax the TSS/TES tolerance to 200 bp (Fig. 7b), GRITesmodel organisms. Our experiments show that CIDANE-s
prediction profits from the additional CAGE and PAS- core algorithmic engine yields more accurate transcrip-
seq data mostly in terms of precision. Again, CIDANE tome reconstructions than competing tools, in all these
manages to reconstruct substantially more transcripts different scenarios and under various realistic experimen-
than GRIT, combined with a slightly higher precision. tal designs. Along the same lines, CIDANE can employ
CIDANE-es gain in precision over StringTie and Cufflinks additional gene boundary data to guide the assembly,
ranges from about twofold to sixfold. thereby improving the precision of the reconstruction

Figure 7c neglects the accuracy of transcript boundaries.significantly.

CIDANE (f  0.51) combines the superior precision of To some extent, phase Il of CIDANE allows us to
GRIT (f 0.33) with the superior recall of Cufflinks recover splice junctions that are invisible to all existing
(f 0.27) and StringTie €  0.29) and achieves overall approaches. Such junctions are not supported by any read
the highestF score. Note that the recall values of StringTie alignment and can be observed predominantly among
and Cufflinks shown in Fig. 7c count annotated tran- low-expressed transcripts. While CIDANE in basic mode
scripts as true positive hits even if there is no evidence (phase Il omitted) reconstructs a human cellular tran-
for their expression in the CAGE and PAS-seq data. In scriptome from 80 million aligned read pairs in 29
each analysis, the transcriptome predictions of GRIT and min, the recovery of invisible junctions is a more com-
CIDANE are based on the exact same mapping of exons plex task. For genes larger than 50 exons, the iterative
introns, TSS, and TES. The superiority of our approach determination of invisible transcripts might become too
results entirely from a more coherent assembly of exons expensive in practice and is disabled by default in our cur-

into transcripts. rent implementation. Future work on the fixed-parameter
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tractability of the heaviest isoform problem might allow as the heaviest isoform problem. If the heaviest isoform
us to push the limits even further. does notimprove the current prediction, CIDANE is guar-
We expect that CIDANE will provide biologists with anteed to have found the best possible set of isoforms
accurate transcript predictions from the very large, without having explicitly enumerated all potential iso-
complex data sets that currently emerge from RNA-seq forms in the exponentially large space. Otherwise, the
experiments. Such a high-resolution RNA-seq data inter- newly constructed isoform (Fig. 8e) can be used to adjust
pretation is essential for any type of downstream analysisour fitting.
and will help to expand the catalog of genes and their Although we show that heaviest isoform problem is
splice variants. NP-complete, we propose an integer linear program-
CIDANE is free open-source software released underming (ILP) formulation that exploits certain properties of
the GNU GPL license, and has been developed and testedRNA-seq data and (optionally) known splicing character-
on a Linux x86_64 system. CIDANEe-s source is availabldstics that allow for the efficient solution of the ILP. For

from https://bitbucket.org/canzar/cidane. example, only a few combinations of exons enclosed by
two mapped read mates are typically consistent with an
Methods estimated fragment length distribution, yielding a small

In this work, we assume mMRNA fragments to be number of variables in our formulation. Furthermore, we
sequenced from both ends, yieldingaired-end reads (optionally) disregard transcripts whose alternative pro-
Nonetheless, all results trivially apply to single-end moter and polyadenylation sites coincide with acceptor
reads. For each locus, identified as connected com-and donor sites of internal exons, since signals read by
ponents of read mappings, CIDANE reconstructs iso- the transcription and splicing mechanism to identify start
forms from RNA-seq data in three phases (Fig. 8). First (end) sites and acceptor (donor) sites differ significantly.
(Section <Phase |: regularized linear regressionZ), a liniNote that this restriction is conceptually equivalent to
ear model is fitted (Fig. 8c) to a compact representation considering onlymaximal paths in the splicing graph as
of the observed read mappings (Fig. 8a) using a set otandidates, as is done by current methods. CIDANE, how-
fully supported candidate transcripts (Fig. 8b). Here, our ever, tries to restore maximal paths that are broken due to
approach differs from existing methods mainly in (i) care- uncovered splice junctions. At the same time, the flexibil-
fully designed regression coefficients that model (like ity of an ILP formulation allows CIDANE to incorporate
SLIDE) the distribution of reads along a transcript and additional data or knowledge concerning, for instance,
in (ii) applying a state-of-the-art machine-learning algo- exon boundaries, intron retentions, TSSs, and TESs.
rithm to balance the accuracy of the prediction and the  The prediction is fine-tuned (Section <Phase llI: fine-
number of isoforms assigned a non-zero expression level.tuning and post-processingZ) by refitting the linear model

In a second phase (Section *Phase II: delayed generadsing the initial set of candidate transcripts augmented by
tion of improving isoformsZ), CIDANE explores the space all improving transcripts identified in the second phase
of transcripts that is neglected by existing methods due of CIDANE. Finally, the expression levels of the recon-
to computational challenges. To identify iteratively such structed transcripts are re-estimated and converted into
a transcript that can help to improve the current predic- FPKM in a post-processing phase (Section <Phase lll:
tion, we have to solve a problem (Fig. 8d) that we formalize fine-tuning and post-processingZ).
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Fig. 8 Schematic diagram illustrating CIDANE-«s work flow. In the first phase, a linear modellddikdohén c) to a compact representation of
the observed read mappinga)using an initial sefinit of candidate transcript®§. Second, transcripts not Tt that can help to improve the
prediction are iteratively identified as optimal solutions to the heaviest isoform prodleffi{e newly constructed isofore) s used to adjust the
fitting (orange linén c)
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Phase I: regularized linear regression Model fitting

Like count-based methods such as SLIDE and IsoLassoWe apply a linear model (Fig. 8c) to estimate the num-
we summarize the observed read mappings insegment ber of reads originating from segments of the genome.
covergFig. 8a). Instead of trying to explain each read map- Assuming that every position of an expressed tran-
ping with its precise genomic coordinates, we count the script is equally likely chosen as a starting position of a
number of reads that fall into non-ambiguously connected sequenced RNA fragment, we model the expected num-
segments of the genom&egments S represent minimal — ber of fragments mapping to segment cover = (ss,b)
exon fragments that are covered by reads and bounded byas ; 1 tc t, where ¢ is the expected number of start-
splice sites, TSSs, or TESs (see Additional file 1: Figure S7)ng positions of fragments obtained from transcript that
derived from spliced alignments, extracted from a set of show a mapping signature consistent with. The expres-
gene annotations, or supported by additional data. For sion level { of transcriptt counts the expected number of
sequences of segments and 5, a segment coveric=  mapped fragments per transcript base, which is converted
(s,5.b) then counts the numberb; of read pairsr = to FPKM at a later stage (Section +Phase llI: fine-tuning
(r1,r2) wherer; and r, map with a signatureconsistent and post-processingZ) . depends on the length of seg-
with § ands, respectively; i.e., the mapping of (r2) spans ments insands, the length of segments in enclosed by
precisely the set of segment boundaries that are implied bys and s, the read length, and the cDNA fragment length
S (§) (see Additional file 1: Figure S8Faux segment covers distribution. Equations defining ¢ as used in our model
(§,§, 0) indicate that the corresponding combination of are given in Additional file 2: Section 3. In contrast, meth-
segments wasiot observed in the read data and can help ods like TRAPH [12], MITIE, and Isolnfer/IsoLasso define
to identify false positive predictions. We denote the set coefficients ( that neglect the dependence on transcripts
of segment covers, including faux covers (see Additionalt. Note that the distribution of reads along a transcript is

file 2: Section 1), byC. generally not uniform, but typically unknown. The same
applies to all the experimental data used in this study.
Candidate isoforms Any prior knowledge concerning the likelihood of start-

We derive the initial set of candidate isoform3 (Fig. 8b) ing positions can be incorporated into our model through
used to explain the observations (segment covers) as pathadjusted ¢ ¢ coefficients.
in a splicing graph[37]. Nodes in a splicing graph corre-  We employ the sum of squared errors (i.e., differences
spond to segmentsS and edges connect exon fragments between estimated and observed number of reads) as a
whose consecutivity is indicated by (spliced) alignments. measure of accuracy of our prediction, weighted by an
Under the assumption that every splice junction of every estimator for the variance of observationb [14]. Fitting
expressed isoform is covered by at least one mapped readour model using all candidate transcripts would allow us
every expressed (true) transcript is among the paths into fit noise in the data by predicting a large number of
the splicing graph. For a formal specification of a splic- isoforms with low but non-zero expression levels. Since
ing graph as employed in CIDANE, see Additional file 2: in a given cell type really only a small subset of candi-
Section 2. date transcripts is expressed, our approach seeks a sparse
We further define setsT SS and PAS, which contain  set of expressed isoforms by augmenting, like SLIDE and
potential TSSs and TESs, respectively. These sets can bisoLasso, the objective by thé! norm of the isoform
compiled from annotated TSSs and polyadenylation sites,abundances. Our (initial) prediction 0 comprises all
additional read data from the 5ends and polyadenylation transcripts with non-zero expression level in the optimal
sites of MRNAs (see Section ¢Integrating real RNA-seq, solution to

CAGE, and PAS-seq?), or purely from read mapping data. 2

bS

The latter is based on an exclusion principle. We do min J2 tT et ¢ (1)
not allow for transcripts whose alternative promoter or 0 = ssh): max{ , b} £ T
polyadenylation sites coincide with acceptor and donor cc

sites of internal exons and thus, exclude all segments withFor faux covers, we replace = 0 by (default = 1).

spliced alignments supporting their S5or 3 endfromT SS  This so-calledLassaregressionselectssoforms by setting
and PAS, respectively. This exclusion strategy is equiv- the expression levels of all other transcripts to zero one at
alent to considering onlymaximal paths in the graph, as a time with increasing penalty terms .
is done by current methods, and can easily be relaxed in The overall quality of the prediction crucially depends
CIDANE by settingT SS:= SandPAS = S. on the right choice of the regularization parameter .
The set of candidate isoforms among which we selectin contrast to previous methods, we balance the rela-
our initial prediction is then obtained by enumerating all tive importance of the accuracy of the prediction and its
(or a preselected set of) paths in the splicing graph that simplicity (number of transcripts with non-zero expres-
start at a segment inf SSand end at a segmentiPAS.  sion level) based on the entire path of values for. As
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the coefficient path is piecewise linear, the entire regu- possible transcripts, represented by the variables, and
larization path can be computed at the cost of a single generate novel isoforms, i.e., columns &, as needed to
least-squares fit [38]. We apply a coordinate descent algo-improve the overall prediction.
rithm implemented in the gimnet Fortran code [39], that To identify an isoform that can help to improve the
cyclically optimizes, for a given, each isoform abundance prediction in terms of objective Eq. 2, Dantziges sim-
separately, holding all other abundances fixed. Updateplex method [20] requires the determination of a variable
operations (inner products) directly profit from our sparse  (transcript) ; with negative reduced cosgj = S pTAj,
matrix of ¢ values (see Additional file 2: Section 3). Fur- wherep is the vector of simplex multipliers and; is the
thermore, considering a sequence of decreasing values focolumn of A representing transcriptt;.

exploits estimates at previouses as a warm start. After  Instead of computing the reduced cost associated with
having computed the entire path of values for, our ini-  every possible transcriptj, we consider the problem of
tial prediction is obtained from the optimal solution to  minimizing ( épTAj) over alltj, or equivalently, the prob-
Eq. 1 for the value of that yields the bestadjusted R lem of maximizing pTAj over all transcriptstj. According
score. The adjustedr? adjusts the goodness of fitf2) for  to constraint Eq. 3, forevery 1 i m, entryi of column
the number of isoforms used. If CIDANE is provided with - Aj has value . The task s, therefore, to find a transcript
a partial annotation of the transcriptome of an organism, t; such that
the higher confidence in annotated transcripts is mod-

eled by scaling the regularization penaltiesassigned to (Pi ta)> - (4)
unknown transcripts by a factor of (default = 2). G cC

If no such transcript exists, all reduced costs are non-
Phase II: delayed generation of improving isoforms negative and the current solution is optimal. Next, we

The aim of the second phase of CIDANE is to recover model this optimization problem as a variant of the heav-
isoforms with uncovered splice junctions (invisible tran- iest induced subgraph problem [40] and propose an ILP
scripts) that are not included in the candidate set of formulation. For ease of notation, here we only consider
the regularized least-squares regression due to their pos-the case where reads span single exons. For the general
sibly very large number. We employ a delayed column case of reads spanning an arbitrary number of exons, we
generation technique [20] to identify new candidate iso- refer the reader to Additional file 2: Section 5. Consider
forms that improve the optimal solution of the regularized graphG = (V,E) that contains one vertex for each exon
least-squares regression without exhaustive enumerationof a locus. We assume that the exons are numbered from
of all possible candidates. Particularly suited for large- left to right from 1 to n and identify each vertex by the cor-
scale linear programs, we formulate a piecewise-linearresponding exon number. We identify each segment cover

approximation (Additional file 2: Section 4) of the follow- (s 's,b) with single-exon sequences = i,s = | by
ing quadratic program that is equivalent to the regularized (i,j,b) and include an edgee = (i,j) in E. For each edge
least-squares objective function, Eq. 1: e Ewe denote byV (€) the set of vertices whose associ-

ated exons lie between the exons given by segmeindsid

2 jie V(e ={k V:ii<kc< j}. We assign to each edge

. i
min — t t (2) e Eaweight functionwe : P(V(8)  R. Then, find-
c  max{ ,bj} I . . . Lo : .
G ing an improving transcript is equivalent to the following
s.t. tg t+ &= b, ¢ C (3) Vvariantofthe heaviestinduced subgraph problem:

t T
Definition 1 (Heaviest isoform problem) Given graph
Rf' is the vector of transcript abundances, and G = (V,E) and edge weight functionsagpfind T~V such
e RIC denotes the vector of errors, i.e., differences that the induced subgraph has maximal total edge weight,
between estimated and observed read counts per segmentvhere each induced edge e contributes weigd{fiw V (€)).
cover. The generation of columns (i.e., variableg is then
accomplished by means of an ILP formulation presented Edge weightswe model the corresponding summands
below. In the following, we letm = | C| be the number on the left-hand side of Eq. 4 and, thus, depend on
of segment covers falling into the considered locus and the selection of exons between the mates of a cover
we let A be the corresponding coefficient matrix of con- (see Additional file 2: Section 3). In Additional file 2:
straints, Eq. 3. Since the number of transcripts a gene canSection 6, we show that the heaviest isoform problem
potentially encode grows exponentially with the number is NP-complete. For single-end reads that span at most
of its exons, constructing matrixA in full is impractical, two exons, the weight function is no longer dependent
even for comparatively small genes. Rather, we consider mn TV (e) and the heaviest isoform problem becomes
restricted problem that contains only a small subset of all polynomial-time solvable by a dynamic program.
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This problem can be captured by the following integer the following, we introduce constraints that we optionally
linear program. For each vertekin G, a binary variable;  add to our ILP formulation, depending on the type of data
indicates whether vertex is contained in the solution. For available, to ensure that th& variables encode a transcript
everyedge EandeveryseV; V(e),wehaveabinary thatexhibitsthe desired structure.
variableyej, which is 1 if and only if vertices selected by the
x variables are consistent witlvj and inducee, enforced  Exon compatibility
by the constraints below. In the objective function, we let Splice acceptor and splice donor sites can be derived from
Wej = we(\7j): spliced alignments or extracted from a set of gene annota-
tions. Here we consider the case of a set of known exons
E. The more general case where the pairing of alterna-

max We, Yej . o
e EV, V(9 tive acceptor and donor sites is unknown can be reduced
. _ . 15 %) SIV(OIS 1 to this case by simply including all possible combinations
St Yei X _ (@Sx) SIVEIS L of acceptor and donor sites of an exon ifE. Alterna-
Vi eV Vi V(e\V . . .
L tively, the structure of a splicing graph along with the
e EVj V(9 individual mapping of acceptor and donor sites can be
Yej  Xis e EV; VO, vi eV enforced through exon connectivity constraints as shown
Yej 18 Xi, e E \7] \7(6‘), Vi \7(9)\ \7] in the next section.

To ensure that the segments i selected by thex vari-

, . . ables form only valid exons irE, we link the segments of
Depending on the quality of the data (determined by, each exorE;  E by an indicator variablez:

e.g., sequence-specific or positional biases and read map-
ping accuracy), an isoform that is built by our ILP for-
mulation might improve the prediction with respect to X; = z, 1 i S (6)
objective Eg. 1 by balancing, for instance, read cover-
age fluctuations. To prevent fitting noise in the data, we
require novel isoforms to explain segment coversthat
are not supported by any transcript in the initial solution  This constraint implies that (i) every selected segmest

T returned by the regularized least-squares regression(i-€.,xi = 1) must be part of exactly one selected exon
Eg.1;ie,t T : tc= 0.We refer to this set of ini- E (i.e.,z = 1), (i) all segments of a selected exon must
tially unsupported segment covers a8  C. To reduce be included, and (i) no pair of overlapping, and hence
the impact of spurious read mappings, we require a cer- incompatible, exons can be selected simultaneously.

tain number k; of read counts to be observed on the set of

newly supported segment covers: Exon connectivity

For some complex genes, it is computationally infeasible
to enumerate all paths in the splicing graph to obtain the

bi Yaj ke (®)  set of candidate isoforms. For such genes, our delayed
G C Vi V) isoform generation approach allows the exploration of all
candidate isoforms without explicitly enumerating them.
Intuitively, variablesye associated with an edge =  Constraint Eq. 7 withu;; = 0, therefore, captures the

(i,]J) guess the selection of exons between exonandj. splicing graph structure in a way that the path induced
Since for largg S i their exponential number would ren- by the selected set of segments agrees with the set of
der our ILP approach infeasible, we neglect se¥§ that edgesE in the splicing graph. A simultaneous selection
would imply fragments of very unlikely length. More pre- of two segmentss and g, i < j, without selecting any
cisely, we apply lower and upper boundsand inthe segments with i < k < jis not feasible if the splic-
computation of ¢ (see Eq. (1) in Additional file 2) that ing graph does not contain edgévi,v;). Notice that this
limit the lower and upper 5 % quantiles, respectively, of scheme allows us to assemble novel exons by selecting
the estimated fragment length distribution. In Additional acceptor sites (incoming edge) and donor sites (outgoing
file 2: Section 7, we translate this fragment length restric- edge) independently.
tion into lower and upper limits on the total length of Alternatively, we can allow up tdk (defaultk = 2) new
exons inVj, which allow us to enumerate feasible exon edges to be selected from a set of svaluableZ edgeniss-
combinations in Vj by an efficient splicing-graph-based ing in the splicing graph. At mostk binary variablesu;,
backtracking scheme. 1 i<j | S|, canbesettolfo(vi,vj) / Etorelaxthe
The construction of improving transcripts can be fur- corresponding constraint Eq. 7. We experimented with
ther guided by additional information such as exon... valuable sets of edgek that allow the explanation of
intron boundaries, TSSs, TESs, or exon connectivity. In observed covers that cannot be explained solely using
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edges inE. In general, however, any novel intron can be Phase IlI: fine-tuning and post-processing

simply modeled by a corresponding edge &: To adjust the regularization penalty to the increased
set of candidate transcripts implicitly considered by the
1+ujj Xi+X%S X, 1 i<j S, MmVv)/E delayed isoform generation approach and to reduce the
i<k<] effect of the piecewise-linear approximation of the loss

(7) function, CIDANE re-solves Eg. 1 with the candidate

L setT containing additionally all transcripts generated in
uj k (8) , ;
ij) E the course of the delayed isoform generation phase. We
— 0 1 i<i ISl (ww/E E express a higher confidence in fully supported isoforms
Uij = O P< g I S](vw) by selectively increasing = - (default = 1.3)for
) delayed generated transcripts.
Transcription start and end sites Let tranSCfiptST = {t]_, - ,tm} with non-zero abun-
We also have to ensure that improving transcripts built dance ,,..., ¢ be returned by the regularized regres-

by our ILP start at segments inT SS and end at seg- Sion Eg. 1 solved in phase I, optionally including the
ments in PAS . Our model captures both theexclusion additional isoforms provided by our delayed isoform gen-
of potential TSSs and TESs from spliced alignments (seeeration approach (phase ). CIDANE determines the final
Section *Candidate isoformsZ), and theclusion of tran-  prediction by post-processing  as follows. First, to avoid
script boundaries, from, eg. a RNA-Seq read Coveragé)iases introduced by the regularization penalties we re-

drop or from additional reads from the 5 ends and Solve Egs. 2 and 3 for := 0 using setT instead of
polyadenylation sites of mMRNAs (see Section «Integrating T to obtain expression levels;. Second, we re-estimate
real RNA-seq, CAGE, and PAS-seq?). the expression levels by computing a final assignment of

Variablesss and es indicate the start and terminal seg- Mapped reads to isoforms that is guided by the relative
ment of the generated isoform, respectively. We must abundances:
select precisely one TSS and one TES (constraints Egs. 10 .
and 11) from setsT SS and PAS, respectively (con- rty) = b ——— 1
straints Eqgs. 12 and 13). Designated start and end sites G Cyg>0 UGty

. . . N tw T

must be part of the predicted transcript (constraints ) i )
Egs. 14 and 15). Finally, no segment upstream of the start/herer () is the number of reads assigned to isoform.

segment Eq. 16 and no segment downstream of the endThis assignment of reads to isoforms corrects overesti-
segment Eq. 17 can be part of the predicted isoform: mation or underestimation of the total number of reads

within a gene due to non-uniform read mapping coverage.

ss=1 (10) Forallisoformst; T with r(t)) (default = 10),we
Vi V compute transcript expression levels in FPKM and finally
es=1 (11) return all isoforms whose predicted expression in FPKM
ViV is at least percent (default = 10) of the expression
s$=0 vi / TSS (12) of the most abundant transcript for the same gene. When
es = O’ vi /| PAS (13) run with a partial annotation of the transcriptome of an
x- s’- ' vV (14) organism, we increase the expression thresholdo 20 %
bosY ! for novel transcripts.
Xi €s, Vi V (15)
v VI Ethics approval
xi 15 S Vi Vv (18)  Not applicable.
jmi+1
ot Additional files
X 1S es, vi V a7

Additional file 1: Additional figures and tables. (PDF 578 kb)
Intron retentions Additional file 2: Algorithmic details. (PDF 238 kb)

The explicit exon model described in Section *Exon com-
patibilityZ captures intron retentions by simply merging Competing interests o
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the flanking exons and the retained intron into one vir-
tual exon that is added to seE. Similarly, the more general Authors contributions
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