
HAL Id: hal-01397810
https://hal.inria.fr/hal-01397810

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ILP-Based Approaches to Partitioning Recurrent
Workloads Upon Heterogeneous Multiprocessors
ILP-based approaches to partitioning recurrent
workloads upon heterogeneous multiprocessors

Renato Bruni, Alberto Marchetti-Spaccamela, Sanjoy Baruah, Vincenzo
Bonifaci

To cite this version:
Renato Bruni, Alberto Marchetti-Spaccamela, Sanjoy Baruah, Vincenzo Bonifaci. ILP-Based Ap-
proaches to Partitioning Recurrent Workloads Upon Heterogeneous Multiprocessors ILP-based ap-
proaches to partitioning recurrent workloads upon heterogeneous multiprocessors. 28th Euromicro
Conference on Real-Time Systems, ECRTS 2016, Jul 2016, Toulouse, France. pp.215-225, 2016, IEEE
Computer Society. <10.1109/ECRTS.2016.10>. <hal-01397810>

https://hal.inria.fr/hal-01397810
https://hal.archives-ouvertes.fr

See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/307572271

ILP-Based	Approaches	to	Partitioning
Recurrent	Workloads	Upon	Heterogeneous
Multiprocessors

Conference	Paper	·	July	2016

DOI:	10.1109/ECRTS.2016.10

CITATIONS

0

READS

7

4	authors,	including:

Renato	Bruni

Sapienza	University	of	Rome

57	PUBLICATIONS			301	CITATIONS			

SEE	PROFILE

Alberto	Marchetti-Spaccamela

Sapienza	University	of	Rome

173	PUBLICATIONS			1,973	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Renato	Bruni

Retrieved	on:	16	November	2016

https://www.researchgate.net/publication/307572271_ILP-Based_Approaches_to_Partitioning_Recurrent_Workloads_Upon_Heterogeneous_Multiprocessors?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/307572271_ILP-Based_Approaches_to_Partitioning_Recurrent_Workloads_Upon_Heterogeneous_Multiprocessors?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Renato_Bruni2?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Renato_Bruni2?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Sapienza_University_of_Rome?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Renato_Bruni2?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Alberto_Marchetti-Spaccamela?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Alberto_Marchetti-Spaccamela?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Sapienza_University_of_Rome?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Alberto_Marchetti-Spaccamela?enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ%3D%3D&el=1_x_7

ILP-based approaches to partitioning recurrent
workloads upon heterogeneous multiprocessors

Sanjoy K. Baruah∗, Vincenzo Bonifaci†, Renato Bruni‡, Alberto Marchetti-Spaccamela‡
∗University of North Carolina at Chapel Hill, E-mail: baruah@cs.unc.edu

†Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy, E-mail: vincenzo.bonifaci@iasi.cnr.it
‡Università di Roma “La Sapienza”, Roma, Italy, E-mail: {bruni,alberto}@diag.uniroma1.it

Abstract—The problem of partitioning systems of independent
constrained-deadline sporadic tasks upon heterogeneous multi-
processor platforms is considered. Several different integer linear
program (ILP) formulations of this problem, offering different
tradeoffs between effectiveness (as quantified by speedup bound)
and running time efficiency, are presented.

I. INTRODUCTION

Heterogeneous multicore CPUs – CPUs in which the pro-

cessing elements differ from one another with respect to func-

tionality or processing speed – are currently widely available

and increasingly becoming the common case. The presence of

such heterogeneity requires choices to be made when mapping

software components onto processing elements. The need to

resolve such choices adds considerable complexity to resource

allocation, and inhibits the adoption of such platforms by

the embedded computing industry despite significant potential

benefits in terms of balancing performance and energy.

We consider here real-time systems that are modeled as col-

lections of independent sporadic tasks (the model is described

in detail in Section II). We seek to devise algorithms for im-

plementing such systems upon heterogeneous multiprocessor

platforms under the partitioned paradigm. To our knowledge,

this topic has not been studied much previously:

• On the one hand, most prior real-time scheduling research

that considers heterogeneous platforms (see, e.g.,[10],

[22], [21], [23], [24]; [20] has a nice survey) has restricted

attention to implicit-deadline sporadic tasks.

• On the other hand, prior research that does address the

partitioned scheduling of task systems represented using

models that are more general than the implicit-deadline

model considers identical multiprocessor platforms only

(see, e.g., [6], [9]).

In this paper, we initiate a methodical study of the problem

of partitioning, upon heterogeneous multiprocessor platforms,

task systems that are represented using the more general

constrained-deadline sporadic task model1. We assume that

once the partitioning has been performed and tasks assigned to

the processors, run-time scheduling is done on each processor

using the earliest deadline first (EDF) scheduling algorithm,

which is known to be optimal for this purpose [18], [11].

1Although we expect that most of our results will also extend to the
arbitrary-deadline sporadic task model, for ease of presentation we do not
explore this issue any further in this paper, but leave it for future work.

Our approach. We will derive various approaches to task

partitioning. These algorithms share the commonality that they

are all based upon formulating the task partitioning problem

as an integer linear program (ILP). For implicit-deadline task

systems, this is not particularly difficult to do; indeed most

of the research on partitioning implicit-deadline sporadic task

systems (including the works [22], [21], [23], [24] cited above)

has been based upon first formulating such an ILP, and then

seeking polynomial-time algorithms for obtaining approximate

solutions to these ILPs (solving an ILP is known to be

NP-hard [15], and hence unlikely to be solvable exactly in

polynomial time).

Despite this inherent intractability of solving ILPs, how-

ever, the optimization community has recently been devoting

immense effort to devise extremely efficient implementations

of ILP solvers, and highly-optimized libraries with such effi-

cient implementations are widely available today. Modern ILP

solvers, particularly when running upon powerful computing

clusters, are often capable of solving ILPs with tens of

thousands of variables and constraints. We therefore believe

that it is reasonable to attempt to solve ILPs exactly rather

than only approximately, and seek to obtain ILP formulations

that we will seek to solve exactly to solve the partitioning

problem for constrained-deadline sporadic task systems. Since

the running time of ILP solvers tends to increase with the

number of variables and constraints in the ILP to be solved,

we seek to develop ILPs for task partitioning in which the

number of variables and constraints are restricted to be low-

order polynomials of the representation of the task system.

While the number of constraints may not always be a good

indicator of the complexity of an ILP formulation, we use it

as a first approximation: indeed, the best known complexity

bounds for solving ILPs do increase with the number of linear

constraints [12, Theorem 5.3]. Possibly more refined metrics,

such as the constrained induced-width [13] or the constraint
density [2], have also been suggested in other settings, but

not in the context of the problem of partitioning tasks onto

heterogeneous processors – not even implicit-deadline tasks

[14]; these refinements fall outside the scope of this work.

Our results. In partitioning implicit-deadline sporadic task

systems, an ILP represents an exact solution to the partition-

ing problem — solving an ILP exactly therefore constitutes

an optimal algorithm for performing such partitioning. For

2016 28th Euromicro Conference on Real-Time Systems

2159-3833/16 $31.00 © 2016 IEEE

DOI 10.1109/ECRTS.2016.10

215

2016 28th Euromicro Conference on Real-Time Systems

2159-3833/16 $31.00 © 2016 IEEE

DOI 10.1109/ECRTS.2016.10

215

https://www.researchgate.net/publication/304294976_Optimal_Real-Time_Scheduling_on_Two-Type_Heterogeneous_Multicore_Platforms?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234077170_A_PTAS_for_Assigning_Sporadic_Tasks_on_Two-type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234077170_A_PTAS_for_Assigning_Sporadic_Tasks_on_Two-type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220432221_A_Sufficient_Condition_for_Backtrack-Bounded_Search?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220328528_The_Partitioned_Multiprocessor_Scheduling_of_Deadline-Constrained_Sporadic_Task_Systems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220345750_On_the_Solution-Space_Geometry_of_Random_Constraint_Satisfaction_Problems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221329822_Control_Robotics_The_Procedural_Control_of_Physical_Processes?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234079337_Outstanding_Paper_Award_Task_Assignment_Algorithms_for_Two-Type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234079337_Outstanding_Paper_Award_Task_Assignment_Algorithms_for_Two-Type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257790001_Unrelated_parallel_machine_scheduling-perspectives_and_progress?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220431427_Scheduling_Algorithms_for_Multiprogramming_in_Hard-Real-Time_Environment?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221298347_Assigning_Real-Time_Tasks_on_Heterogeneous_Multiprocessors_with_Two_Unrelated_Types_of_Processors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221298347_Assigning_Real-Time_Tasks_on_Heterogeneous_Multiprocessors_with_Two_Unrelated_Types_of_Processors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668641_Resource_augmentation_for_uniprocessor_and_multiprocessor_partitioned_scheduling_of_sporadic_real-time_tasks?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262360208_Real-time_scheduling_with_resource_sharing_on_heterogeneous_multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668180_Partitioned_EDF_scheduling_on_a_few_types_of_unrelated_multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668180_Partitioned_EDF_scheduling_on_a_few_types_of_unrelated_multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221580898_Reducibility_Among_Combinatorial_Problems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

Number of constraints Speedup factor Comments

1. n+m+m log2 dmax 4 In Section III-B

2. n+m+m logρ dmax 2ρ In Section III-C. ρ is a constant > 1. A generalization of row 1 (which is obtained if ρ← 2)

3. n+m+ nmk 1 + 1
k

In Section IV. k is any integer ≥ 1.

4. n+m+m logρ dmax 2 + ρ+ ρ2

ρ−1
In Section V. A “poorer” version of row 2 — same number of constraints, larger speedup factor.

But more amenable to polynomial-time approximation – see Section V for details

Table I
SUMMARY OF RESULTS

partitioning constrained-deadline systems, however, we do not

know how to obtain such an exact ILP representation of this

problem with only polynomially many constraints — this

difficulty was previously identified even for partitioning upon

identical multiprocessors in [4]. Instead, our goal here is to

obtain polynomial-sized ILP representations of the problem of

partitioning constrained-deadline sporadic task systems upon

heterogeneous multiprocessor platforms with the property that

exact solutions of the ILP constitute approximate solutions

to the partitioning problem. Our metric of effectiveness of

such an approximate solution is the speedup factor – an ILP

formulation has speedup factor f , f ≥ 1, if any constrained-

deadline sporadic task system that can be partitioned upon a

particular heterogeneous platform by a hypothetical optimal

algorithm can be partitioned using this ILP formulation upon

a platform in which each processor is at least f times as fast.

We have derived several different ILP representations for

the problem of partitioning constrained-deadline sporadic task

systems upon heterogeneous multiprocessor platforms, all of

which have number of variables and constraints polynomial

in the representation of the task system. All these ILP formu-

lations have nm integer variables, where n is the number of

tasks and m the number of processors, but specify different

numbers of constraints and offer different speedup guarantees

— they are summarized in Table I.

II. SYSTEM MODEL, BACKGROUND, AND NOTATION

We seek to partition a sporadic task system τ comprising

the n independent sporadic tasks τ1, τ2, . . . , τn upon an unre-

lated multiprocessor platform π comprising the m processors

π1, π2, . . . , πm. The i’th sporadic task τi is characterized by

a period pi and a relative deadline di, and m worst-case

execution time (WCET) parameters ci,1, ci,2, . . . ci,m, with ci,j
denoting the WCET of τi if it executes upon processor πj .

In this paper, we restrict attention to task systems in which

di ≤ pi for each task τi ∈ τ — such sporadic task systems

are called constrained-deadline sporadic task systems. During

run-time, τi releases a sequence of jobs at time-instants that are

not known beforehand, but with the constraint that successive

jobs are released at least pi time units apart. Each job of τi
has a deadline di time units after its release time; the amount

of execution needed by this job depends upon the identity of

the processor on which it executes. More specifically, since

we are studying partitioned scheduling in this paper, given

task system τ and multiprocessor platform π, our objective

is to obtain a partitioning of the tasks upon the processors.

Let f(i) ∈ {1, 2, . . . ,m} denote the index of the processor

to which each τi is assigned under such a partitioning; each

job of τi needs to execute for up to ci,f(i) time units upon

processor πf(i).

Since the preemptive Earliest Deadline First scheduling al-

gorithm (EDF) is known to be optimal for scheduling a single

preemptive processor, we will use EDF as the scheduling

algorithm upon each individual processor during run-time. The

demand bound function (dbf) [5] of a sporadic task is widely

used to quantify the computational demand of such a task,

where the dbf(τi, t) of sporadic task τi with period pi, relative
deadline di, and WCET ci for an interval of duration t is

defined as follows

dbf(τi, t) :=

⌊
t+ pi − di

pi

⌋
ci

It is known that a collection of sporadic tasks can be scheduled

to always meet all deadlines upon a preemptive uniprocessor

by EDF if and only if for all t ≥ 0, the sum of the dbf’s of

all the tasks in the collection for an interval of duration t does
not exceed t.

Some additional notation:

• Let N := {1, 2, . . . , n} denote the task index set.

• Let M := {1, 2, . . . ,m} denote the processor index set.

• Let ui,j := ci,j/pi denote the utilization of task τi on

processor πj .

• Let dmax := max1≤i≤n{di} denote the largest relative

deadline parameter of any task in τ .

As above, let f : N → M denote a partitioning of the task

system τ upon multiprocessor platform π. We use the notation

dbff,j(t) to denote the sum of the dbf’s of all the tasks in τ
that have been assigned to processor πj under the partitioning

f , for interval duration t:

dbff,j(t) :=
∑

i∈N :f(i)=j

(⌊ t+ pi − di
pi

⌋
ci,j

)

216216

https://www.researchgate.net/publication/3506549_Preemptively_scheduling_hard-real-time_sporadic_tasks_on_one_processor?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/235800598_Partitioned_scheduling_of_sporadic_task_systems_an_ILP-based_approach?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

III. A SIMPLE ILP MODEL FOR TASK PARTITIONING

Marchetti-Spaccamela et al. have previously [19] derived

a polynomial-time algorithm for assigning sporadic tasks to

heterogeneous processors, and shown that this algorithm has

a speedup bound of (8+2
√
6) or ≈ 12.9. An intermediate step

in [19] is the derivation of a 0/1 ILP representation of the par-

titioning problem with nm variables and (n+m+m log dmax)
linear constraints, and a proof that this ILP representation has

a speedup factor of 6. In this section, we present two results:

1) We derive, in Theorem III.3 below, an improved ILP

with the same number of variables and constraints and

show (Corollary III.4) that is has a superior (i.e., smaller)

speedup factor of 4.
2) In Theorem III.5, we generalize the derivation of this

improved ILP in the following manner. For any constant
ρ > 1, we can derive an ILP with nm variables and

(n + m + m logρ dmax) linear constraints and speedup

bound 2ρ; by choosing ρ to be smaller than two, a

smaller speedup bound than 4 is thus obtained at the

cost of needing to solve an ILP with a larger number of

constraints.

A. A review of some results from [19]
First a preliminary definition. Let D denote the set of values{

0, 1, 2, 4, . . . , 2�log2 dmax�
}

We call D the deadline checkpoint set for task system τ .
The starting point of the reasoning in [19] is the following

lemma.

Lemma III.1 (from [19]). Let f : N → M denote an
assignment of the tasks in task system τ to the processors
of unrelated multiprocessor platform π such that, for each
j ∈M ∑

i:f(i)=j

ui,j ≤ β

and for each j ∈M and k, 1 ≤ k ≤ �log2 dmax	 ,(∑
i:(f(i)=j)∧(2k−1<di≤2k)

ci,j

)
≤ β · 2k.

Then for each j ∈M , dbff,j(t) ≤ 6βt for all t ≥ 0.

Let us try and understand what this lemma means. The

first set of inequalities requires that the cumulative utilization

assigned to each processor not exceed β; the second, that the

sum of the WCETs of all tasks assigned to a processor that

have relative deadlines between two successive powers of two

not exceed β times the larger power of two. (For example,

considering k ← 6, the second constraint mandates that the

sum of the WCETs of all tasks with relative deadline in the

range (32, 64] not exceed 64β.) The lemma asserts that if these

conditions are satisfied by an assignment, then this assignment

constitutes a valid partitioning upon processors of speed 6×β.
Now, suppose that τ is feasible upon π under partitioned

scheduling, i.e., there is an assignment f : N →M of τ upon

π such that all jobs of all tasks will always complete by their

deadlines if tasks are assigned according to this partitioning,

and each processor scheduled during run-time by EDF. For

this assignment f , it is evident that the utilization constraints

of Lemma III.1 are satisfied for β = 1. The second set of

constraints in Lemma III.1 will also be satisfied for β = 1, by
the following reasoning:

• Since the partitioning f is feasible, the sum of the dbf’s
of all the tasks assigned to the jth processor for interval

duration 2k is no more than 2k.
• Each task with relative deadline in (2k−1, 2k] must have

dbf(τi, 2
k) ≥ ci,j .

• Hence the sum of the ci,j’s for all tasks τi that have

relative deadline in (2k−1, 2k] and are assigned to the

jth processor must be ≤ 2k.

Hence if τ is feasible upon π, there exists an f : N →M for

which the conditions of Lemma III.1 are satisfied with β = 1;
therefore dbff,j(t) ≤ 6t for all t ≥ 0 for each j. Thus [19]

derives the following speedup result:

Corollary III.2. Let f : N → M denote an assignment of
tasks to processors satisfying the conditions of Lemma III.1.
Then f constitutes a feasible partitioning of τ upon π under
a speedup factor of 6β. In particular, if the conditions of
the lemma are satisfied with β ≤ 1/6, then assignment f
constitutes a feasible partitioning of τ upon the given platform
π.

In summary, the conditions of Lemma III.1 are necessary

when β = 1 and sufficient when β = 1/6, i.e., they yield

a speedup factor of 6 for partitioning constrained-deadline

sporadic tasks upon heterogenous multiprocessor platforms.

B. An ILP with speedup factor 4

We now prove an improved version of Lemma III.1 that

yields a superior speedup bound (of four, rather than six). The

conditions specified in our theorem below differs from those in

Lemma III.1 only in that the summation of ci,j’s in the second

inequality is over all tasks with relative deadline ≤ 2k (rather

than only those with relative deadline > 2k−1 and ≤ 2k).

Theorem III.3. Let f : N → M denote an assignment
of the tasks in task system τ to the processors of unrelated
multiprocessor platform π such that, for each j ∈M∑

i:f(i)=j

ui,j ≤ β (1)

for each k, 1 ≤ k ≤ �log2 dmax	 ,(∑
i:(f(i)=j)∧(di≤2k)

ci,j

)
≤ β · 2k. (2)

Then for each j, 1 ≤ j ≤ m, dbff,j(t) ≤ 4βt for all t ≥ 0.

Proof. Consider any t ≥ 0 and let s := 2k denote the smallest

integer power of 2 that is not smaller than t (i.e. s = 2k ≥
t > s/2).

217217

https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

Consider an assignment f : N → M of the tasks to the

processors. For any j ∈M , we have

dbff,j(t) ≤ dbff,j(s)

=
∑

i:f(i)=j∧di≤s

⌊
s+ pi − di

pi

⌋
cij

≤
∑

i:f(i)=j∧di≤s

(
s
cij
pi

+ cij

)

≤ s
∑

i:f(i)=j

cij
pj

+
∑

i:f(i)=j∧di≤s

cij

= s
∑

i:f(i)=j

uij + β · 2k

≤ βs+ βs

≤ 4βt

and the theorem is proved.

This implies that any f satisfying Inequalities 1 and 2 of

Theorem III.3 constitutes a feasible partitioning of the tasks

in τ upon the set of heterogeneous processors π, when the

processors receive a speedup factor of 4β:

Corollary III.4. Let f : N → M denote an assignment of
tasks to processors satisfying Inequalities 1 and 2 of Theo-
rem III.3. Then f constitutes a feasible partitioning of τ upon
π under a speedup factor of 4β. In particular, if Inequalities 1
and 2 are satisfied with β ≤ 1/4, then assignment f constitutes
a feasible partitioning of τ upon the given platform π.

We now apply the result of Theorem III.3 above to construct

a 0/1 integer linear program (ILP) for specifying a feasible

partitioning of sporadic task system τ upon the platform π.
That is, we will construct a 0/1 ILP, a solution to which will

yield a partitioning f : N → M that satisfies Inequalities 1

and 2. This ILP is constructed as follows:

• For each i ∈ N, j ∈ M , we have a 0/1 integer variable

(i.e., an integer variable that takes on either the value

zero or the value one) xi,j , denoting whether τi is to be

assigned to processor πj .

• We specify that each task gets assigned to exactly one

processor; this is done by the following n constraints:

∀i ∈ N
(∑
j∈M

xi,j

)
= 1 (3)

• We next specify that Inequality 1 of Theorem III.3

should be satisfied; this is achieved by the following m
constraints:

∀j ∈M
(∑
i∈N

xi,jui,j

)
≤ β (4)

• Finally, we specify Inequality 2 of Theorem III.3 by the

following (log dmax ×m) constraints:

∀k ∈ D, ∀j ∈M
(∑
(i∈N)∧(di≤2k)

ci,jxi,j

)
≤ β · 2k (5)

By Theorem III.3, any assignment of integer values to the

{xi,j} variables satisfying the Constraints 3–5 above bears

witness to the schedulability of τ , with a speedup of 4β,
upon the platform π. Moreover, for a τ that is feasible upon

π the model always admits a solution with β = 1, since

all inequalities are clearly valid; thus, this ILP guarantees a

speedup factor of at most 4. When the ILP model is feasible

with β ≤ 1/4, Theorem III.3 guarantees schedulability on the

original platform; hence, a reasonable objective function for

the ILP with Constraints 3–5 would be to minimize β.

C. A generalization

Above, we derived an ILP model for the problem of

partitioned scheduling of constrained-deadline sporadic task

systems upon unrelated multiprocessors, such that any solu-

tion to the ILP immediately yields a partitioning algorithm

at a speedup bound of 4. We also saw that this ILP has

(n+m+m×�log2 dmax) constraints; we now briefly describe

how to reduce the speedup bound by increasing the number

of constraints.

Recall that we had defined the deadline checkpoint set D
as powers of two: D = {0, 20, 2, 22, . . . , 2�log2 dmax�}. For any
given constant ρ > 1, we could instead have chosen to define

it as

Dρ = {0, 1, ρ, ρ2, ρ3, . . . , ρ�logρ dmax	},

The following generalization of Theorem III.3 is easily proved

via a proof analogous to the proof of Theorem III.3:

Theorem III.5. Let f : N → M denote an assignment
of the tasks in task system τ to the processors of unrelated
multiprocessor platform π such that, for each j ∈M∑

i:f(i)=j

ui,j ≤ β,

and for each j ∈M and k, 1 ≤ k ≤ ⌈
logρ dmax

⌉
,(∑

i∈N :(f(i)=j)∧(di≤ρk)

ci,j

)
≤ β · ρk

Then for each j ∈M , dbff,j(t) ≤ 2ρβt for all t ≥ 0.

It follows, from arguments virtually identical to those of

Corollary III.4, that the speedup bound for the ILP constructed

based on Theorem III.5 above is 2ρ; hence by choosing ρ to

be smaller than 2 a speedup bound smaller than 4 is obtained.

The tradeoff is that the number of constraints increases to

(n + m + m × ⌈
logρ dmax

⌉
); this is > log2 dmax for ρ < 2,

becoming larger as ρ→ 1.

Theorem III.5 thus suggests one approach for obtaining

speedup bounds arbitrarily close to 2, by simply selecting

a denser deadline checkpoint set. In Section IV below, we

explore another approach, that allows for speedup bounds

arbitrarily close to one (once again at the cost of having

additional constraints).

218218

IV. A STRENGTHENED ILP FORMULATION

We now explore a different idea that also trades off an

increase in the number of constraints in the ILP for a superior

speedup bound. Specifically, for any positive integer constant k
we will derive an ILP model with (n+m+mnk) constraints,
finding a feasible solution to which corresponds a partitioning

at a speedup bound of
(
1 + 1

k

)
.

Approximation schemes have been defined for computing

the value of dbf to any desired degree of accuracy (see,

e.g. [3]). Equation 6 below gives such an approximation

scheme; for any fixed positive integer value of k, dbf(k)(τi, t)
defines an approximation of dbf(τi, t) that is exact for the first

k “steps" of dbf(τi, t), and an upper bound for larger values

of t:

dbf(k)(τi, t) =

{
ci,j ×

⌊
t+pi−di

pi

⌋
if t ≤ (k − 1)pi + di

ci + (t− di)ui otherwise
(6)

The following lemma (see, e.g., [4]) provides a quantitative

bound on the degree by which dbf(k) may deviate from dbf:

Lemma IV.1. For all t ≥ 0

dbf(τi, t) ≤ dbf(k)(τi, t) <
(
1 +

1

k

)
dbf(τi, t).

That is, dbf(k)(τi, t) provides an upper bound on

dbf(k)(τi, t) that is no more than a fraction 1/k greater than

the actual value of dbf(k)(τi, t).

As previously stated, it is known that a collection of

sporadic tasks can be scheduled to always meet all deadlines

upon a preemptive uniprocessor by EDF if and only if for

all t ≥ 0, the sum of the dbf’s of all the tasks in the

collection over an interval of duration t does not exceed t.
For schedulability, it is clearly necessary that the utilizations

of all the tasks in the collection sum to no more than 1. Since
dbf(k)is an upper bound on dbf , it follows that a sufficient
uniprocessor EDF-schedulability test for a collection of tasks

is that the sum of the dbf(k) functions of all the tasks in the

collection over an interval of duration t not exceed t. Albers

and Slomka showed [3, Lemma 4] that it suffices to validate

this fact only for those values of t at which one or more of

the dbf(k) functions has a step discontinuity. More precisely,

let

Si,k = {t : t = di + hpi, h = 0, 1, . . . , k}
and Sk =

⋃
all i

Si,k

It suffices to test that the sum of the dbf(k) functions of all

the tasks in the collection over an interval of duration t not

exceed t, only for values of t ∈ Sk.

We can use this result to define a revised ILP formulation for

modeling the partitioned scheduling of sporadic task systems

upon heterogeneous multiprocessors. The first part of this

revised ILP is identical to the one constructed in Section III:

• As in Section III, we will have a zero-one integer variable

xi,j , denoting whether τi is to be assigned to processor

πj , for each i ∈ N, j ∈M .

• Again as in Section III, the following n constraints spec-

ify that each task gets assigned to exactly one processor:

∀i ∈ N
(∑
j∈M

xi,j

)
= 1 (7)

• The following m constraints bound the total utilization

on each processor:

∀j ∈M
(∑
i∈N

xi,jui,j

)
≤ β (8)

The final set of constraints replace the Inequalities 5 of the

ILP in Section III with constraints based upon the dbf(k)

approximation, that express the requirement that the sum of

the dbf(k) functions of all tasks assigned each processor over

an interval duration not exceed the duration. As we had stated

above, this condition only needs to be validated for interval

durations in Sk; this motivates the following set of constraints:

∀t ∈ Sk, ∀j ∈M
(∑
i∈N

(
xi,j × dbf

(k)
j (τi, t)

)) ≤ β · t (9)

(where for each j ∈ M , dbf
(k)
j (τi, t) denotes the function

dbf(k)(τi, t) when the WCET of τi is set equal to ci,j .) Since
each τi contributes at most k distinct points to Sk, it follows

that |Sk| ≤ nk; hence there are at most mnk such constraints.

Note that the Inequalities 9 are constructed for specified

values of t; i.e., for each t ∈ Sk. For each such specified t,
it is straightforward to observe that the inequality is indeed a

linear one, since inspection of Expression 6 reveals that for a

given value of t for each τi the expression dbf
(k)
j (τi, t) is a

constant.

Theorem IV.2. A feasible solution to the ILP on the 0/1
variables {xi,j}, i ∈ N, j ∈M , with Constraints 7–9 (defined
above) yields a feasible partitioning of the tasks in τ to a
platform in which each processor in π is speeded up by
a multiplicative factor of (1 + 1/k)β. In particular, if the
inequalities are satisfied with β ≤ (1+1/k)−1, then a feasible
solution to the ILP yields a feasible partitioning on the given
platform.

Proof. It is evident from the result of Albers and Slomka that

satisfying Constraints 7–9 is sufficient for feasibility upon a

speed-β(1 + 1/k) platform. Additionally we conclude from

the lower bound in Lemma IV.1 that failure to satisfy these

conditions implies infeasibility upon a speed-β platform.

The quality of the solution that is obtained by solving the

ILP specified by Constraints 7–9 depends on the value of k:
the larger this value, the better is the quality (i.e., the lower the

speedup factor) of the obtained solution. However we observe

that the number of constraints increases with k. It follows that

large values of k lead to an ILP that is not solvable with state

of the art packages. We explore this tradeoff via schedulability

experiments In Section VI.

219219

https://www.researchgate.net/publication/4080370_An_event_stream_driven_approximation_for_the_analysis_of_real-time_systems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/235800598_Partitioned_scheduling_of_sporadic_task_systems_an_ILP-based_approach?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

V. AN ILP THAT IS MORE AMENABLE TO APPROXIMATING

IN POLYNOMIAL TIME

In the previous sections, we discussed assignment algo-

rithms based on solving reasonably-sized ILPs. However, in

some scenarios the solution of an ILP may be a computational

bottleneck – solving an ILP is, after all, a prototypical NP-hard

problem. Therefore, the design of efficient (polynomial time)

assignment and schedulability algorithms retains interest.

A standard technique that has been developed within the op-

timization community for efficiently obtaining an approximate

solution to an ILP is to first consider the linear program (LP)

obtained by “relaxing” (i.e., ignoring) the integrality require-

ment, solve this LP (this can be done in polynomial time),

and then “rounding” the solution so obtained to obtained an

integral solution as desired. The main challenge in designing

the rounding procedure is to ensure that such rounding does

not degrade the feasibility or the quality of the solution (i.e.,

the value of the objective function that was optimized) too

much.

Recently, a new approach to rounding, known as iterative
rounding [17], has been shown to provide improved rounding

guarantees. Analogously to prior rounding approaches, the first

step requires that an LP-relaxation be solved and a non-integer

solution (say, X) be obtained. However, instead of rounding

all non integral values of X at the same time, only one variable

is rounded; assume, for example, that the value of variable x1

is set to x̂1. Then the method iterates and solves a new LP-

relaxation that is obtained from the original LP by fixing the

value of x1 to x̂1. In this way, a new solution X ′ is obtained;

as in the previous case, the method now rounds one variable of

X ′; the method is iterated until all variables satisfy the given

integrality constraints.

In this section, we seek to construct an ILP formulation of

the problem of partitioning sporadic tasks upon heterogeneous

multiprocessors that is more amenable to iterative rounding

than the ILP formulations we have seen above. It will turn out

(Theorem V.1 below) that this ILP has the same number of

variables and constraints, but a poorer (larger) speedup factor

than the one described in Section III-C (Theorem III.5). Hence

from the perspective of just developing an ILP, this is not a

particularly useful result. However, we will see that this ILP

can in fact be rounded iteratively in a manner that we were

unable to pull off with the earlier ILP formulations, resulting

in a polynomial-time algorithm for partitioning sporadic tasks

upon heterogeneous multiprocessors that has speedup bound

of ≈ 7.83, thereby improving the ≈ 12.9 speedup bound of

Marchetti-Spaccamela et al. [19].

As before, we use variables xij for each pair (i, j) ∈ N×M ,

modeling the assignment of τi to πj . Apart from the usual

assignment constraints, the first constraints we consider are the

utilization bounds on the tasks assigned to the same processor.

That is, we require that∑
i∈N

uijxij ≤ 1 ∀j ∈M. (10)

Now, let ρ denote any constant, ρ > 1. We de-

fine the function r(x) := ρ�logρ x	, and the set Dρ :=
{ρ0, ρ1, . . . , r(dmax)}. We want to express the requirement

that for all tasks assigned to the same processor with deadline

at most ρk, the sum of their WCETs is at most ρk. Note that

this is the set of tasks with r(di) ≤ ρk. For technical reasons

that will become apparent later (in Lemma V.2), we adopt the

slightly weaker constraint∑
i∈N : r(di)≤d

cij

(
1− di

pi

)
xij ≤ d ∀d ∈ Dρ, ∀j ∈M. (11)

We call these constraints (11) the relaxed dbf constraints. It is
clear that these constraints have to be fulfilled by any feasible

task assignment. (In particular, if di ≤ ρk and xij = 1, then
dbff,j(ρ

k) ≥ cij > cij(1− di/pi), where f is the assignment

represented by x). We therefore arrive at the following ILP,

denoted poly-ILP. ∑
j∈M

xij = 1 ∀i ∈ N (12a)

∑
i∈N

uijxij ≤ 1 ∀j ∈M (12b)

∑
i∈N : r(di)≤d

cij

(
1− di

pi

)
xij ≤ d ∀d ∈ Dρ, ∀j ∈M

(12c)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M

s.t. cij ≤ di. (12d)

If poly-ILP is infeasible, then there can be no feasible task

assignment. Now assume that it is feasible and consider its re-

laxation, which is obtained by replacing each constraint (12d)

by

xij ≥ 0 ∀i ∈ N, ∀j ∈M s.t. cij ≤ di. (13)

Since it is an LP and not an ILP, the relaxation can be solved in

polynomial time. Let x∗ denote its solution. For each j ∈M
and deadline d ∈ Dρ, we compute the value

bj,d :=
∑

i∈N : r(di)=d

cij(1− di/pi)x
∗
ij .

Note that, by (12c),∑
d′≤d

bj,d′ ≤ d ∀d ∈ Dρ, ∀j ∈M. (14)

Based on these computed values, we define a variation of poly-

ILP, denoted by sparse-ILP in the sequel. We obtain the latter

by replacing the constraints (12c) with the following set of

constraints:∑
i∈N : r(di)=d

cij

(
1− di

pi

)
xij ≤ bj,d ∀d ∈ Dρ, ∀j ∈M.

By dividing both sides of the inequality by d, these constraints

can also be written as∑
i∈N : r(di)=d

c̄ijd

(
1− di

pi

)
xij ≤ b̄j,d ∀d ∈ Dρ, ∀j ∈M.

(15)

220220

https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/268018994_Iterative_methods_in_combinatorial_optimization?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

where b̄j,d = bj,d/d ≤ 1 (since x∗ is feasible for the relaxation

of poly-ILP) and c̄ijd = cij/d ≤ 1 (since if r(di) = d then

cij ≤ di ≤ d). Let A be the set of vectors x satisfying (12a).

We can now express sparse-ILP in matrix notation as

{x ∈ A ∩ {0, 1}N×M : Ax ≤ b, x ≥ 0},
where A and b are, respectively, the matrix of coefficients

and the vector of right hand sides of the constraints (12b) and

(15). Note that all entries of A and b take values between 0
and 1.

By construction, if x∗ is a feasible solution for the LP

relaxation of poly-ILP it is also feasible for the LP relaxation

of sparse-ILP, and if the LP relaxation of sparse-ILP is

infeasible, then no feasible task assignment exists. Our goal

will be to round x∗ to an integral vector which approximately
satisfies the constraints of sparse-ILP.

A reason for preferring sparse-ILP to poly-ILP is that the

former is an ILP formulation in which the constraint matrix

is sparse: each variable appears in only a small number

of constraints. This sparsity gives the potential to derive

efficient rounding schemes which result in integral solutions,

violating the relaxed dbf-constraints only by constant factors.

We present such a rounding scheme below; to this end, the

following theorem shows that—even when violated up to

constant factors–the relaxed dbf constraints (15), together with

the utilization constraints (12b), are approximately sufficient.

Theorem V.1. Let β ≥ 1 and let f : N → M be an
assignment encoded by a vector x̂ ∈ A ∩ {0, 1}N×M such
that, for each j ∈M and d ∈ Dρ,∑

i∈N
uij x̂ij ≤ β (16)

and ∑
i∈N : r(di)=d

cij

(
1− di

pi

)
x̂ij ≤ bj,d + (β − 1) · d. (17)

Then dbff,j(s) ≤ (β+ ρ+(β− 1)ρ2/(ρ− 1))s for all s ≥ 0.
In particular, if β ≤ 2, f is a feasible assignment under a
speedup factor of (2 + ρ+ ρ2/(ρ− 1)).

Proof. For any s ≥ 0 and j ∈ M , we bound dbff,j(s) as

follows:

dbff,j(s) =
∑

i∈N : di≤s

⌊
s+ pi − di

pi

⌋
cij x̂ij

≤
∑

i∈N : di≤s

(
s
cij
pi

+ cij

(
1− di

pi

))
x̂ij

≤
∑

i∈N : r(di)≤r(s)

(
s
cij
pj

+ cij

(
1− di

pi

))
x̂ij

≤ s
∑
i∈N

cij
pi

x̂ij +
∑

i∈N : r(di)≤r(s)

cij

(
1− di

pi

)
x̂ij

= s
∑
i∈N

uij x̂ij +

logρ(r(s))∑
k=0

∑
i∈N : r(di)=ρk

cij(1− di
pi
) x̂ij

(16)

≤ βs+

logρ(r(s))∑
k=0

∑
i∈N : r(di)=ρk

cij(1− di
pi
) x̂ij

(17)

≤ βs+

logρ(r(s))∑
k=0

(
bj,ρk + (β − 1)ρk

)
(14)

≤ βs+ ρlogρ(r(s)) +

logρ(r(s))∑
k=0

(β − 1)ρk

= βs+ r(s) + (β − 1)

logρ(r(s))∑
k=0

ρk

= βs+ r(s) + (β − 1) · ρ
logρ(r(s))+1 − 1

ρ− 1

= βs+ r(s) + (β − 1)
ρ · r(s)− 1

ρ− 1

≤ (β + ρ+ (β − 1)
ρ2

ρ− 1
)s.

The last inequality follows from r(s) ≤ ρ · s.

To construct x̂, we adopt an iterative rounding procedure

that is similar to the procedure presented in [16], [19]. The

idea of the iterative rounding procedure is the following. In

each iteration k, we first compute an extreme point solution

xk of a linear program LP k, where LP 0 is the relaxation of

sparse-ILP, and each LP k is obtained by fixing the value for

some variables or removing some constraints of LP k−1.

Given a feasible fractional solution xk, to define LP k+1

we first fix all variables which are integral in xk, i.e., those

variables are not allowed to be changed anymore in the

remainder of the procedure. Let s be the number of variables

in LP k and let ra, rb and rb be the number of constraints of

types (12a), (12b) and (15), respectively. Let r = ra+rb+rc.
To obtain LP k+1 we either delete one or more variables, in

case s > r, or delete a constraint while ensuring that in the

final solution that constraint will not be violated too much.

Along the way we ensure that the constraints of type (12a)

are always satisfied exactly, so that xk ∈ A at all times.

Note that if there is some variable xij that is fixed at value

1 and removed from the program, then for all j′ ∈ M \ {j},
xij′ will be set to 0 and also be removed from the program.

The constraint of type (12a) corresponding to this i is then

superfluous and will also be removed.

To derive the bounds (16)–(17), we need to study the

coefficient matrix A in more detail. Let γ be the maximum,

over all xij , of the sum of the values of the coefficients of

variable xij in constraints (12b) and (15). We first derive a

bound on γ.

Lemma V.2. For any task set τ , γ ≤ 1.

Proof. Observe that γ is just the maximum value of uij +
c̄ijd(1− di/pi) across all variables xij in the program. Recall

that for all such pairs (i, j), cij ≤ di, i.e., c̄ijd ≤ 1, otherwise

the variable xij is forced to 0 and removed from the LP. We

221221

https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

can now bound

uij + c̄ijd

(
1− di

pi

)
≤ cij

pi
+ 1− di

pi
≤ cij

pi
+ 1− cij

pi
= 1.

The following technical lemma is instrumental to our round-

ing procedure. It is a specialization to our setting of a more

general rounding result for assignment LPs, from another

paper currently under review [8].

Lemma V.3. Let LP k be the linear program that is solved
in iteration k of the rounding procedure, with s variables and
r constraints. Let xk be an extreme point solution to this LP.
Then either,
(i) xk has at least one integer component; or
(ii) there is j ∈ M and a corresponding constraint of type
(12b) such that

∑
i∈N uijzij −

∑
i∈N uijx

k
ij ≤ γ for any

integer solution z; or
(iii) there are j ∈M , d ∈ Dρ and a corresponding constraint
of type (15) such that∑

i∈N : r(di)=d

c̄ijd

(
1− di

pi

)
(zij − xk

ij) ≤ γ

for any integer solution z.

Proof. Let A be the coefficient matrix of LP k. If s > r, the
null space of A is nontrivial, so let x0 be a nonzero vector in

the null space. Since xk is an extreme-point solution to LP k,

it cannot be expressed as the convex combination of two (or

more) solutions to LP k. If xk does not have any integral entry,

then we can find a value δ > 0 such that xk+δx0 and xk−δx0

are both solutions to LP k (since A(x± δx0) = Ax) and, in

particular, xk is a convex combination of these two solutions.

Therefore xk must have at least one integral entry.

If s ≤ r, we show that there always exists a constraint of

type (12b) or type (15) such that maxz∈S{(Az)l− (Ax)l} ≤
γ, where γ is the maximum sum of coefficients in a column of

constraints (12b) and (15) and where S is the integer solution

space for all remaining variables, i.e., S = {0, 1}s.
We show the statement by contradiction. Assume that the

statement is not true, that is, for each constraint l of type (12b)

or (15) it holds that there exists a vector z ∈ S such that

(Az)l − (Ax)l > γ. (18)

Note that all variables still present in the linear program

correspond to a processor j ∈M and a task i ∈ N that is not

yet assigned fully to one processor, but fractionally to multiple

processors. Hence, the constraint of type (12a) corresponding

to each τi is still present in the linear program. It follows that∑
j∈M

∑
i∈N : xij∈(0,1)

xij = ra, (19)

where ra is the number of constraints of type (12b) remaining

in LP k. Define L as the set of constraints of types (12b) and

(15) present in the current linear program, and let rb and rc
be their number, respectively (so ra + rb + rc = r). For any

q = (i, j), let Lq denote the set of these constraints containing

variable xq; by definition of γ, we have

max
q

∑
l∈Lq

alq ≤ γ. (20)

Then,

γ(r − ra) = γ(rb + rc)
(18)
<

∑
l∈L

max
z∈S

((Az)l − (Ax)l)

as all alq≥0
=

∑
l∈L

((A1)l − (Ax)l)

=
∑
l∈L

∑
q

alq(1− xq)

=
∑
q

∑
l∈Lq

alq(1− xq)

≤
∑
q

γ(1− xq)

= γs−
∑
q

γxq

= γ(s− ra). (21)

The second inequality follows from (20).

The chain of inequalities implies that γ(r − ra) < γ(s −
ra) ⇒ r < s which is a contradiction to being in the case

that s ≤ r. Hence we conclude that if s ≤ r, there must be a

constraint l of type (12b) or (15) for which maxz∈S{(Az)l−
(Ax)l} ≤ γ.

Lemma V.3 is used to guide the rounding process. If Case

(i) applies, the variables that have an integer value are fixed at

that value and removed from the LP. If a variable xij is fixed

at value 1, then for all j′ ∈M\{j}, the variables xij′ are fixed

at value 0 and the constraint of type (12a) corresponding to

i is removed. If we are in Case (ii) or (iii), the constraint for

which the claim holds can be found in polynomial time by

checking, for each constraint l ∈ L of type (12b) or (15),

whether
∑

q(1 − xq) ≤ γ. This is sufficient since all alq ≥
0 and the maximum value any variable xq can take is 1. If

such a constraint is of type (12b) (Case (ii)) or (15) (Case

(iii)), the final task assignment will satisfy (16) or (17) for

that constraint, respectively, even if the constraint is dropped;
thus, we drop the constraint, obtaining the next (smaller) LP.

After either all constraints have been removed or the values

of all variables have been fixed at an integer value, we obtain

an integral vector x̂ which satisfies
∑

i∈N uij x̂ij ≤ 1 + γ for

each j ∈ M and
∑

i∈N : r(di)=d c̄ijd

(
1− di

pi

)
xij ≤ b̄j,d + γ

for all j ∈ M and all deadlines d ∈ Dρ. Hence, the vector

x̂ satisfies constraints (16), (17) with β := 1 + γ. We are

now in the position to invoke Theorem V.1 to obtain our final

guarantee.

Theorem V.4. There is a polynomial-time partitioning algo-
rithm with a speedup bound of (5 + 2

√
2) ≈ 7.83 for the

222222

problem of assigning constrained-deadline tasks to heteroge-
neous processors.

Proof. All steps required to construct x̂ can be carried out in

polynomial time. The assignment induced by x̂ satisfies (16)–

(17) with β = 1+γ ≤ 2 (Lemma V.2). Thus, by Theorem V.1

with ρ = 1 + 1/
√
2, the assignment induced by x̂ is feasible

with speedup

2 + ρ+
ρ2

ρ− 1
= 5 + 2

√
2 ≈ 7.83.

VI. SCHEDULABILITY EXPERIMENTS

In the sections above, we saw how the problem of par-

titioned scheduling of sporadic task systems upon unrelated

multiprocessors could be modeled by ILPs. Our motivation

for doing so is that the optimization community has devoted

immense effort to coming up with extremely efficient (al-

though still exponential-time, since solving ILPs is NP-hard)

algorithms for solving ILPs, and highly-optimized libraries

implementing these efficient algorithms are widely available.

This is particularly true for ILPs like the ones we have con-

structed above, in which each variable is further constrained to

take in only the values zero or one. In this section, we validate

the performance of our ILP-based schedulability tests against

synthetic workloads in terms of the percentage of schedulable

task sets. Our results strongly suggest that the ILP model

discussed in Section IV is superior in practice.

A. Generation of the task sets and solutions

We developed a parametric framework with several param-

eters (m, κ, p, Ū , α – they are detailed below) to randomly

generate our workloads; this framework is general enough to

support our entire range of experiments.

We consider m-processor platforms and n = κm tasks, with

κ ≥ 1 an integer-valued parameter. We randomly generate an

affinity mask Ri,j for each i ∈ N and j ∈M : Ri,j ← 1 with

probability p and 0 with probability (1 − p). These affinity

masks help define the Ci,j values: Ci,j has a value < ∞ if

and only if Ri,j = 1. If the generated mask does not allow a

particular task to be processed on any processor, we then allow

that task to be processed upon a randomly chosen processor.

We then generate utilization values for every allowed pair

(i, j) for which Ri,j = 1. Tasks are grouped into m groups of

size κ each: tasks τ1+(k−1)κ to τkκ form the kth group. For

each group we use the UUNISORT algorithm [7] to generate

randomly distributed utilizations with total value Ū for the

allowed task-processor pairs in the group. Note that since

there are m groups, each of total utilization Ū , the value

Ū represents the average load that a processor can expect

if tasks are randomly assigned. Note that Ū ≤ 1 is not a

necessary condition for schedulability (indeed some of our

ILP formulations are able to schedule task sets with Ū > 1).
We generate the periods by setting pi = 2Δi , with each

Δi uniformly distributed in the range 3...10. The worst-

case execution times are computed directly from the periods

and utilizations. Finally, the relative deadline of each task is

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Fr
ac

ti
on

sc
he

du
la

bl
e

Ū

Eqs. (3)-(5)
Eqs. (7)-(9)

(a)

Figure 1. Experimental results I. The diagram show the percentage of task
sets found to be schedulable by Corollary III.4 (Eqs. (3)-(5)) and by Theorem
IV.2 (Eqs. (7)-(9) with k = 3). (a) Variation of Ū (m = 10, κ = 10, p = 0.5,
α = 0.2).

sampled uniformly in the range [(1−α) ·(maxj cij)+αpi, pi],
where α ∈ [0, 1].

In the experiments we consider the two ILP models dis-

cussed in Section III-B (Eqs. (3)-(5)) and Section IV (Eqs. (7)-

(9)), the latter with k = 3. All optimization models have been

solved by using a branch-and-cut approach implemented in

the mathematical programming solver Gurobi 6.50 [1] on a PC

with Intel i7-4770 CPU at 3.4 GHz and 16Gb RAM. Instances

of the ILP model of Section III-B are solved within 3 seconds,

and within less than 1 second on average; instances of the ILP

model of Section IV are solved within 109 seconds, and within

less than 15 seconds on average.

B. Discussion of the results

a) Variation of Ū (Figure 1): In the first type of experi-

ment, we use the average load Ū as the independent variable.

We vary Ū from 0.2 to 1.5. We fix m = 10, κ = 10,
p = 0.5, α = 0.2. Again, for each experiment, we generated

10 task sets for each value on the x-axis. When the percentage

of schedulable task sets was strictly between 0 and 1, we

generated 20 additional task sets to achieve a higher precision.

Indeed, as could be expected, schedulability decreases when

the load factor Ū increases. It is interesting to note that for

the strengthened ILP model of Theorem IV.2, more than 90%

of the task sets are schedulable as long as Ū ≤ 1.
b) Variation of m (Figure 2(a)): In the second type of

experiment, we look at the impact of the number of processors

on schedulability, so we vary m from 2 to 10. We fix κ = m,

so n = m2. In this set of experiments, we fix Ū = 1, p = 1,
α = 0.2. For each experiment, we generated 10 task sets for

each value on the x-axis. Figure 1 shows the dependency on m
of the percentage of task sets are guaranteed to be schedulable

by Corollary III.4 (for the first ILP) and Theorem IV.2 (for

the second ILP), the latter using a formulation in which k =
3. In both cases, schedulability increases with the number of

processors even though Ū is fixed. This is due to the fact

that, for a fixed total utilization value of each group, a higher

223223

https://www.researchgate.net/publication/220413997_Measuring_the_Performance_of_Schedulability_Tests?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

Fr
ac

ti
on

sc
he

du
la

bl
e

m

Eqs. (3)-(5)
Eqs. (7)-(9)

(a)

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
ac

ti
on

sc
he

du
la

bl
e

p

Eqs. (3)-(5)
Eqs. (7)-(9)

(b)

Figure 2. Experimental results II. The diagrams show the percentage of task sets found to be schedulable by Corollary III.4 (Eqs. (3)-(5)) and by Theorem
IV.2 (Eqs. (7)-(9) with k = 3). (a) Variation of m (κ = m, Ū = 1, p = 1, α = 0.2). (b) Variation of p (m = 10, κ = 10, Ū = 1, α = 0.2).

number of tasks in a group implies lower utilization values for

the individual tasks, and therefore a more efficient partitioning.
c) Variation of p (Figure 2(b)): In the third type of

experiment, we control the sparsity of the processor affinity

matrix R. We vary p from 0.2 to 0.9. We fix m = 10,
κ = 10, Ū = 1, α = 0.2. For each experiment, we generated

10 task sets for each value on the x-axis. We find out that

the sparsity has a high impact on schedulability: there are

clear schedulability thresholds around p = 0.7 (for the first

ILP) and p = 0.45 (for the second ILP). This is not entirely

unexpected, as when the affinity matrix is sparser, it may

happen that several tasks of large combined utilization can

only be assigned to a small set of processors.

VII. SUMMARY AND CONCLUSIONS

In this work, we proposed a partitioning approach for

constrained-deadline tasks on heterogenous (unrelated) pro-

cessors. The approach is based on integer linear programming

formulations and allows the derivation of guaranteed speedup

bounds and consequently, sufficient schedulability tests.

Experiments among randomly generated task workloads

clearly show that one of the proposed approaches is viable

in terms of computation time and not as pessimistic in terms

of schedulability as could be expected, especially when the

task-processor affinity relation is dense.

ACKNOWLEDGMENTS

Work supported by NSF grants CNS 1115284, CNS

1218693, CNS 1409175, and CPS 1446631, AFOSR grant

FA9550-14-1-0161, ARO grant W911NF-14-1-0499, and a

grant from General Motors Corp. This work has also

been partially supported by the research project “Designing

Human-Agent Collectives for Sustainable Future Societies”

(C26A15TXCF) of Sapienza University of Rome.

REFERENCES

[1] Gurobi Optimizer. http://www.gurobi.com.
[2] D. Achlioptas, A. Coja-Oghlan, and F. Ricci-Tersenghi. On the solution-

space geometry of random constraint satisfaction problems. Random
Structures & Algorithms, 38(3):251–268, 2011.

[3] K. Albers and F. Slomka. An event stream driven approximation for
the analysis of real-time systems. In Proc. 16th Euromicro Conf. on
Real-Time Systems, pages 187–195, Los Alamitos, CA, 2004. IEEE.

[4] S. Baruah and E. Bini. Partitioned scheduling of sporadic task systems:
an ILP-based approach. In Proceedings of the 2008 Conference on
Design and Architectures for Signal and Image Processing, 2008.

[5] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proceedings of the 11th Real-
Time Systems Symposium, pages 182–190, Orlando, Florida, 1990. IEEE
Computer Society Press.

[6] S. K. Baruah and N. Fisher. The partitioned multiprocessor scheduling
of deadline-constrained sporadic task systems. IEEE Transactions on
Computers, 55(7):918–923, 2006.

[7] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[8] V. Bonifaci, G. D’Angelo, and A. Marchetti-Spaccamela. Hierarchical
and semi-partitioned machine scheduling. TR-15-03, IASI-CNR, 2015.

[9] J. Chen and S. Chakraborty. Resource augmentation for uniprocessor
and multiprocessor partitioned scheduling of sporadic real-time tasks.
Real-Time Systems, 49(4):475–516, 2013.

[10] H. S. Chwa, J. Seo, J. Lee, and I. Shin. Optimal real-time scheduling
on two-type heterogeneous multicore platforms. In Real-Time Systems
Symposium (RTSS), 2015 IEEE, Dec 2015.

[11] M. Dertouzos. Control robotics : the procedural control of physical
processors. In Proceedings of the IFIP Congress, pages 807–813, 1974.

[12] A. Frank and É. Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Combinatorica, 7(1):49–
65, 1987.

[13] E. C. Freuder. A sufficient condition for backtrack-bounded search. J.
ACM, 32(4):755–761, 1985.

[14] S. Kamath. Unrelated parallel machine scheduling—perspectives and
progress. OPSEARCH, 48(4):318–334, 2011.

[15] R. Karp. Reducibility among combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, New York, 1972.

[16] R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson, U. V.
Vazirani, and V. V. Vazirani. Global wire routing in two-dimensional
arrays. Algorithmica, 2:113–129, 1987.

[17] L. C. Lau, R. Ravi, and M. Singh. Iterative Methods in Combinatorial
Optimization. Cambridge University Press, 2011.

[18] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[19] A. Marchetti-Spaccamela, C. Rutten, S. van der Ster, and A. Wiese.
Assigning sporadic tasks to unrelated machines. Mathematical Pro-
gramming, pages 1–28, 2014.

[20] G. Raravi. Real-Time Scheduling on Heterogeneous Multiprocessors.
PhD thesis, Technical Institute of Porto (Portugal)l, 2014.

[21] G. Raravi, B. Andersson, and K. Bletsas. Assigning real-time tasks on
heterogeneous multiprocessors with two unrelated types of processors.
Real-Time Systems, 49(1):29–72, 2013.

224224

https://www.researchgate.net/publication/304294976_Optimal_Real-Time_Scheduling_on_Two-Type_Heterogeneous_Multicore_Platforms?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/304294976_Optimal_Real-Time_Scheduling_on_Two-Type_Heterogeneous_Multicore_Platforms?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/304294976_Optimal_Real-Time_Scheduling_on_Two-Type_Heterogeneous_Multicore_Platforms?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220432221_A_Sufficient_Condition_for_Backtrack-Bounded_Search?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220432221_A_Sufficient_Condition_for_Backtrack-Bounded_Search?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220328528_The_Partitioned_Multiprocessor_Scheduling_of_Deadline-Constrained_Sporadic_Task_Systems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220328528_The_Partitioned_Multiprocessor_Scheduling_of_Deadline-Constrained_Sporadic_Task_Systems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220328528_The_Partitioned_Multiprocessor_Scheduling_of_Deadline-Constrained_Sporadic_Task_Systems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220345750_On_the_Solution-Space_Geometry_of_Random_Constraint_Satisfaction_Problems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220345750_On_the_Solution-Space_Geometry_of_Random_Constraint_Satisfaction_Problems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220345750_On_the_Solution-Space_Geometry_of_Random_Constraint_Satisfaction_Problems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/4080370_An_event_stream_driven_approximation_for_the_analysis_of_real-time_systems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/4080370_An_event_stream_driven_approximation_for_the_analysis_of_real-time_systems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/4080370_An_event_stream_driven_approximation_for_the_analysis_of_real-time_systems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221329822_Control_Robotics_The_Procedural_Control_of_Physical_Processes?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221329822_Control_Robotics_The_Procedural_Control_of_Physical_Processes?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257790001_Unrelated_parallel_machine_scheduling-perspectives_and_progress?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257790001_Unrelated_parallel_machine_scheduling-perspectives_and_progress?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220431427_Scheduling_Algorithms_for_Multiprogramming_in_Hard-Real-Time_Environment?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220431427_Scheduling_Algorithms_for_Multiprogramming_in_Hard-Real-Time_Environment?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221298347_Assigning_Real-Time_Tasks_on_Heterogeneous_Multiprocessors_with_Two_Unrelated_Types_of_Processors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221298347_Assigning_Real-Time_Tasks_on_Heterogeneous_Multiprocessors_with_Two_Unrelated_Types_of_Processors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221298347_Assigning_Real-Time_Tasks_on_Heterogeneous_Multiprocessors_with_Two_Unrelated_Types_of_Processors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220442370_An_application_of_simultaneous_Diophantine_approximation_in_combinatorial_optimization?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220442370_An_application_of_simultaneous_Diophantine_approximation_in_combinatorial_optimization?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220442370_An_application_of_simultaneous_Diophantine_approximation_in_combinatorial_optimization?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262202369_Assigning_Sporadic_Tasks_to_Unrelated_Parallel_Machines?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/268018994_Iterative_methods_in_combinatorial_optimization?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/268018994_Iterative_methods_in_combinatorial_optimization?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/3506549_Preemptively_scheduling_hard-real-time_sporadic_tasks_on_one_processor?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/3506549_Preemptively_scheduling_hard-real-time_sporadic_tasks_on_one_processor?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/3506549_Preemptively_scheduling_hard-real-time_sporadic_tasks_on_one_processor?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/3506549_Preemptively_scheduling_hard-real-time_sporadic_tasks_on_one_processor?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668641_Resource_augmentation_for_uniprocessor_and_multiprocessor_partitioned_scheduling_of_sporadic_real-time_tasks?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668641_Resource_augmentation_for_uniprocessor_and_multiprocessor_partitioned_scheduling_of_sporadic_real-time_tasks?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668641_Resource_augmentation_for_uniprocessor_and_multiprocessor_partitioned_scheduling_of_sporadic_real-time_tasks?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262360208_Real-time_scheduling_with_resource_sharing_on_heterogeneous_multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/262360208_Real-time_scheduling_with_resource_sharing_on_heterogeneous_multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/235800598_Partitioned_scheduling_of_sporadic_task_systems_an_ILP-based_approach?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/235800598_Partitioned_scheduling_of_sporadic_task_systems_an_ILP-based_approach?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/235800598_Partitioned_scheduling_of_sporadic_task_systems_an_ILP-based_approach?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220413997_Measuring_the_Performance_of_Schedulability_Tests?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/220413997_Measuring_the_Performance_of_Schedulability_Tests?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221580898_Reducibility_Among_Combinatorial_Problems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221580898_Reducibility_Among_Combinatorial_Problems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/221580898_Reducibility_Among_Combinatorial_Problems?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

[22] G. Raravi, B. Andersson, V. Nélis, and K. Bletsas. Task assignment
algorithms for two-type heterogeneous multiprocessors. Real-Time
Systems, 50(1):87–141, 2013.

[23] G. Raravi and V. Nélis. A PTAS for assigning sporadic tasks on two-type
heterogeneous multiprocessors. In Proceedings of the 33rd IEEE Real-

Time Systems Symposium, RTSS 2012, San Juan, PR, USA, December
4-7, 2012, pages 117–126, 2012.

[24] A. Wiese, V. Bonifaci, and S. Baruah. Partitioned EDF scheduling on a
few types of unrelated multiprocessors. Real-Time Systems, 49(2):219–

238, 2013.

225225

https://www.researchgate.net/publication/234077170_A_PTAS_for_Assigning_Sporadic_Tasks_on_Two-type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234077170_A_PTAS_for_Assigning_Sporadic_Tasks_on_Two-type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234077170_A_PTAS_for_Assigning_Sporadic_Tasks_on_Two-type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234077170_A_PTAS_for_Assigning_Sporadic_Tasks_on_Two-type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234079337_Outstanding_Paper_Award_Task_Assignment_Algorithms_for_Two-Type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234079337_Outstanding_Paper_Award_Task_Assignment_Algorithms_for_Two-Type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/234079337_Outstanding_Paper_Award_Task_Assignment_Algorithms_for_Two-Type_Heterogeneous_Multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668180_Partitioned_EDF_scheduling_on_a_few_types_of_unrelated_multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668180_Partitioned_EDF_scheduling_on_a_few_types_of_unrelated_multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==
https://www.researchgate.net/publication/257668180_Partitioned_EDF_scheduling_on_a_few_types_of_unrelated_multiprocessors?el=1_x_8&enrichId=rgreq-563562480b772ac974ff5aae79802254-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU3MjI3MTtBUzo0MjYwOTk2OTcwMzMyMTZAMTQ3ODYwMTQ5MjMxMQ==

