A. Arnab, S. Jayasumana, S. Zheng, and P. Torr, Higher Order Conditional Random Fields in Deep Neural Networks, 2016.
DOI : 10.1007/978-3-319-46475-6_33

URL : http://arxiv.org/abs/1511.08119

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, Semantic image segmentation with deep convolutional nets and fully connected CRFs, ICLR, 2015.

G. Csurka, D. Larlus, and F. Perronnin, What is a good evaluation measure for semantic segmentation?, Procedings of the British Machine Vision Conference 2013, 2013.
DOI : 10.5244/C.27.32

E. Denton, S. Chintala, A. Szlam, and R. Fergus, Deep generative image models using a Laplacian pyramid of adversarial networks, NIPS, 2015.

A. Dosovitskiy, J. Springenberg, and T. Brox, Learning to generate chairs with convolutional neural networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298761

M. Everingham, S. A. Eslami, L. Van-gool, C. Williams, J. Winn et al., The Pascal Visual Object Classes Challenge: A Retrospective, International Journal of Computer Vision, vol.34, issue.11, pp.98-136, 2015.
DOI : 10.1007/s11263-014-0733-5

C. Farabet, C. Couprie, L. Najman, and Y. Lecun, Learning Hierarchical Features for Scene Labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.1915-1929, 2013.
DOI : 10.1109/TPAMI.2012.231

URL : https://hal.archives-ouvertes.fr/hal-00742077

J. Gauthier, Conditional generative adversarial nets for convolutional face generation

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, NIPS, 2014.

S. Gould, R. Fulton, and D. Koller, Decomposing a scene into geometric and semantically consistent regions, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459211

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Grangier, L. Bottou, and R. Collobert, Deep convolutional networks for scene parsing, ICML Deep Learning Workshop, 2009.

B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik, Semantic contours from inverse detectors, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126343

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Kohli, L. Ladický, and P. Torr, Robust Higher Order Potentials for Enforcing Label Consistency, International Journal of Computer Vision, vol.24, issue.3, pp.302-324, 2009.
DOI : 10.1007/s11263-008-0202-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Krähenbühl and V. Koltun, Parameter learning and convergent inference for dense random fields, ICML, 2013.

G. Lin, C. Shen, A. Van-den-hengel, and I. Reid, Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.348

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298965

D. Martin, C. Fowlkes, and J. Malik, Learning to detect natural image boundaries using local brightness, color, and texture cues, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.5, pp.530-549, 2004.
DOI : 10.1109/TPAMI.2004.1273918

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Mathieu, C. Couprie, and Y. Lecun, Deep multi-scale video prediction beyond mean square error, 2016.

M. Mirza and S. Osindero, Conditional generative adversarial nets, NIPS deep learning workshop, 2014.

A. Nguyen, J. Yosinski, and J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298640

URL : http://arxiv.org/abs/1412.1897

H. Noh, S. Hong, and B. Han, Learning Deconvolution Network for Semantic Segmentation, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.178

URL : http://arxiv.org/abs/1505.04366

D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros, Context Encoders: Feature Learning by Inpainting, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.278

URL : http://arxiv.org/abs/1604.07379

P. Pinheiro and R. Collobert, Recurrent convolutional neural networks for scene labeling, ICML, 2014.

P. Pinheiro, T. Lin, R. Collobert, and P. Dollár, Learning to Refine Object Segments, ECCV, 2016.
DOI : 10.1007/978-3-319-10602-1_47

URL : http://arxiv.org/abs/1603.08695

A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, 2016.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele et al., Generative adversarial text to image synthesis, ICML, 2016.

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention, 2015.
DOI : 10.1007/978-3-319-24574-4_28

URL : http://arxiv.org/abs/1505.04597

S. Roweis, L. Saul, and G. Hinton, Global coordination of local linear models, NIPS, 2002.

A. Schwing and R. Urtasun, Fully connected deep structured networks, Arxiv preprint, 2015.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2015.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan et al., Intriguing properties of neural networks, 2014.

D. Tarlow and R. Zemel, Structured output learning with high order loss functions, AISTATS, 2012.

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, ICLR, 2016.

Y. Zhou, X. Hu, and B. Zhang, Interlinked Convolutional Neural Networks for Face Parsing, International Symposium on Neural Networks, 2015.
DOI : 10.1007/978-3-319-25393-0_25