Semi-supervised understanding of complex activities from temporal concepts

Abstract : Methods for action recognition have evolved considerably over the past years and can now automatically learn and recognize short term actions with satisfactory accuracy. Nonetheless, the recognition of complex activities-compositions of actions and scene objects-is still an open problem due to the complex temporal and composite structure of this category of events. Existing methods focus either on simple activities or oversimplify the modeling of complex activities by targeting only whole-part relations between its sub-parts (e.g., actions). In this paper, we propose a semi-supervised approach that learns complex activities from the temporal patterns of concept compositions (e.g., " slicing-tomato " before " pouring into-pan "). We demonstrate that our method outperforms prior work in the task of automatic modeling and recognition of complex activities learned out of the interaction of 218 distinct concepts.
Type de document :
Communication dans un congrès
13th International Conference on Advanced Video and Signal-Based Surveillance, Aug 2016, Colorado Springs, United States
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01398958
Contributeur : Carlos Crispim <>
Soumis le : mardi 29 novembre 2016 - 14:29:35
Dernière modification le : mardi 24 juillet 2018 - 15:48:17
Document(s) archivé(s) le : mardi 21 mars 2017 - 01:58:12

Fichier

crispim_et_al_AVSS16_v2.4_cr_h...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01398958, version 1

Collections

Citation

Carlos Fernando Crispim-Junior, Michal Koperski, Serhan Cosar, Francois Bremond. Semi-supervised understanding of complex activities from temporal concepts. 13th International Conference on Advanced Video and Signal-Based Surveillance, Aug 2016, Colorado Springs, United States. 〈hal-01398958〉

Partager

Métriques

Consultations de la notice

249

Téléchargements de fichiers

126