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Semantic Event Fusion of Different Visual
Modality Concepts for Activity Recognition

Carlos F. Crispim-Junior, Vincent Buso, Konstantinos Avgerinakis, Georgios Meditskos, Alexia Briassouli,
Jenny Benois-Pineau, Yiannis Kompatsiaris, Francois Brémond

Abstract—Combining multimodal concept streams from heterogeneous sensors is a problem superficially explored for activity
recognition. Most studies explore simple sensors in nearly perfect conditions, where temporal synchronization is guaranteed.
Sophisticated fusion schemes adopt problem-specific graphical representations of events that are generally deeply linked with their
training data and focused on a single sensor. This paper proposes a hybrid framework between knowledge-driven and
probabilistic-driven methods for event representation and recognition. It separates semantic modeling from raw sensor data by using
an intermediate semantic representation, namely concepts. It introduces an algorithm for sensor alignment that uses concept similarity
as a surrogate for the inaccurate temporal information of real life scenarios. Finally, it proposes the combined use of an ontology
language, to overcome the rigidity of previous approaches at model definition, and a probabilistic interpretation for ontological models,
which equips the framework with a mechanism to handle noisy and ambiguous concept observations, an ability that most
knowledge-driven methods lack. We evaluate our contributions in multimodal recordings of elderly people carrying out IADLs. Results
demonstrated that the proposed framework outperforms baseline methods both in event recognition performance and in delimiting the
temporal boundaries of event instances.

Index Terms—Knowledge representation formalism and methods, Uncertainty and probabilistic reasoning, Concept synchronization,
Activity recognition, Vision and scene understanding, Multimedia Perceptual System.

<+

INTRODUCTION

He analysis of multiple modalities for event recognition

has recently gained focus, especially after the popular-
ization of consumer platforms for video-content sharing,
such as YouTube and Vimeo. The need to automatically
analyze and retrieve subsets of video content according to
textual or image queries has motivated research about ways
to semantically describe videos.

This work focuses on a similar problem but different
task: event recognition from heterogeneous sensor modal-
ities, where we seek to recognize complex activities of daily
living undertaken by people in ecological scenarios. This
task requires us to accurately detect and track people over
space and time, and recognize concepts and complex events
across modalities. At the same time, it is necessary to handle
the temporal misalignment of different modalities, and the
different sources of uncertainty that intervene in them.

Combining multimodal, visual concept streams from
heterogeneous sensors is a problem superficially explored
for activity recognition. Single-sensor, data-driven studies
have proposed rigid, problem-specific graph representa-
tions of an event model [17] [29]. But, once a new source
of information is available, these models need to be re-
designed from the scratch. On the other hand, knowledge-
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driven methods provide a generic formalism to quickly
model and update events using heterogeneous sources of
information [8] [10]. However, their performance degrades
drastically in the presence of noise from underlying pro-
cesses. Finally, most existing work on multimodal scenarios
considers nearly perfect settings, where sensors and modal-
ities are completely time synchronized. In real life settings,
temporal misalignment among sensors is quite frequent,
specially when heterogeneous sensors are combined. This
misalignment is commonly aggravated by sensors with vari-
able sampling rates, a characteristic that creates non-linear
associations among the time points of different sensors.

In this paper, we propose two contributions for multi-
modal event recognition. Firstly, we introduce an algorithm
for aligning sensor data using semantic information as a
surrogate for the inaccurate time synchronization of real life
scenarios. Secondly, we propose a probabilistic, knowledge-
driven framework, namely semantic event fusion (SEF),
to combine multiple modalities for complex event recog-
nition. The knowledge-driven aspect of our method eases
model definition and update, avoiding the long training step
required for pure data-driven methods. The probabilistic
basis of our event models permits us to handle uncertain
and ambiguous observations during event recognition, a
limitation for other knowledge-driven methods.

We demonstrate the performance of SEF framework in
the combination of different visual sensors (video camera,
color-depth, wearable video camera) to recognize Instru-
mental Activities of Daily Living (IADL) of elderly people
during clinical trials of people with dementia. In these
settings event recognition needs to be accurate and event
temporal intervals need to be precisely assessed, since their
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results are used as indicators of a person’s performance in
such activities. This is the first time such diversity of visual
sensors is deployed for this task.

1.1 Framework architecture

The semantic event fusion framework is structured in a
hierarchical fashion where, firstly, we use a set of detectors
to extract (interpret) low-level concepts from raw sensor
data. Secondly, we align sensor concept streams using se-
mantic similarity. Thirdly and finally, we initialize ontolog-
ical event models with aligned concept observations, and
then perform probabilistic event inference for complex event
recognition.

The multimodal framework adopts the following defini-
tions:

o Concept: any type of object from the real-world or
derived from it that is modeled as a physical object
or a atomic event (primitive state) in the ontology
language.

o Detector: a process that provides an interpretation of
raw sensor data to the conceptual world.

o Instance: an observed example of a concept.

Figure 1 illustrates the architecture of the SEF frame-
work. Detectors (A-C) process their input sensor data
(S1 — S3) and provide their results as an intermediate,
conceptual representation for complex, high-level event in-
ference. The conceptual representation forms the basis to
build low-level event models and from their composite
and temporal relationship the framework infers complex,
composite activities.

The paper is organized as follows. Section 2 summa-
rizes related work. Section 3 presents the methods used for
multimodal concept recognition from heterogeneous visual
sensors. Section 4 introduces the proposed framework for
semantic event fusion. Section 5 presents the dataset and
the baseline methods used for evaluation; and Sections
6, 7 and 8 presents Results, Discussion and Conclusions,
respectively.

2 RELATED WORK

Activity recognition methods have studied different sensor
perspectives to model the semantic and hierarchical nature
of daily living activities. Most approaches using hetero-
geneous sensors focus on simple sensors (e.g., pressure,
contact, passive infrared, RFID tags) spread over the tar-
geted environment [14] [25] [19] [23]. Knowledge- and logic-
driven methods have been extensively used in these settings
[8] [12] [10] [2], as they facilitate the modeling of prior
knowledge, sensor data, and domain semantics by means
of rules and constraints.

For instance, Cao et al. [8] have proposed a multimodal
event recognition approach, where they employ the notion
of context to model human and environmental informa-
tion. Human context (e.g., body posture) is obtained from
video cameras, while environmental context (semantic in-
formation about the scene) is described by inertial sensors
attached to objects of daily living. A rule-based reason-
ing engine is used to combine both contexts for complex
event recognition. Chen et al. [10] have proposed a hybrid

approach between knowledge-driven (ontology-based) and
data-driven methods for activity modeling and recognition.
Domain heuristics and prior knowledge are used to ini-
tialize knowledge-driven event models, and then a data-
driven method iteratively updates these models given the
daily activity patterns of the monitored person. Even though
simple sensors are easy to deploy and maintain, they limit
activity recognition to simple phenomena (e.g., opened/
closed drawer, presence in the restroom, mug moved), thus
limiting the system’s ability to describe and recognize more
complex and detailed human activities.

Moreover, despite the flexibility of deterministic logic-
based methods for event definition, they are very sensitive
to noisy observations from underlying components, and
they demand the laborious manual definition of all sensor
value combinations that satisfy the recognition of an activity.
Existing work combining logic and probabilistic methods
have proposed to formalize knowledge as weighted rules
over raw sensor data [7] [4]. But, the lack of separation
between raw-sensor data and event modeling makes these
approaches very specific to the environments where they are
deployed.

Approaches based on visual signals have focused on
probabilistic, hierarchical representations of an event. These
representations combine different types of features, from
low-level motion and appearance patterns [35] [22] to more
semantically rich features (e.g., action segments, context
information) [38] [36]. For instance, in [38] authors have
proposed to first detect action segments from raw video
data, and then use a two-layered Conditional Random
Field to recognize activities from the segment patterns and
context information (e.g., boolean variables indicating object
interaction). Despite the progress of these approaches at
activity recognition, they still focus on a single modality, and
tend to adopt rigid, problem-specific graph representations
for an event. Moreover, to achieve their best performance
with proper generalization, they require a large quantity of
training data and a training step that may take days.

Studies on video content retrieval have investigated
ways to extend the standard low-level, visual feature rep-
resentations for actions [35] by aggregating other modali-
ties commonly present in video recordings, such as audio
and text [27] [29] [17]. In [17], authors have introduced a
feature-level representation that models the joint patterns
of audio and video features displayed by events. In [29], a
multimodal (audio and video) event recognition system is
presented, where base classifiers are learned from different
subsets of low-level features, and then combined with mid-
level features, such as object detectors [21] for the recog-
nition of complex events. These studies have showed that
by decomposing complex event representation into smaller
semantic segments, like action and objects, inter-segment
relations not attainable before can be captured to achieve
higher event recognition rates. Nevertheless, these methods
only recognize the most salient event in an entire video
clip. The task targeted by this paper require us to precisely
segment variable-length spatiotemporal regions along the
multimodal recording, and accurately classify them into
activities.

This paper proposes a hybrid framework between
knowledge-driven and probabilistic-driven methods for
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event representation and recognition. It separates event
semantic modeling from raw sensor data by using an in-
termediate semantic representation, namely concepts. An
ontological language is used as a generic formalism to
model complex events from their composite relations with
concepts and domain knowledge, overcoming the rigidity of
hierarchical, graph-based representations. Finally, we pro-
pose a probabilistic interpretation for the ontological event
models, which equips the framework with a mechanism to
handle noise and ambiguous observations.

None of the approaches described above addresses the
temporal synchronization of multiple modalities. Most ex-
isting work considers nearly perfect settings, where all
sensors are at least coarsely time synchronized and have
a fixed sampling rate. Therefore, they adopt a sliding time
window to accumulate information about event temporal
components and to cope with small temporal misalignment
between sensors [19] [2] [32]. This multipurpose use of a
sliding time window tends to overestimates event duration,
since window size is generally set to temporal lengths
that are longer than typical event instances. In real-world
settings, sensor synchronization is generally inaccurate, and
sensors tend to have a variable data sampling rate. These
conditions increase alignment complexity and make data
fusion very challenging, since they create non-linear asso-
ciations between the time points of different sensors.

To address the lack of time synchronization between
sensors and cope with variable data acquisition rate, we
propose a novel algorithm to temporally align sensors us-
ing semantic information as a surrogate for inaccurate or
missing temporal information. Since the proposed algorithm
seeks the global semantic alignment between sensor con-
cept streams, it copes with non-linear associations between
different sensor time points. Finally, it also translates all
concept streams to the time axis of a reference stream,
preserving not only concept temporal relations but also
temporal information.

3 MULTIMODAL CONCEPT RECOGNITION

To handle the complexity of real-world activities of daily
living and abstract event model definition from low-level
data, we adopt multimodal concept detectors to extract low-
level concepts from raw sensor data [29] [17] [27]. Three
types of concept detectors are used: action recognition (AR,
subsection 3.1), object recognition (OR, subsection 3.2), and
knowledge-driven event recognition (KER, subsection 3.3).

KER detector employs an off-the-shelf color-depth cam-
era (Kinect, S3, Fig.1), since this sensor provides real-
time, 3D measurements of the scene. These measurements
improve the quality of people detection and tracking al-
gorithms by resolving 2D visual ambiguities with depth
information, and making these algorithms invariant to light
changes. AR detector employs a standard video camera
(S1, Fig.1) due to the broader field of view of this sensor
when compared to the color-depth sensor. OR detector
complements the previous detectors with a wearable video
camera (S, Fig.1). This type of sensor has a closer view of
the most salient object in the field of view of the person.
Salient objects are a key piece of information to describe
how activities are realized, and also to overcome situations

where a person is occluded or too far from fixed cameras
[37].

The novelty of this paper in terms of multimodal activity
sensing refers to the variety (or heterogeneity) of visual
concept modalities in use, i.e., the phenomena and points of
view we use to describe the activities of daily living, and not
to a specific choice of sensors. For instance, events from the
global displacement patterns of a person, action from the
local and finer motion patterns, and the different types of
objects being that appear during an activity of daily living.

The choice of sensors that are going to feed the proposed
concept detectors can be adapted to user needs. For instance,
in a smaller scene than the one used for this work, one may
choose to feed AR detector with the RGB image of Kinect
instead of using an extra video camera. Alternatively, for
the same size of scene, one could replace the Kinect sensor
and the video camera with a stereo-camera system and
then profit from both the 3D measurements and the scene
coverage from a single sensor solution. In summary, the user
of the system should select the sensors that provide the best
trade-off between scene coverage, system setup complexity
and solution cost that fits his/her needs.

Semantic Event Fusion
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Fig. 1. Semantic event fusion framework: detector modules (A-C) pro-
cess data from their respective sensors (S1-S3) and output concepts
(objects and low-level events). Semantic Event Fusion uses the onto-
logical representation to initialize concepts to event models and then
infer complex, composite activities. Concept fusion is performed on
millisecond temporal resolution to cope with instantaneous errors of
concept recognition.

3.1 Action recognition from color images

Action recognition is usually addressed in the state of the art
by localizing actions using a sliding spatiotemporal window
[18]. However, these approaches entail a high computa-
tional cost due to the exhaustive search in space and time.
Furthermore, activities are localized in rectangular spatial
areas, which do not necessarily correspond to the area where
they actually occur, increasing computational cost and false
alarms due to search in irrelevant regions. Rectangular
spatial search areas are most likely to contain both a moving
entity - e.g.,, human - and background areas, which both
contribute with features to the overall scene descriptor. As a
result, the feature vector describing the activity will contain
erroneous, false alarm descriptors (from the background).
The exhaustive search in time also increases computational
cost due to the large number of features being compared and
the overlapping sliding window that is usually to improve
detection accuracy rates.
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We propose a novel algorithm for spatiotemporal lo-
calization that overcomes the limitations of the current
spatiotemporal sliding window based methods, which both
succeeds in reducing the computational cost, while also
achieving higher accuracy. To avoid the problems intro-
duced by searching in rectangular spatial areas, we examine
only pixels that are likely to contain activities of interest,
so spatial localization examines regions of changing motion,
the Motion Boundary Activity Areas (MBAAs). To avoid the
high computational cost introduced by exhaustive search
over time, temporal localization deploys statistical change
detection, applied at each frame. Changes are detected in
an online manner in the outcomes of a Support Vector Data
Description (SVDD) classifier. The SVDD characterizes each
activity by a hypersphere built from training data: as it
is different for different human activities, changes in its
outputs also correspond to different activities. The resulting
method for sequential detection of changes between SVDD
outcomes, where the latter use only data inside MBAAs, is
thus called Sequential Statistical Boundary Detection. The
sequential nature of the change detection results in a faster
activity boundary detector, as sequential change detection
has been proven to provide quickest detection.

Action cuboids are then extracted in the resulting subse-
quences. The action cuboids are much smaller in size than
regions used for spatiotemporal activity localization and
precisely localize pixels with the activity of interest, both in
space in time. Thus, their motion and appearance properties
are used for recognition in a multiclass SVM model. In
concluding, the main novelty of our approach lies in the
spatiotemporal activity localization. Spatial localization also
takes place in an original manner, by isolating regions of
changing activity, thus avoiding false alarms and increasing
the system’s accuracy, while temporal localization is acceler-
ated as fewer subsequences need to be classified in order to
detect the activities that occurs inside them [3]. This detector
provides valuable cues about the actions taking place given
its local motion patterns, but it does not identify the author
of the action. For this reason, AR detector is a natural
complement for the knowledge-driven event recognition
that recognizes person-centered events (subsection 3.3).

3.2 Object recognition from egocentric vision

We employ several detectors of “active objects” (objects
either manipulated or most salient in the field of view of
the user), as we consider that the identification of these
objects is a crucial step towards activity understanding. The
recognition of activity-related objects adds more robustness
to event models, especially when the emphasis is placed on
activities of daily living. OR detector considers one concept
detector per object category. The processing pipeline (Fig.
2) is shared by all detectors until the image signature step.
A nonlinear classification model is learned for each object
category.

We have built our model based on the well-known Bag-
of-Words (BoW) paradigm [13] and used saliency masks as
a way to enrich the spatial discrimination of the original
BoW approach. Hence, for each frame in a video sequence,
we extract a set of N SURF descriptors d,, [5], using a dense
grid of circular local patches. Next, each descriptor d,, is

T R

Saliency
Weighting

Dense Grid
Detection

— ko

Saliency MAP

SURF
descriptor

Nonlinear
Classifier

Image
Signature

Fig. 2. Processing pipeline for saliency-based object recognition in first-
person camera videos

assigned to the most similar word j = 1..V in a visual
vocabulary by following a vector-quantization process. The
visual vocabulary is computed using k-means algorithm
over a large set of descriptors of the training data set. We
set the size of dictionary V' to 4000 visual words. In parallel,
our system generates a geometric spatiotemporal saliency
map S of the frame with the same dimensions of the image
and values in the range [0,1] (the higher the S the more
salient a pixel is). Details about the generation of saliency
maps can be found in [6]. We use the saliency map to weight
the influence of each SURF descriptor in the final image
signature, so that each bin j of the BoW histogram H is
computed by the next equation:

N
Hj = Z QpWnj, (1)
n=1

where the term w,; = 1 if the descriptor or region n
is quantized to the visual word j in the vocabulary and
the weight «, is defined as the maximum saliency value S
found in the circular region of the dense grid.

Finally, the histogram H is L1-normalized to produce
the image signature. A SVM classifier [11] with a non-
linear x? kernel [33] is then used to recognize the objects of
interest over the weighted histogram of visual words. Using
Platt approximation [30], we produce posterior probabilistic
estimates O, for each occurrence of an object & in frame .

3.3 Knowledge-driven event recognition

KER detector equips the SEF framework with the ability
to handle multiple people in the scene and derive person-
centered events. Its processing pipeline is decomposed into
people detection, tracking, and event recognition.

3.3.1 People Detection

People detection is performed using the depth-based frame-
work of [28] that extends the standard detection range of
color-depth sensors from 3-4 meters (Microsoft and Prime-
Sense) to 7-9 meters away. It works as follows: first, it per-
forms background subtraction in the depth image to identify
foreground regions that contains both moving objects and
potential noise. These foreground pixels are then clustered
into objects based on their depth values and neighborhood
information. Among these objects, people are detected using
a head and shoulder detector and tracking information
about previously detected people.
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3.3.2 People Tracking

People tracking [9] takes as input the video stream and the
list of objects detected in the current and previous frames
using a sliding time window. First, a link score is computed
between any two detected objects in this time window using
a weighted combination of six object descriptors: 2D and
3D positions, 2D object area, 2D object shape ratio, color
histogram and dominant color. Then, successive links are
formed to represent the several paths an object can follow
within the temporal window. Each possible path of an object
is associated with a score given by all the scores of the
links it contains. The object trajectory is determined by
maximizing the path score using Hungarian algorithm [20].

3.3.3 Event representation and recognition

We extend the declarative constraint-based ontology lan-
guage proposed in [34] [12] to define event models based on
prior knowledge about the scene, and real-world objects (e.g.,
person) dynamically detected by underlying components
(e.g., people detection and tracking).

An event model is composed of three main parts:

o Physical Objects refer to real-world objects involved
in the realization of the event (e.g., person, kettle).

o Components refer to sub-events of which the model
is composed of.

o Constraints are conditions that the physical objects
and/or the components should satisfy.

Physical
Object
.x'"W""‘-r.
Mobile Contextual
Object
Person Equipment Zone Ha”gbd
Object

Fig. 3. Physical object sub-tree of the ontology language

KER detector uses three types of physical objects (Fig.
3): person, zones and equipment. Constraints are classified
into non-temporal (e.g., inter-object spatial relations, object
appearance); and temporal (e.g., time ordering between two
event components). Temporal constraints are defined using
Allen’s interval algebra, e.g.,, BEFORE, MEET, AND [1]. An
alarm clause can be optionally defined to rank events by
their importance for a sub-subsequent task, e.g., to trigger
an external process.

Events are hierarchically categorized by their complexity
as (in ascending order):

e Primitive State models a value of property of a
physical object constant in a time interval.

o Composite State refers to a composition of two or
more primitive states.

o Primitive Event models a change in value of a phys-
ical object’s property (e.g., posture), and

o Composite Event defines a temporal relationship
between two sub-events (components).

This detector provides person-centric events derived
from knowledge about global spatiotemporal patterns that

people display while performing activities of daily living.
Example 1 illustrates the low-level, primitive state model
Person_inside_ZonePharmacy that maps the spatial rela-
tion between a person’s position and the contextual zone
zPharm. For instance, this zone may corresponds to the
location of a medicine cabinet in the observed scene.

Example 1. Primitive state “Person inside Zone Pharmacy”

PrimitiveState (Person_inside_ZonePharmacy,

PhysicalObjects( (pl: Person), (zPharm: Zone))
Constraints (
(pl->position in zPharm->Verticies)
Alarm ((Level NOTURGENT) )
)
4 SEMANTIC EVENT FUSION
The abovementioned concept detectors for actions,

knowledge-based events and objects constitute the founda-
tions of the semantic event fusion framework. They bridge
the gap between the raw sensor data and the concep-
tual world and provide a natural separation between data
specifics and event semantic modeling.

SEF takes place over concept observations and is respon-
sible for linking these concept instances to related event
models, and then infer whether the available evidence is
sufficient to recognize one of the target events. To achieve
this goal, SEF needs to handle the time misalignment among
sensors and the different sources of uncertainty that inter-
vene in concept and complex event recognition.

We divide SEF framework into four steps: model repre-
sentation, semantic alignment, event probability estimation,
and complex event probabilistic inference.

4.1 Model Representation

To represent the concept dependencies and semantics of
complex events (e.g., temporal order that involved concepts
need to display), we extend the constraint-based ontology
language used in KER detector to multimodal composite
events.

The mapping between concept detector observations
and the ontology language representation is performed as
follows: actions from the AR detector are mapped to in-
stances of primitive states. Objects from the OR detector are
linked as instances of a new class of physical object, namely
handled object. This class, as the name suggests, represents
objects that can be manipulated with the hands (e.g., kettle,
teabag, pillbox, etc). Finally, events from the KER detector
are mapped as instances of low-level, composite events.

Example 2 presents the ontological model of the
multimodal, composite event “PreparePillBox_SEF”. This
model combines multimodal physical objects (person, zone,
and handled object) and sub-events “PreparePillBox_KER”
and “PreparePillBox_AR”.

Example 2. Multimodal, Composite Event “Prepare pill box”
CompositeEvent (PreparePillBox_SEF,
PhysicalObjects( (pl: Person), (zPharm: Zone),
(PillBox: HandledObject))
Components (
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(cl:
(c2:

PrimitiveState PreparePillBox_AR() )
CompositeEvent PreparePillBox_KER (
pl, zPharm)))
Constraints (
(cl-=>Interval AND c2->Interval)
(duration(c2) > 3))
Alarm ((Level URGENT) )
)

The concept dependencies of a complex event are the
basis to quantify concept similarity across different visual
modalities and hence align them, and to estimate composite
event probability for probabilistic event inference. Figure
4 illustrates the concept dependencies extracted from the
multimodal event “Prepare drink SEF”.

Prepare Drink
(SEF)

PrepareDrink Prepare Drink Tea bag Kettle
(KER) (AR) (OR) (OR)
Person
’AND\_ bending

Fig. 4. Composite relations between concepts and event models. Multi-
modal Event “Prepare drink” is composed of conceptual events “prepare
drink” from KER and AR detectors and conceptual objects “Tea bag”,
“Kettle” and “Glass” from OR detectors. For instance, the hierarchically
lower event “Prepare drink” from KER detector can be further decom-
posed into two sub-events, while other detector concepts are atomic.

4.2 Semantic alignment

To align heterogeneous concept streams we propose a novel
algorithm that uses concept similarity as surrogate for in-
accurate temporal information. For instance, concepts are
considered similar if they are part of the same complex
event. However, semantic alignment is a complex problem
on its own, since two concepts related to the same complex
event may model very different aspects of the given event.
For example, while the OR detector will generate fine-
grained object-wise observations about the activity taking
place (e.g., telephone), KER detector will generate event-
wise observations for the same period of time (e.g.,”talk on
the telephone”). These conceptual differences create non-
linear matches between concept streams. Similarly, some
sensors might have variable sampling rates, a characteristic
which may introduce non-linear time deformations in the
derived concept stream.

To find the non-linear alignment between two concept
streams we employ Dynamic Time Warping (DTW), an
algorithm that seeks the optimal alignment between two
time-dependent sequences [26]. By seeking for the global
semantic alignment, we overcome both the coarse onto-
logical alignment of concept detectors and the non-linear
deformations introduced by the variable sampling rate of
sensors.

Algorithm 1 describes the proposed method for semantic
alignment. The algorithm starts by identifying each complex
event with an unique code. Then, for each concept stream s;,

it creates an encoded concept stream c;, where concepts are
represented by the code of the complex event they belong
to. Once all encoded streams are generated, they are aligned
to the encoded reference stream (c3, KER detector), in a
pairwise manner, using the DTW variant proposed by [31].
For each warped concept stream c¢,, ; generated by DTW,
the temporal translation function A determines the warping
deformations (position additions) that the alignment to ¢;
stream has introduced into cs. By pruning the new positions
in ¢y3 from ¢, ;, function A projects ¢, ; into the time
axis of the original reference stream c3. Finally, we remove
spurious, instantaneous concepts from the concept stream
Cq,i using median filtering.

Algorithm 1. Pseudo-code of the semantic alignment

//Shared semantic encoding
for each s; € S:
for each t € s;:
ci(t) = QCs; (1))

//Semantic Alignment and Temporal Projection
C=C\c3
for each ¢; € C:

Cw,3 s Cw,i = Ples,cy)

Cai = Alc3 , Cw,3 , Cui)

¢y,; = medianFiltering(c, ;)

where,

o ) : maps concepts to the composite event they are
part of,

e i, S :concept stream ¢, and its set S,

e ¢;, C :encoded concept stream ¢ and its set C,

e t:time point ¢,

e Cy,: warped version of ¢;,

e g, aligned version of ¢;,

e cy,;: smoothed version of ¢, ;,

e ®: DTW function,

o A:temporal translation function.

The proposed algorithm assumes that the events and
concepts used for the semantic alignment have an one-
to-many relationship, respectively. To achieve the optimal
alignment, the proposed algorithm requires that the streams
have a sufficient amount of similar concepts, and that con-
cept detectors have a reliable performance at the recognition
of these concepts.

Concept similarity is extracted from the ontological rep-
resentation of complex events (targeted activities). KER de-
tector is chosen as the reference stream due to its sensor
sampling rate be on an intermediate temporal resolution
compared to other sensors, and due to its high performance
at the recognition of different concept classes.

For probabilistic concept detectors that provide a confi-
dence value for all their concept classes at every time point
t, like OR detector, the alignment procedure implements
two extra steps. Before the semantic alignment, we generate
a concept stream s, from the most likely concept of the
detector at each time point ¢. Then, we semantically align
the stream s, and the reference stream. Once alignment is
done, we use the temporal translation data found for s,
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and the reference stream to generate aligned, object-specific
concept streams. These extra procedures are necessary since
a single-object concept stream will most of the time lack
enough semantics for accurate semantic alignment.

4.3 Event Probability Estimation

To estimate event probability from the combination of multi-
modal sources of information is not a trivial task, since each
modality carries different sources of uncertainty. For exam-
ple, to accurately fuse multiple concepts it is necessary to
consider not only the concept detector confidence on a given
instance, but also its reliability as an source of information.
Additionally, the relevance of a concept for an event model
should be modeled to fully profit from the complementary
nature of multimodal sources of information.

Studies in video content retrieval have mostly ex-
plored the complementary information provided by differ-
ent modalities of raw video signals. Currently they lack
mechanisms to handle other factors that interfere in real-
world applications of event recognition, like information rel-
evance and reliability. For instance, motion features should
have a higher relevance than appearance features to dis-
criminate walking from standing events. Similarly, a concept
detector from a wearable camera should be more reliable
in object recognition than one derived from a fixed camera
attached to the ceiling of a room.

We formalize the probability of a composite event (cs)
as a function of the probability of its concepts (ce) and the
factors that affect them. We use a Countable Mixture Distri-
bution (CMD, Eq. 4) to integrate the concepts” probability
and the factors that intervene in them (concept weight).
Concept weights are defined based on two factors: the
concept relevance to the given event model and the concept
reliability given a detector. Equation 5 presents the proposed
CMD, which quantifies the probability of a composite event
given its observed concepts. A partition function (Eq. 7) is
adopted to normalize the weights of the CMD.

Reliability (RB) handles detector differences in concept
recognition. It measures the detector precision at the recog-
nition of each one of its concepts (Eq. 2). Relevance (RV)
models the contribution of a concept to the recognition of a
given event (Eq. 3). It also facilitates event modeling, since
domain experts can focus on listing concepts they deem
important for a complex event, and the framework will learn
the degree of relevance of each assigned concept to the given
event model.

|TP|
P(C€i7j7k|dk) = m (2)

where,

o P(ce; jrldy): reliability of concept ¢ part of compos-
ite event j given detector k,

e |T'P|: number of times concept ce; is correctly recog-
nized by concept detector k during a true instance of
composite event j,

e |FP|, number of times ce; is observed by the concept
detector k given there is no true realization of event

7

cei ik M Csj
P(esjlceijk) = |”cek|J 3)
1,7,

where,

o P(csj|ce; ;1) number of times composite event cs;
is detected during an instance of concept ce; j x,

o |ce; jxNcs;|: number of times ce; ; 1 is present during
an instance of event cs;,

o |ce; jk|: number of times ce; ;  is observed.

N
fl@) = w; x P(x;),
i=1

4
w; >= 0, @)

Su-1
P(cs;) cerees; WCehsk) X Pleeiin) - o

cs; =

Z(csj)
w(ce; j k) = P(csjlce;jr) + Plceijklde) (6)
Z(esj) = Y w(ceiji) )

ce; j kECS;
where:

o P(csjlce; jx): conditional probability of composite
event j given concept k from detector ¢,

e P(ce; ): probability of concept k from detector i,
part of composite event j,

o P(ce; j|dy): reliability of concept i from composite
event j given detector k,

o w(ce; 1) weight of concept cey, from detector ¢, part
of composite event j.

CMD models provide a compact representation of the
different random variables that intervene in the estimation
of the probability of the modeled event. It speeds up event
inference, since the probability of an event probability is
locally estimated based only on the probability of related
concepts and uncertainties.

4.4 Probabilistic Inference

Event models guide the inference process considering ev-
idence related only to the event model in analysis, then
reducing the computational complexity of the inference
process. Logic and temporal constraints can be then used
throughout the event inference step to impose real-world
constraints to event models. Probabilistic inference equips
the framework with means to handle event ambiguity over
mutually exclusive complex events, and to filter out events
which are unlikely to correspond to real-world events.

The inference step takes as input the concepts extracted
by the visual concept detectors at each time t, and links them
as parts of related composite event models. For each event,
it computes event probability using the corresponding CMD
model (Eq. 5). Maximum a posteriori (Eq.8) is employed to re-
trieve the most likely event from a set of mutually exclusive
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candidates. Finally, probability thresholding is used over the
most likely event to decide whether its probability corre-
sponds to a real-life event. Probability thresholding provides
an efficient way to find the probability level from where a
complex event CMD has sufficient evidence to recognize a
real-world event. Moreover, it can be easily translated into
a supervised learning problem of parameter tuning, and it
preserves semantic meaning for human analysis.

cs:{ grgmaxcsjP(CS), if P(csj) > thes, ®)

otherwise

where,

e cs: most likely composite event,

o CS: set of mutually exclusive composite events,

o thes,: probability threshold th., for the recognition
of the composite event j.

4.5 Parameter Learning

The parameters of the SEF framework are determined us-
ing a supervised learning method (maximum likelihood es-
timation) in a 10-fold cross-validation scheme. Three main
parameters are learned for the estimation of the probability
of an event model: the RV and the RB of a concept, and
the probability threshold of an event. These parameters
are computed based on the overlap between instances of
concepts and ground-truth annotations of composite events.
Ground-truth instances are annotated by domain experts
visualizing recordings of the color-depth sensor.

Finally, the composite relations between concepts and a
complex event, which are necessary for semantic alignment
and event probability estimation, are extracted from com-
plex event models. Event models are provided by domain
experts using the multimodal event ontology representa-
tion.

5 EXPERIMENTS

The evaluation of the proposed framework for multimodal
event recognition is performed as follows: firstly, we eval-
uate the effects of the semantic alignment over the per-
formance of concept detectors. Secondly, we evaluate the
overall semantic fusion by comparing its results to two
baseline methods: Ontology-based Semantic Fusion (OSF,
Subsection 5.2) and Support Vector Machine (subsection
5.3). All evaluations are run over multimodal recordings
of elderly people carrying out activities of daily living
(subsection 5.1). Results are reported for validation and test
sets of a 10-fold cross-validation scheme.

5.1 Data set: monitoring activities of senior people

Participants aged 65 years and above were recruited by the
Memory Center (MC) of Nice Hospital. The clinical protocol
asks participants to undertake a set of physical tasks and
IADL:s in a hospital observation room, furnished with home
appliances [15]. Experimental recordings used two fixed
cameras: color-depth camera (Kinect ®, Microsoft ©, ~10
frames per second), standard color camera (AXIS®, Model

Zone Tea
Zone Phone

Bone Plant

Fig. 5. Observation room where daily living activities are undertaken.
Contextual zones are depicted as free-from closed polygons in red, and
contextual objects as black ellipses.

P1346, 8 frames per second); and a wearable camera, GoPRO
Hero - first generation.

Participants undertake IADLs for approximately 15 min-
utes, as the clinical protocol aim is to evaluate the level
of autonomy of the participant by organizing and carrying
out a list of these activities. Figure 5 illustrates the obser-
vation room where participants undertake IADLs, and the
semantic zones that are annotated to incorporate a priori
knowledge about the scene.

The clinical protocol IADLs are the following;:

e Prepare drink (P. Drink, e.g., prepare tea/coffee),

e Talk on the telephone (T. Telephone, e.g., calling,
answering),

e Read (e.g., read newspaper, magazine),

e Prepare pill box (P. Pill box),

e Manage finances (M. Finances, e.g., write a check,
establish account balance),

e Search bus line (S. Bus line)

o Water the plant (W. Plant), and

e  Watch TV (W. TV).

OR detector produces probability estimations [0,1] over
12 visual concepts: account, medication basket, checks, in-
structions (activities to perform), kettle, map, medical in-
structions, telephone, remote, TV, tablet, and watering can.

AR detector provides estimations about a set of mutually
exclusive atomic actions: answer phone, call phone, look
on map, pay bill, prepare drugs, prepare drink, read paper,
water plant, and watch TV. KER detector generates events
for all protocol activities, except for “watch TV” and “search
bus line”.

5.2 Baseline 1: Ontology-based Semantic Fusion

The ontology-based framework for semantic fusion (OSF)
[24] is based on the use of RDF/OWL [16] ontologies to
capture the dependencies among low-level domain obser-
vations and complex activities (events). More specifically,
following a knowledge-driven approach, it defines the Con-
text Dependency Models of the domain that captures the
background knowledge required to detect the complex ac-
tivities. The context dependency models serve as input to
the semantic interpretation procedure for the recognition
and classification of complex activities. The objective of the
interpretation procedure is to analyze traces of observations
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provided by the various modules of the application domain
and group them into meaningful situations, classifying them
as complex activities. The interpretation algorithm consists
of three steps: (a) definition of partial context, (b) identifica-
tion of contextual links and (c) recognition and classification
of situations. Details about the OSF approach are available
in [24].

The ontology-based semantic fusion serves as a baseline
for the delimitation of the temporal boundaries and the
recognition of events if a holistic view of the concepts of
the entire multimodal recording is employed. Its limitations
are the following: it cannot handle interleaved activities,
nor can it resolve conflicts after the recognition process. It
also does not handle dynamic and incremental generation of
partial contexts and context links in (near) real-time activity
recognition, as it uses all recognized events. Finally, this
baseline approach does not handle uncertainty in the input
data, and assumes all observations (primitive and high-
level) have the same confidence (100%).

5.3 Baseline 2: Support Vector Machine

The second baseline consists of linear SVM classifiers that
learn to recognize activities of daily living from multimodal
concept instances observed during a time-window. This
method demonstrates the fusion performance of a fully
supervised learning approach, which operates over a con-
ceptual representation of raw sensor data (KER events, OR
objects, and AR actions), and learns the best combination of
concept observations from training data. The input for this
baseline is a normalized histogram of concept observations
across semantically aligned, concept streams. We compute a
histogram for the concepts of each composite event across
all concept streams during a time window. In the training
set, time windows correspond to the exact time interval
of the events from ground-truth data. For validation and
test sets we browse the recording in a frame-wise fashion
and compute histograms over a continuous sliding time
window. The search for the most appropriate size for the
time-window started with the average duration of activity
classes in the training set. Model parameters and time-
window size are learned and evaluated in the same 10-fold
cross-validation scheme used to learn the parameters of the
proposed approach. One-versus-all scheme is adopted to
learn the classifier of each composite event. Model param-
eters are chosen based on the performance of the baseline
method in the validation set.

5.4 Evaluation

To evaluate the proposed methods, we quantify the frame-
wise agreement between the output of evaluated methods
with event annotation provided by domain experts (ground-
truth data). Frame-wise agreement may seem strict, but
our goal is to achieve a high event recognition rate and
a precise assessment of the temporal boundaries of event
instances. Performance results are reported on the cross-
validation scheme test sets, unless specified otherwise. F-
score is employed as the performance index.

For the evaluation of the semantic concept synchroniza-
tion method, we compare the performance of detectors AR,
KER and OR before synchronization (NA), warped and

smoothed (WS), and semantically synchronized (warped,
backprojected and smoothed, WBS). Warped variant of con-
cept streams are provided as a performance baseline to the
temporal translation step of the semantic alignment.

To evaluate the semantic event fusion framework, we
compare its results to the performance of two state-of- the-
art baselines at two capabilities. Firstly, at the accurate
fusion of concepts under the presence of ambiguous and
noisy observations; and secondly, at the precise assessment
of event time intervals. We also provide the performance of
concept detectors as a reference to measure whether the pro-
posed method can go beyond their individual performances
by combining their complementary aspects.

6 RESULTS
6.1 Semantic alignment

Figure 6 illustrates an example of semantic alignment be-
tween the concept stream of AR detector and a concept
stream generated from the events annotated by a domain
expert (color-depth sensor images are used as reference). We
observe that the proposed technique accurately translates
the AR detector stream from its original form - coarsely
synchronized - to a new form that is optimally time-
synchronized with the reference stream, and also preserves
most shape characteristics of the original concept stream of
AR detector.

Table 1 presents a quantitative evaluation of the gain
in performance obtained by aligning the concept detector
streams. To evaluate the improvement brought by the align-
ment, we assess the performance of each concept detector
at individually recognizing the composite event they are
part of. We present results for three cases: the original
concept streams; the warped case, where both ground-truth
and sensor stream are optimally aligned, and at last, the
semantically aligned concept stream.

The semantic alignment improves the performance of the
KER detector compared to its original version for all event
classes, apart from “prepare pill box” event. It also displays
a higher performance than the warped case in three out of
seven classes, while being quite close for the remaining ones
(e.g., “prepare drink”, “talk on the telephone”, and “watch
TV” events). In AR case, the aligned streams perform better
than the original stream for all cases, but worse than the
warped streams for half of the events (“prepare drink”,
“reading”, “talk on the telephone” and “watch TV” events).
Finally, the aligned streams of OR detector outperform the
original ones for all cases, except for two event classes: “pre-
pare pill box” and “talking on the telephone”. Currently, the
aligned concept streams of OR performs worse than their
warped streams for the majority of cases.

6.2 Semantic Event Fusion

Figure 7 presents the performance of the semantic event
fusion in the validation set and according to the probabil-
ity threshold adopted. We observe that most event classes
have their highest recognition rates adopting a probability
threshold between 0.4 and 0.5. Exceptions are “search bus
line” and “talk on telephone” events, where the threshold
value of 0.1 achieves the highest performance.
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Fig. 6. Semantic alignment between the concept stream of the action recognition detector (AR) and a concept stream (GT) generated from events

manually annotated by domain experts using the time axis of the color-

depth camera. X-axis denotes time in frames, and Y-axis denotes activity

code (1-8), respectively, search bus line on the map, establish bank account balance, prepare pill box, prepare a drink, read, talk on the telephone,

watch tv, and water the plant. From top to bottom, images denote: (A)

original GT and AR streams, (B) GT and AR streams warped, AR stream

warped and smoothed (in red), (C) original GT and AR stream warped and then backprojected onto GT temporal axis, (D) original GT and AR

warped, backprojected, and then smoothed with median filtering.

Event recognition performance versus probability threshold

Performance (F1-Score)

Search bus line

Manage finances

Prepare pill box Prepare drink

Even

Fig. 7. Event recognition performance according to probability threshold

TABLE 1
Semantic Alignment versus Event Recognition

mean Detector / Stream alignment

F-score KER AR OR
IADL NA WS WBS NA WS WBS NA WS WBS
S.Bus line 16.6 27.7 27.8 409 443 450 11.7 13.7 137
M.Finances | 0.0 0.0 0.0 617 609 621 267 309 287
P.Pill box 69.0 61.8 62.6 494 553 571 23.8 245 217
P.Drink 719 86.6 859 31.6 514 492 0.0 0.0 0.0
Read 73.8 979 982 508 629 56.8 0.1 83 7.0
T.Telephone| 682 839 833 389 665 609 13.7 142 13.0
W.TV 99 305 273 172 429 365 101 17.1 147
W.Plant 474 864 864 9.0 214 219 0.0 0.0 0.0

N: 17 participants; 15 min. each; Total: 255 min.

(—) denotes concepts not available for the detector.

AR: action recognition, KER: Knowledge-driven event recognition,
and OR: Object recognition.

NA: Not aligned, WS: warped and smoothed, and

WBS: warped, and backprojected and smoothed

ONone
001
203
|04
mp5
=07
EET

Talk on telephone

Read Water Plant

t class

‘Watch TV

. BT refers to the threshold with best performance for each event

Table 2 compares the performance of the SEF framework
(with and without probability thresholding) to its individual
concept detectors, before and after semantic alignment, on
the validation set. Results demonstrate that the proposed
framework has a performance higher than the semantically
aligned versions of its individual detectors, with two excep-
tions: “managing finances” and “talking on the telephone”
events. For the first event, the stream of the action detector
without alignment has a performance 9% higher than the
proposed method, while for the second event the aligned
version of KER detector has a performance 14% higher.
Probability thresholding improves the event recognition in
the majority of cases.

Table 3 compares the performance of the proposed
framework to the individual concept detectors in the test set,
before and after semantic alignment. The proposed frame-
work outperforms methods only using individual concept
detectors in all cases and classes, with the exception of
aligned KER in the events “talk on the telephone” (-17.5%),
reading (-2.8 %), and search bus line (-1%).
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TABLE 2
Event recognition performance in the validation set

TABLE 4
Event recognition performance versus concept detector composition

mean Stream alignment / Detector

F'i-score None Aligned Proposed

IADL KER AR OR KER AR OR WT BT
S. Bus line 131 473 83 139 453 178 511 511
M.Finances 0.0 73.0 240 0.0 667 270 618 647
P. Pill box 714 551 214 663 567 240 624 797
P. Drink 776 372 0.0 916 535 00 712 910
Read 732 499 0.0 982 548 05 945 977
T.Telephone | 659 440 144 890 626 149 758 758
W. TV 13.0 224 119 300 449 176 476 56.6
W. Plant 453 11.0 00 834 267 00 756 84.2

WT: without probability thresholding
BT: event recognition performance of the best threshold values

TABLE 3
Event recognition performance in the test set

mean Stream alignment / Detector

F-score None Aligned Proposed
IADL KER AR OR KER AR OR BT
S. Bus line 286 196 232 741 438 0.0 73.1
M.Finances 00 274 376 00 437 354 43.7
P. Pill box 606 286 324 491 587 247 65.0
P. Drink 437 4.0 0.0 575 27.6 0.0 64.0
Read 772 562 0.6 98.0 689 459 95.2
T.Telephone | 776 187 107 931 542 52 75.6
W. TV 0.0 0.0 43 18.5 8.4 5.1 35.8
W. Plant 56.8 0.0 0.0 100.0 0.0 0.0 100.0

Figure 8 illustrates the Fj-score of 12 classes of objects
provided by OR concept detector. We observe that OR
method has an average I} — score performance of 56 %
in 9/12 classes that appear in the test set recordings, and 43
% when considering all of them. The average precision of
OR is 85.77 %, which demonstrates the high reliability of its
observations.

Object Recognition
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Fig. 8. Performance of OR concept detector per object class

Table 4 presents the performance of the SEF framework
at event recognition varying the concept detectors in use
from a single detector to their pairwise combination, up
to the full set. We observe that SEF presents the highest
performance for six out of eight IADLs, and OR module has
a complementary role to another detectors.

Table 5 compares the performance of the proposed ap-
proach to two baselines methods: OSF, and SVM. We ob-
serve that the proposed semantic event fusion outperforms
all baseline approaches.

Pairwise All
mean [ -score
IADL A+O K+O K+A K+A+O
S. bus line 43.8 0.0 43.6 73.1
M.finances 43.7 36.0 43.7 43.7
P. pill box 58.7 55.8 60.3 65.0
P. drink 27.6 63.4 54.2 64.0
Read 68.8 97.6 93.9 95.2
T.telephone 54.1 74.2 92.5 75.6
W. TV 8.4 8.9 20.7 35.8
W. Plant 0.0 50.0 98.9 100.0
Average 382 482 635 69.0

A+O: AR and OR; K+O: KER and OR
K+A+O: KER and AR and OR

TABLE 5
Comparison to baseline methods in the test set

Fusion approach
mean F-score Baselinespp Ours
IADL SVM  OSF
S. bus line 442 314 73.1
M.finances 44.0 0.0 437
P. pill box 45.8 49.1 65.0
P. drink 200 243 64.0
Read 90.2 918 95.2
T.telephone 72.1 0.0 75.6
W. TV 2.3 0.0 35.8
W. Plant 0.0 0.0 100.0
Average 39.8  24.6 69.1

OSEF: Ontology-based Semantic Fusion

7 DISCUSSION
7.1

We have proposed a method for heterogeneous visual sen-
sor alignment based on semantic similarity. Results at event
recognition level show that semantically aligned, concept
detectors outperform their original form and their warped
variant in the majority of cases. As such, our method is capa-
ble of accurately translate the optimal alignment achieved at
warped space to the temporal axis of the reference concept
stream.

Regarding the cases where the semantically aligned con-
cept streams perform worse than their warped version, this
behavior is mostly due to a loss of information during
the temporal projection of the warped concept stream onto
the temporal axis of the reference stream. This loss mainly
happens when DTW removes time points from stream re-
gions with a high variance in concept classes for a brief
period of time. Changes in these regions severely penalize
the performance of the aligned method if less-frequent,
short-lengthened concepts are removed because they are
temporally closer to longer concepts used for matching.

Finally, for the cases where the original concept stream
outperforms both synchronized and warped streams, results
suggest that this case is due to the DTW algorithm has not
achieved the optimal alignment between the two streams.

Semantic alignment

7.2 Semantic Event Fusion

The evaluation of SEF framework performance according to
the set of concept detectors used (Table 4) has shown out
that all concept detectors provide meaningful information
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and are complementary. This is corroborated by the fact that
the combination of the three concept detectors outperforms
their pairwise combinations in six out of eight investigated
IADLs. It has also shown that even if the observations of
a given detector have a poor performance when directly
mapped from concepts (e.g., OR module, Figure 8) onto
activity observations (e.g., Table 3), SEF can still use them
as a complementary source of information (e.g., AR + OR
improves AR individual recognition on five events, and
KER + OR improves KER recognition on three events, see
Table 4).

Regarding the performance of SEF compared to baseline
methods, results demonstrate that SEF outperforms all of
them in the test set of the 10-fold cross-validation scheme.
This performance superiority is due to the framework capa-
bility of handling incomplete, ambiguous and noisy obser-
vations from heterogeneous concept detectors. The higher
performance of the proposed framework compared to its
individual detectors demonstrates its capability of exploring
the complementary aspects of the detectors.

OSF baseline presents a performance close to the pro-
posed approach on activities like “read”, “prepare pill box”,
and “prepare drink”, and outperforms SVM baseline on the
last two events. Its higher performance compared to SVM
baseline is due to the existence of conceptual information
from all detectors for the events in question. For instance,
this behavior is not observed for “manage finances” and
“watch tv” events. “Manage finances” event has only con-
cepts from AR and OR detectors, since this event happens
most of the time outside of the field of view of KER sensor.
Results demonstrate the lack of ability of OSF baseline in
handling partial evidence. Similarly, the decrease of this
baseline performance is observed for “watch tv”, and since
this event is also undertaken at the border of the field of
view of the color-depth sensor, the KER detector generates
noisy observations in certain situations, which compromises
OSF performance due to its lack of uncertainty handling.

SVM baseline gives better results than OSF for the events
“read” and “talk on the telephone”, “search bus line”,
“manage finances”, and “prepare pill box”. This superiority
highlights this baseline’s capability of implicitly learn how
to handle incomplete evidence, but still with less accuracy
than the proposed approach. Both baselines underperform
for brief activities, like “water plant”. For OSF this perfor-
mance is attributed to noise and low reliability of the AR
detector for the event in question. For SVM baseline, the low
performance is mostly due to the reliance on a sliding time
window, which provides less information for short events,
compared to that obtained for event of longer duration.

From the described observations, we conclude the se-
mantic fusion framework handles uncertain and incomplete
evidence more accurately than baseline methods, especially
when there is a disparity of reliability across intermediate
detectors. It also goes beyond noise filtering, since it com-
bines evidence from different sources in a complementary
and semantically meaningful way.

8 CONCLUSION

This paper introduced a framework for semantic event fu-
sion, composed of a novel probabilistic, knowledge-driven

framework for event representation and recognition, and
a novel algorithm for the semantic alignment of non-
synchronized heterogeneous concept streams.

The knowledge-driven framework decomposes complex
events into concepts, separating raw sensor data from event
semantics modeling. Its main novelty lies in the combina-
tion of an ontological language for event modeling with
a probabilistic inference method for uncertainty handling.
This combination fosters more flexible event modeling than
graphical model representations. At the same time it results
in more reliable management of uncertainty than existing
knowledge-driven methods.

The semantic alignment algorithm uses concept simi-
larity across visual concept detectors as a surrogate for
inaccurate temporal information. This method overcomes
the limitation of state of the art approaches that require at
least coarse time-synchronization among sensors and rely
on a sliding time window for concept fusion.

As the extensive evaluation of our framework illus-
trates, the combination of these two contributions achieves
a higher fusion performance in the presence of partial, com-
plementary and uncertain information compared to baseline
methods that uses supervised learning. Our method also
delimits the temporal boundaries of activities more accu-
rately than an ontology-driven approach over the entire set
of observed concepts.

Future work will investigate ways to improve the per-
formance of the semantic alignment algorithm on concept
streams which contain regions featuring a high variance
of concepts, and to adapt it to on-line scenarios, where
not all concept stream information is available at once. Fi-
nally, it will also explore the dynamic estimation of concept
reliability, e.g., in response to observed changes on scene
characteristics.
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