On Mixing in Pairwise Markov Random Fields with Application to Social Networks

Abstract : We consider pairwise Markov random fields which have a number of important applications in statistical physics, image processing and machine learning such as Ising model and labeling problem to name a couple. Our own motivation comes from the need to produce synthetic models for social networks with attributes. First, we give conditions for rapid mixing of the associated Glauber dynamics and consider interesting particular cases. Then, for pairwise Markov random fields with submodular energy functions we construct monotone perfect simulation.
Type de document :
Communication dans un congrès
Anthony Bonato ; Fan Chung Graham; Pawel Pralat. Algorithms and Models for the Web Graph, Dec 2016, Montreal, Canada. 10088, pp.127-139, 2016, Lecture Notes in Computer Science. 〈http://link.springer.com/chapter/10.1007%2F978-3-319-49787-7_11〉. 〈10.1007/978-3-319-49787-7_11〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01399090
Contributeur : Konstantin Avrachenkov <>
Soumis le : vendredi 25 novembre 2016 - 17:41:06
Dernière modification le : samedi 27 janvier 2018 - 01:31:41
Document(s) archivé(s) le : mardi 21 mars 2017 - 11:10:32

Fichiers

WAW16MixingPaper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Konstantin Avrachenkov, Lenar Iskhakov, Maksim Mironov. On Mixing in Pairwise Markov Random Fields with Application to Social Networks. Anthony Bonato ; Fan Chung Graham; Pawel Pralat. Algorithms and Models for the Web Graph, Dec 2016, Montreal, Canada. 10088, pp.127-139, 2016, Lecture Notes in Computer Science. 〈http://link.springer.com/chapter/10.1007%2F978-3-319-49787-7_11〉. 〈10.1007/978-3-319-49787-7_11〉. 〈hal-01399090〉

Partager

Métriques

Consultations de la notice

74

Téléchargements de fichiers

36