Doubly nonlocal reaction-diffusion equations and the emergence of species

Abstract : The paper is devoted to a reaction-diffusion equation with doubly nonlocal nonlinearity arising in various applications in population dynamics. One of the integral terms corresponds to the nonlocal consumption of resources while another one describes reproduction with different phenotypes. Linear stability analysis of the homogeneous in space stationary solution is carried out. Existence of travelling waves is proved in the case of narrow kernels of the integrals. Periodic travelling waves are observed in numerical simulations. Existence of stationary solutions in the form of pulses is shown, and transition from periodic waves to pulses is studied. In the applications to the speciation theory, the results of this work signify that new species can emerge only if they do not have common offsprings. Thus, it is shown how Darwin's definition of species as groups of morphologically similar individuals is related to Mayr's definition as groups of individuals that can breed only among themselves.
Type de document :
Article dans une revue
Applied Mathematical Modelling, Elsevier, 2017, 42, pp.591-599. <10.1016/j.apm.2016.10.041>
Liste complète des métadonnées


https://hal.inria.fr/hal-01399589
Contributeur : Vitaly Volpert <>
Soumis le : samedi 19 novembre 2016 - 16:58:48
Dernière modification le : mercredi 2 août 2017 - 01:09:44
Document(s) archivé(s) le : mardi 21 mars 2017 - 12:02:39

Fichier

double2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Malay Banerjee, Vitali Vougalter, Vitaly Volpert. Doubly nonlocal reaction-diffusion equations and the emergence of species. Applied Mathematical Modelling, Elsevier, 2017, 42, pp.591-599. <10.1016/j.apm.2016.10.041>. <hal-01399589>

Partager

Métriques

Consultations de
la notice

484

Téléchargements du document

24