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Abstract: The advent of experimental techniques for the time-course monitoring of gene
expression at the single-cell level has paved the way to the model-based study of gene expression
variability within- an across-cells. A number of approaches to the inference of models accounting
for variability of gene expression over isogenic cell populations have been developed and
applied to real-world scenarios. The development of a systematic approach for the validation
of population models is however lagging behind, and accuracy of the models obtained is
often assessed on a semi-empirical basis. In this paper we study the problem of validating
models of gene network dynamics for cell populations, providing statistical tools for qualitative
and quantitative model validation and comparison, and guidelines for their application and
interpretation based on a real biological case study.
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1. INTRODUCTION

Modern experimental techniques for the monitoring of
gene expression at the individual cell level provide both
evidence of gene expression variability, and quantitative
data that can be exploited to describe and analyze variabil-
ity from a mathematical standpoint (Elowitz et al., 2002;
Neuert et al., 2013). Various approaches to the modelling
of gene expression variability within and across cells have
been developed, along with methods for their inference
from experimental data, and applied to the study of real
biological systems (Munsky et al., 2009; Zechner et al.,
2012; Neuert et al., 2013; Llamosi et al., 2016). Yet, the
quality of these models is often di�cult to assess, due to
the inherent complexity of the models as well as the chal-
lenges and costs involved in conducting validation experi-
ments. Model assessment is mostly performed on empirical
bases, such as qualitative response shape (Munsky et al.,
2009; Zechner et al., 2012), overexpression or knock-out
experiments (Cantone et al., 2009), and so on, whereas
quantitative predictive capabilities are largely unexplored.
The aim of this work is to introduce systematic ap-
proaches for the validation of mathematical models of
cellular response variability. We are interested in partic-
ular in population modelling, i.e. the ability to account
for response variability across di�erent cells. Validation
methods that will be considered shall emphasize the pre-

dictive capabilities of the models, i.e. the ability to cor-
rectly anticipate the true system response in new and
possibly di�erent experimental conditions. For parametric
models, in particular, this rules out approaches based on
the analysis of estimated parameter, because parameter
inaccuracies are hardly related with predictive capabilities
in the common scenario where practical identi�ability is-
sues arise (Gutenkunst et al., 2007). For practical utility,
methods should be applicable with no further e�ort by
modellers. We will therefore restrict to general validation
tools, avoiding to leverage speci�cities of the di�erent
modelling approaches.
We will start by reviewing Mixed-E�ects (Lavielle, 2015)
and Chemical Master Equation (El Samad et al., 2005)
modelling, two somewhat complementary approaches to
population modelling that represent well the variety of
modelling approaches currently proposed in the literature.
We will also summarize the more traditional Mean-Cell
modelling, for comparison purposes. Based on simulation
of a biological case study, we will infer these models fromin
silico generated data and use them as a running example to
introduce and discuss several validation methods derived
from the statistical literature. We will illustrate their appli-
cation for the evaluation of individual models as well as for
model comparison, showing that reliable conclusions can
be drawn from the ensemble of validation results rather
than from the application of a single tool.



2. POPULATION MODELS FOR GENE
EXPRESSION DYNAMICS

Gene expression dynamics are generally given in terms
of a biochemical reaction network operating in a uniform
volume, a convenient abstraction of a cell (or a portion
of it, e.g. the nucleus). Such a network is then simply
characterized by n species,m reaction channels, and a
stoichiometry matrix � with n rows and m columns, each
column describing the net change in copy number of then
molecular species over the whole reaction volume when the
corresponding reaction takes place. Letx = [ x1; : : : ; xn ]T

denote the amount of molecules of every species. Network
dynamics are then �xed by the reaction rates v(x;  ),
an m-dimensional column vector whose entries quantify
the velocity at which di�erent reactions take place. As
apparent from the notation, v(x;  ) generally depends on
the amount of molecules present in the reaction volume,
and on kinetic rate parameters that are typically unknown
or only partially known, and need to be determined
from experimental data. In more generality, reactions may
depend on (possibly time-varying) exogenous variablesu
a�ecting rates (e.g. a control signal), in which case we write
v(x; u;  ).
Population models aim at applying this general paradigm
to the description of multiple entities (cells) that, despite
identical in principle and hence obeying the same model
structure, show di�erent responses. Several approaches
may be considered, further detailing the meaning ofx,
 and v, as reviewed below.

Mean-Cell (MC) modelling. This approach aims at de-
scribing some \typical" behavior of a cell. For a given
species abundancex0 at a time t0, a deterministic response
model for the abundancesx(t) at all times t is sought.
Under appropriate assumptions on reaction volume and
species abundance, allowing in particular to treat x(t)
as species concentrations, the entries ofv(x; u;  ) admit
the interpretation of (deterministic) number of reaction
occurrences per unit time, and are determined by the laws
of mass action. In addition, x(t) obeys

_x(t) = �v
�
x(t); u(t);  

�
(1)

with x(t0) = x0. When confronted with population-
average data,x is interpreted as a vector of average concen-
trations across the cell population, and  are considered
as typical kinetic parameters. In the context of population
modelling, where single-cell pro�les are generally di�erent
from one another, the solution of (1) is rather interpreted
as \mean-cell" dynamics, an oversimpli�cation of the en-
semble of single-cell responses. Single-cell measurements
are then described as

yi (t) = f
�
t; u(�); x0;  

�
+ error i

where f is determined by the solution of the above ODE
for given parameters  and initial conditions x0 under
u(�), while error i accounts for the discrepancy between the
mean-cell responsef and the response of thei th of N cells,
as well as for measurement noise.

Inference of MC models can be addressed by Maximum
Likelihood (ML). Suppose that, for every cell i = 1 ; : : : ; N ,
measurementsYi = f yi;j = yi (t j ) : j = 1 ; : : : ; Ti g
are collected at times Ti = f t i;j : j = 1 ; : : : ; Ti g, and

denote with Y the complete dataset. Consider a generic
measurement model of the type

yi;j = f
�
t j ; u(�); x0;  

�
+ h

�
f

�
t j ; u(�); x0;  

�
; �

�
� i (t j ) (2)

where errors � i (t j ) � N (0; 1) are mutually independent
across i and j , and � are parameters of the noise dis-
tribution. Note that h plays the role of error standard
deviation, which may be a�ected in di�erent ways from
the current system state. Denoting � = (  ; � ) the set
of unknown parameters (possibly including x0), the ML
estimate of � may be computed by minimizing its negative
log-likelihood given Y, i.e., for f j (� ) = f

�
t j ; u(�); x0;  

�

and hj (� ) = h
�
f j (� ); �

�
,

�̂ = arg min
�

NX

i =1

TiX

j =1

(
1
2

�
yi;j � f j (� )

hj (� )

� 2

+ log hj (� )

)

:

Mixed-E�ects (ME) modelling. An alternative approach
is to assume that (1) models the individual cell, but
di�erent cells may be characterized by di�erent values of
 . If  i denotes the parameters of thei th cell, one then
assumes that

yi (t) = f
�
t; u(�); x0;  i

�
+ error i ; (individuals model)

where f
�
t; u(�); x0;  i

�
is the solution of (1) with  =  i ,

and errori accounts for the inaccuracy in modelling single-
cell response (and measurement noise). Herex is thought
of as concentrations in the relevant cell, andv(x; u;  i )
the velocity of reactions in cell i for given intracellular
concentrations, while u is common across the population.
Mixed-e�ects modelling enforces the idea of a cell being
a variant of a statistically homogeneous population by
introducing a common prior on parameters i ,

 i = d(ai ; �; b i ); bi � N (0; 
) ; (population model):
The entries of the parameter vector � , common to the
whole population, are called �xed-e�ects. Vectors bi are
mutually independent and contain the random e�ects, i.e.
individual cell discrepancies from the population average.
Finally ai are covariates representing cell-speci�c known
features, if present.

Inference of mixed-e�ects models from individual data has
the primary aim of reconstructing the population proper-
ties � and 
 from the whole dataset Y of all measurements
from all individuals. Consider again a generic measurement
model of the form (2), where � is �xed across individuals
and  is replaced by  i . A statistically powerful ap-
proach is provided by Population Likelihood Maximization
(PLM). The idea is to leverage all data Y at once by
maximizing with respect to � = ( �; 
 ; � ) the marginal like-
lihood p(Yj�) =

Q N
i =1

R
d i p(Yi j i ; � )p( i j�; 
), where

factorization occurs thanks to the mutual independence of
the bi and of the � i . By this approach, a single estimate is
obtained for all population parameters, including � . From
the resulting estimates ^� and 
̂, single-cell parameter es-
timates  ̂ i may also be computed, e.g., by maximizing the
empirical posterior p( i j� = �̂; 
 = 
̂). In practice, while
all integrands can be written explicitly, no closed form
expression exists in general forp(Yj�). Numerical meth-
ods for approximate PLM have been proposed (notably
NONMEM (Bauer et al., 2007) and SAEM (Delyon et al.,
1999; Bauer et al., 2007)) and are contained in dedicated
software packages such as Monolix (Lixoft, 2014).



Chemical Master Equation (CME) modelling. Models
above rely on deterministic dynamics for single cells.
This is inadequate when randomness of gene expression
and regulation is prominent. At the single-cell level, gene
expression noise can be captured by modelling the process
as a (stochastic) Markov Chain. Let x be a count of
molecules of the di�erent species, and interpret v(x;  )
as in�nitesimal probabilities that the di�erent reactions
occur in an in�nitesimal period of time. These rates are
typically determined by mass-action laws, and are the
corresponding kinetic constants (Gillespie, 1992). As a
result, x(t) obeys the laws of a Markov process (possibly
driven by a control input u). For all possible valuesz of
x(t), the probabilities p (z; t) = Prob

�
x(t) = z

�
� ) evolve

over time in accordance with an in�nite-dimensional ODE
called CME (see e.g. El Samad et al. (2005)). In sharp
contrast with ME modeling, the underlying assumption is
that the same model with identical parameters applies to
all cells, so that di�erent cell pro�les are di�erent outcomes
of the same stochastic process. Mixtures of ME and CME
models have also been proposed (Zechner et al., 2014), but
we will not address them here.

In the current literature, CME models are mostly inferred
from empirical statistics of z(t) computed from indepen-
dent cell samples at di�erent time points t (Munsky et al.,
2009; Zechner et al., 2012). Measurements ~y(t j ) at time
points T = f t j : j = 1 ; : : : ; Tg can thus be seen as a
noisy readout of p (�; t j ). The task is to estimate  from
~Y = f ~yj : t j 2 T g (\ � " is used here to distinguish
measurements of statistics ofx from measurements ofx
itself). Here we consider an approach known as Moment
Matching (MM). Solutions based on the approximation of
the CME also exist (Munsky et al., 2009; El Samad et al.,
2005). Let M  (t) be the vector containing the moments of
x(t) up to order L . It can be shown (Schnoerr et al., 2015)
that _M  (t) = A( )M  (t)+ B ( ) �M  (t) for some matrices
A and B depending on the network reaction rates (and
� ), where �M  (t) denotes moments of order higher thanL .
The equation for M  (t) is generally \open" (B 6= 0), i.e.
it cannot be solved due to the unknown moments �M  (t).
However, several so-called moment closure methods have
been proposed, resulting in \closed" systems of equations

_~M  (t) = A( ) ~M  (t) + �
� ~M  (t)

�
(3)

whose solution ~M  approximates M  in a way that
depends on the de�nition of � (Schnoerr et al., 2015;
Zechner et al., 2012). Measurements then obey

~yj = cT ~M  (t j ) + h
� ~M  (t j ); �

�
� (t j ); (4)

with usual assumptions on � , and vector c accounting
for partial observation of ~M  . In particular, if L = 2,
then (3) involves mean, variance and covariance terms,
whereas only mean and variance for a single species are
provided by most common experimental setups, such as
the one illustrated in this paper. Inference then becomes
�nding the value of  that best explains (4), with ~M  the
solution of (3). Di�erent solutions can be found depending
on the speci�c characterization of h (Zechner et al., 2012;
Gonzalez et al., 2013). Here we will apply the method
in Gonzalez et al. (2013), where an additive-multiplicative
noise modelh

�
f; �

�
= � a + � bf is assumed, with parameters

� a and � b also estimated from the data.

Fig. 1. Hyperosmotic gene expression in yeast. Hyperosmotic stress
triggers phosphorylation and nuclear import of the protein
Hog1, which thereupon activates osmo-stress responsive genes.
In our reference setup (Uhlendorf et al., 2012; Llamosi et al.,
2016), a uorescent reporter gene sequence (yECitrine) is en-
gineered in the cells under the control of osmosensitive pro-
moter pSTL1, which results in the synthesis of uorescent
reporter molecules upon cell sensing of osmotic shocks. Ad-
ditional response and adaptation mechanisms (shaded in gray)
are prevented in the speci�c experimental setup, and will not
be considered here.

2.1 Example: Yeast osmotic shock response

In order to discuss validation methods for population mod-
els inferred from biological data, we will consider the case
study of osmotic shock response in yeastSaccharomices
cerevisiae cells (Llamosi et al., 2016). The biological sys-
tem is illustrated in Fig. 1. We will only be concerned with
the modelling of the expression of the reporter gene as a
function of the osmolarity shocks delivered to yeast cells
by means of a computer-controlled microuidics system
(see details in Uhlendorf et al. (2012)). Perception of
an osmotic shock (uh ) leads to the activation of the os-
mosensitive genes, resulting in particular in the transcrip-
tion of uorescent reporter mRNA molecules (mRNA),
subsequently translated into immature protein molecules
(Protein o� ). A subsequent maturation step takes proteins
in their mature, uorescent form (Protein on ). All species
are also subject to degradation and dilution due to cell
growth. In accordance with Gonzalez et al. (2013), the
system is then represented by the following reactions:

;
k5 u h���! mRNA mRNA k6�! ; (5)

mRNA k7�! mRNA + Protein o� Proteino� k8�! ; (6)

Proteino� k9�! Proteinon Proteinon k8�! ; (7)
where the indexing of reaction rate constants is chosen
for consistency with the same work. In turn, the shock
perceived by cellsuh is related with the concentration uc
of a chemical inducer in the microuidics chambers where
the cells reside via the equation _uh (t) = kh uc(t) �  h uh (t).
Quantity uc represents the concentration manipulated
by the experimenter, i.e. the system input previously
called u. Via an automatic microscopy image acquisition
and processing system, measurements of cell uorescence,
i.e. the concentration of Proteinon , are collected over
time. A full characterization of the experimental platform
is provided in Uhlendorf et al. (2012). For mean-cell
and ME modelling, denoting with x = [ x1; x2; x3]T the
concentrations of mRNA, Proteino� and Proteinon , in the
same order, after solving for the system stoichiometry and
the mass-action reaction velocities we get that



_x1(t) = k5uh (t) � k6x1(t); (8)
_x2(t) = k7x1(t) � (k8 + k9)x2(t); (9)
_x3(t) = k9x2(t) � k8x3(t): (10)

For ME models, parameters  i = ( k5; k6; k7; k8; k9) are
cell-dependent. For thei th cell, uorescence measurements
are considered to be of the form

yi (t) = x3(t) +
�
� a + � bx3(t)

�
� i (t): (11)

We will use this model to generate data in silico and
discuss validation of the various models described above.

3. VALIDATION OF CELL POPULATION MODELS

In this section we present validation criteria for assess-
ing the quality of cell population models. Several ap-
proaches come from the literature on ME models (Pin-
heiro and Bates, 2000; Comets et al., 2010). Their ap-
plication will be discussed using the biological example
in Section 2.1. To this purpose, we simulate 100 cells
using a ME model based on (8){(11). The osmotic stress
pro�le and single-cell pro�les yi (t) are shown in Gonzalez-
Vargas et al. (2016). Parameters (k5; k6; k7; k8; k9) are
sampled from a multivariate log-normal distribution,
whose mean and covariance matrix, in log-scale, are� =
[3:40 � 1:22 � 0:05 � 5:52 � 4:04], 
 = 0 :1I 5 (Gonzalez
et al., 2013; Llamosi et al., 2016). We will infer three
models (MC, CME and ME): the predictions of each model
will be compared against the reference dataset, and we will
show how validation methods can be useful to ascertain
the model accuracy. Then, in Section 3.1 we will describe
how the validation criteria can be jointly used for assessing
acceptability of a model.

NRMSE and relative error. These two indicators are
frequently used as a quantitative aid for the validation
methods known as population plots (see later). The Root
Mean Squared Error (RMSE) represents the sample stan-
dard deviation of the prediction error, i.e. the di�erence
between predicted and observed values. As RMSE is scale-
dependent, it is often common to normalize it in order
to provide a scale-independent measure. The Normalized
Root Mean Squared Error (NRMSE) is de�ned as

NRMSE(�; �̂ ) =
1

� max � � min
�

vu
u
t 1

T

TX

j =1

(� j � �̂ j )2 (12)

where, for an experiment spanningT time samples, � j
is the j -th sample of the variable under analysis, e.g. a
single-cell trajectory, the mean trajectory of the cell pop-
ulation, or the moments of the distribution of trajectories.
The predicted values of the variable under study are�̂ j ,
and � max , � min are the maximum and minimum values in
the full set of data. Furthermore, � and �̂ in (12) denote
the set of observed and predicted values, respectively.

Population plots. A simple way to compare the predicted
and observed cell populations is to compute at every time
instant j the empirical mean and standard deviation

m̂Y ;j =
1

Nj

X

i 2 N j

Yij ; �̂ Y ;j =

vu
u
t

1
Nj � 1

X

i 2 N j

(Yij � m̂Y ;j )2

and compare them with the same quantities (my;j ; � y;j )
computed from a dataset of simulated cells created using

the identi�ed model. The observed and predicted statistics
(m̂Y ;j ; �̂ Y ;j ), (my;j ; � y;j ) will then be used for plotting
the mean together with a standard-deviation band in a
single picture, calledstandard plot. Standard plots for the
models of interest are shown in Gonzalez-Vargas et al.
(2016). The standard plot provides information about
the location and dispersion of the population (implicitly
assuming Gaussianity of the underlying distributions), but
it does not take into account single-cell �ts.

Visual Predictive Check (VPC). VPC is a popular
method for evaluating nonlinear ME models in population
pharmacometrics (Comets et al., 2010; Lavielle, 2015).
The idea behind the VPC is to assess graphically whether
simulations from a proposed model are able to reproduce
the central trend and variability in the measured data. The
VPC does not make any assumption on the form of the
distributions and also takes into account the uncertainty
generated by calculating population statistics on small
samples. The procedure uses the estimated model parame-
ters and the design structure of the observed data, (input,
time, and number of samples) to generateK datasets, each
of N simulated cells. Then, in each dataset we compute
the 0.5, 0.025 and 0.975 quantiles. HavingK estimates
of each quantile we can compute and plot a con�dence
interval for them, which makes the interpretation of VPCs
less subjective. Finally, one can overlap \prediction bands"
with estimated quantiles from the observed data. In this
general form, the VPC provides a visual comparison of
the overlap between the simulated distribution with the
observations. Fig. 2 shows the classic VPC for the models
of interest.

Fig. 2. VPC: shaded areas denote 99% con�dence intervals on
the calculated quantiles for the predicted dataset. The selected
quantiles are 0.025 (blue), 0.5 (red) and 0.0975 (blue) which
comprise 95% of the population. The green lines show the same
quantiles for the reference dataset. A large deviation of the
reference quantiles from the predicted quantiles' area suggests
misspeci�cation in the model.

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov
Two-Sample (KS2) test (Smirnov, 1939) is used to assess
the similarity between two sample distributions without
assumptions on the true distributions. In order to compute
the KS statistic we generate a set ofN 0 (typically N 0 �
10000) simulated cells using the identi�ed model. We com-
pute, at each time instant, F1;N (x) and F2;N 0(x), which
are, respectively, the Empirical Cumulative distribution
Functions (ECDFs, see Gonzalez-Vargas et al. (2016); Rice
(2006)) of the observed and simulated datasets. Then we
compute Do� p = supx jF1;N (x) � F2;N 0(x)j, where sup is the
supremum function, and Do� p is the distance between the
two distributions. The test's null hypothesis is that both
samples are drawn from the same distribution and this is



rejected at signi�cance level 1� � if Do� p > c(� )
q

N + N 0

NN 0 .
If we choose a signi�cance level of 95% then� = 0 :05
and c(� ) = 1 :36 (Miller, 1956). The result is given by
a Boolean value hK equal to 1 if the null hypothesis is
rejected and 0 otherwise. Based on this indicator, we can
calculate a success rateSks for the whole experiment as
Sks = 1 � 1

T

P T
j =1 hK j . We can also compute the average p-

value of Sks . A higher p-value will indicate that the two
distributions are more similar (see Fig. 3).

Fig. 3. KS2 test. The blue line represents the p-value obtained
from the test at each time instant (the higher the better).
The 95% threshold p-value (black-dashed line) separates un-
successful time points (red points, indicating the distributions
are statistically di�erent) from successful time points (green).

Prediction distribution errors. The Prediction Distribu-
tion Errors (PDE) are proposed in Comets et al. (2010) as
a metric to evaluate the performance of a ME model, based
on Monte Carlo simulations of the population. We start by
constructing a simulated dataset of K \repetitions" (i.e.
cells simulated with the identi�ed model) for each of the
N observed cells. Ideally the number of repetitions should
be as high as possible (usuallyK � 1000). Observations
produced by the same individual at di�erent time instants
are correlated and the �rst step for deriving PDEs is to
decorrelate them (see Gonzalez-Vargas et al. (2016) for
details). Let us denote with ysim( k ) �

i the decorrelated vector
of simulated observations for thei th cell in the kth simu-
lation and with Y �

i the decorrelated vector of real observa-
tions for the i th subject. Then, we can calculate the PDE

as PDE ij = 1
K

KP

k=1
� �

ijk , where � �
ijk = 1 if ysim( k ) �

ij < Y �
ij and

0 otherwise. PDE values are (theoretically) decorrelated
over time for the same individual and they follow a uniform
distribution U(0; 1) even when there are several observa-
tions per cell. A normalized version of PDE (NPDE) can
be obtained by using the inverse function of the normal
cumulative density function F : NPDE ij = F � 1(PDE ij ):
Results of the NPDE can be seen in Fig. 4. In the top
row, quantile-quantile plots give us a visual indication of
how close the quantiles of NPDE overlap with those of a
standard normal distribution. They should be as aligned
as possible. The Bonferroni p-value included in the plot
(see Gonzalez-Vargas et al. (2016) for a description) gives
us a numerical indication of how close the distribution
of the NPDE resembles a standard Gaussian distribution.
The same comparison can be done using the plot in the
bottom row in Fig. 4.

A posteriori best �ts (APBFs). Using the simulated
datasets introduced for discussing PDEs, we can compute,

Fig. 4. Normalized prediction distribution errors (NPDE).
Quantile-Quantile plots (top) compare the NPDE distribution
(blue circles) to a normal standard distribution (red line). The
Bonferroni-corrected p-value quanti�es the closeness of both
distributions. The bottom plots show the same comparisons,
but from the perspective of probability density functions.

for observed cell i , APBF i = arg min k (NRMSE( ysim (k )
i ; Yi )) .

In other words, APBF i denotes the indexk that minimizes
the NRMSE betweenysim( k )

i and Yi . Then, we can obtain
a visual indication of the goodness of �t, by plotting
best �ts vs observations, and computing a numerical
indicator of the total goodness of �t (i.e., for all cells):
NRMSEAPBF = 1

N

P N
i =1 NRMSE(ysim(APBF i )

i ; Yi ). When two
models perform equally well at the population level, one
can use APBF to choose which one performs better at the
single-cell level. The lower the NRMSEAPBF , the better
the model is able to represent individual cells. Fig. 5 shows
APBF plots for the models of interest.

Fig. 5. APBF plots. Points ( ysim(APBF i )
ij ; yij ) for i = 1 ; : : : ; N ,

j = 1 ; : : : ; T i are represented, i.e. individual best predictions
against observed values of the reference data. A lower spread
of the points in the anti-diagonal direction indicates better
agreement between observations and predictions; this can be
quanti�ed by calculating NRMSE APBF (see text).

3.1 Joint use of validation criteria

Since di�erent validation criteria are available for cell
population models, in this section we provide guidelines
for combining them so as to compare di�erent models and,
if possible, to isolate the best one, still with reference to
the in silico results reported above.
As discussed in Section 3, several validation approaches
require to simulate data using the identi�ed models. To
this purpose, we created datasets of 10000 cells each.
Validation results are shown in Fig. 2{5. For an easier
visual comparison between models, we display in all �gures
colored circles indicating good (green), moderate (yellow)
and bad (red) results.
Based on standard plots (not reported here, see Fig. 3
of Gonzalez-Vargas et al. (2016)), all models seem to per-
form equally well. Another visual evaluation is provided by
VPC (Fig. 2). The green lines representing the empirical



quantiles of the reference data tend to fall outside of the
MC predicted quantiles. This gives us some preliminary
evidence of model misspeci�cation in the MC case.
A quantitative assessment is provided by the KS2 test. The
success rates reported in Fig. 3 provide strong evidence to
discard the MC model, and hint at possible inadequacy of
CME modelling.
Di�erent from the previous tests, focused on the mod-
els' ability to reproduce population statistics, the APBF
method (Fig. 5) veri�es the ability of a model to reproduce
individual cell pro�les by comparing each of the refer-
ence cells to the corresponding best-�tting cell from the
predicted dataset. If the predicted model is able to �t
su�ciently well the individual cells, all the blue crosses in
Fig. 5 should be very close to the diagonal. The best model
should show little dispersion in the anti-diagonal direction
and the smallest NRMSE. The NRMSE indicates that ME
is better than the two competing models.
Finally, the NPDE approach evaluates in some sense both
individual cell and population performance of the models.
The Q-Q and PDF plots in Fig. 4 show that the NPDE of
the ME model follow very closely a standard normal distri-
bution, while the CME and MC deviate from it noticeably.
In summary, based on the last two tests we have a strong
evidence in favor of the ME model, which corresponds to
the actual model used to generate the reference dataset.
This example shows that simple visual checks of mean and
standard deviation can give an erroneous idea of goodness
of �t, which can be partially solved by using more complete
indicators such as VPC.

4. CONCLUSIONS

In this paper, we have compared methods for validating
models of cell populations. Existing validation approaches
are still generic, in the sense that they can be applied to
population of systems, even outside the context of Biology.
As validation approaches can be useful for discriminating
the relative importance of di�erent sources of biological
noise, future research will focus on incorporating genuine
biological aspects in their formulation.
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