R. J. Bauer, S. Guzy, and C. Ng, A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples, The AAPS Journal, vol.9, issue.1, 2007.
DOI : 10.1208/aapsj0901007

I. Cantone, L. Marucci, F. Iorio, M. A. Ricci, V. Belcastro et al., A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches, Cell, vol.137, issue.1, pp.172-181, 2009.
DOI : 10.1016/j.cell.2009.01.055

E. Comets, K. Brendel, and F. Mentrè, Model evaluation in nonlinear mixed effect models, with applications to pharmacokinetics, pp.106-128, 2010.

B. Delyon, M. Lavielle, and E. Moulines, Convergence of a Stochastic Approximation Version of the EM Algorithm, The Annals of Statistics, vol.27, issue.1, pp.94-128, 1999.

E. Samad, H. Khammash, M. Petzold, L. Gillespie, and D. , Stochastic modelling of gene regulatory networks, International Journal of Robust and Nonlinear Control, vol.122, issue.15, pp.15-691, 2005.
DOI : 10.1002/rnc.1018

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic Gene Expression in a Single Cell, Science, vol.297, issue.5584, pp.297-1183, 2002.
DOI : 10.1126/science.1070919

D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica A: Statistical Mechanics and its Applications, vol.188, issue.1-3, pp.404-425, 1992.
DOI : 10.1016/0378-4371(92)90283-V

A. M. Gonzalez, J. Uhlendorf, J. Schaul, E. Cinquemani, G. Batt et al., Identification of biological models from single-cell data: a comparison between mixed-effects and moment-based inference, Proceedings of the 12th ECC, pp.3652-3657, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00817582

A. M. Gonzalez-vargas, E. Cinquemani, and G. Ferrari-trecate, Validation methods for population models of gene expression dynamics, IFAC-PapersOnLine, vol.49, issue.26, 2016.
DOI : 10.1016/j.ifacol.2016.12.112

URL : https://hal.archives-ouvertes.fr/hal-01399921

R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers et al., Universally sloppy parameter sensitivities in systems biology models, PLoS Comput Biol, vol.3, issue.10, pp.1-8, 2007.

M. Lavielle, Mixed-Effects models for the population approach, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01122873

A. Llamosi, A. M. Gonzalez-vargas, C. Versari, E. Cinquemani, G. Ferrari-trecate et al., What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast, PLOS Computational Biology, vol.10, issue.2, pp.1-18, 2016.
DOI : 10.1371/journal.pcbi.1004706.s011

URL : https://hal.archives-ouvertes.fr/hal-01248298

L. H. Miller, Table of Percentage Points of Kolmogorov Statistics, Journal of the American Statistical Association, vol.10, issue.273, p.51, 1956.
DOI : 10.1080/01621459.1951.10500769

B. Munsky, B. Trinh, and M. Khammash, Listening to the noise: random fluctuations reveal gene network parameters, Molecular Systems Biology, vol.9, 2009.
DOI : 10.1006/plas.2000.1477

URL : http://doi.org/10.1038/msb.2009.75

G. Neuert, B. Munsky, R. Tan, L. Teytelman, M. Khammash et al., Systematic Identification of Signal-Activated Stochastic Gene Regulation, Science, vol.339, issue.6119, pp.339-584, 2013.
DOI : 10.1126/science.1231456

J. C. Pinheiro and D. M. Bates, Mixed-Effects Models in S and S-PLUS, 2000.
DOI : 10.1007/978-1-4419-0318-1

J. Rice, Mathematical statistics and data analysis, 2006.

D. Schnoerr, G. Sanguinetti, and R. Grima, Comparison of different moment-closure approximations for stochastic chemical kinetics, The Journal of Chemical Physics, vol.143, issue.18, pp.143-185101, 2015.
DOI : 10.1063/1.4934990

N. V. Smirnov, On the Estimation of the Discrepancy Between Empirical Curves of Distribution for Two Independent Samples, pp.3-14, 1939.

C. Zechner, M. Unger, S. Pelet, M. Peter, and H. Koeppl, Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings, Nature Methods, vol.92, issue.2, pp.197-202, 2014.
DOI : 10.1109/78.978383

C. Zechner, J. Ruess, P. Krenn, S. Pelet, M. Peter et al., Moment-based inference predicts bimodality in transient gene expression, Proceedings of the National Academy of Sciences, vol.109, issue.21, pp.109-8340, 2012.
DOI : 10.1073/pnas.1200161109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361437