
HAL Id: hal-01400075
https://inria.hal.science/hal-01400075

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Safe Path Planning for Robot Navigation in
Unknown Dynamic Environments

Sara Bouraine, Thierry Fraichard, Ouahiba Azouaoui

To cite this version:
Sara Bouraine, Thierry Fraichard, Ouahiba Azouaoui. Real-time Safe Path Planning for Robot Navi-
gation in Unknown Dynamic Environments. CSA 2016 - 2nd Conference on Computing Systems and
Applications, Dec 2016, Algiers, Algeria. �hal-01400075�

https://inria.hal.science/hal-01400075
https://hal.archives-ouvertes.fr

Real-time Safe Path Planning for Robot Navigation in
Unknown Dynamic Environments

Sara BOURAINE 1, Thierry FRAICHARD 2, Ouahiba AZOUAOUI 1

1 Centre de Développement des Technologies Avancées (CDTA), Baba Hassen, Algeria.
2 Univ. Grenoble Alpes, Inria, CNRS, LIG, Grenoble, France.

s_bouraine@yahoo.fr, thierry.fraichard@inria.fr,
oazouaoui@cdta.dz

Abstract. This paper solves a motion planning problem from a motion safety perspective,
where a variant of the classical Rapidly exploring Random Tree (RRT) approach [1] called p-
safe RRT is proposed. The exploration of the search space is similar to RRT, however, the
highlight of p-safe RRT is the integration of passive motion safety. The basic principle of this
safety level is to guarantee that the system can brake down and stop before collision. P-safe
RRT extends a tree through the state time space, where tree’s nodes and primitives are checked
for passive motion safety. The computed trajectory is passively safe and drives the robot from
its initial state to the goal state. The developed algorithms have been tested in simulation sce-
narios; featuring both fixed and moving objects with unknown trajectories for a car-like robot
with a limited field of view.

Keywords: mobile robotics; motion planning; motion safety; dynamic envi-
ronments.

1 INTRODUCTION

Few years ago, Autonomous Ground Vehicles (AGVs) were a challenge, but, today it
becomes a reality: many car dealers currently work on AGVs projects (e.g. BMW,
Toyota, Renault, Volkswagen, Peugeot, General Motors, Mercedes-Benz, or Tesla).
Several demonstrations have been carried out on real roads, i.e. in the presence of
other cars and pedestrians (both with unknown behaviour), having only a partial
knowledge about the environment. However, the risk of accident remains present (see
[2]). Even if these systems are autonomous, up to this day, cars are never unmanned
[3]; will the driver seat ever be empty? Therefore, guaranteeing motion safety remains
an open problem in such situations.
 There is a rich literature on motion planning, most of approaches compute a com-
pete path from an initial position of the robot to the goal position based on the envi-
ronment representation (which is usually a priori known or built during a first phase
of exploration) [4, 5, 6, 7, 8, 9]. Generally, the environment is considered as static.
These methods can be adapted to dynamic environments but adding the temporal
dimension increases the complexity of the problem. Other methods as PRM (Proba-
bilistic Roadmap) [10] and RRT [1, 11] have more performances in high dimensional
configuration spaces. However, PRM requires a priori knowledge about the environ-
ment or an initial map constructed off-line. Otherwise, RRT is more suitable for un-
known environments. Besides, the kinodynamic constraints of the system are explicit-

ly taken into account and the incremental tree construction features better the strong
changes of the environment compared to PRM. Many variants of RRT have been
developed over years. First works [11, 1] were very expensive in computing time as
the tree is expanded over the entire workspace. More recent works have combined
RRT with other methods like PRM to solve the problem [12, 13]. All these works are
applied in static environments. Other extensions of RRT have been also proposed to
drive the robot in dynamic environments; in [14], RRT has been extended to ERRT
(Extended RRT), where environment’s changes are featured by interleaving planning
and execution phases. An anytime RRT version was proposed in [15]; at each time
instance, a new plan is computed based on the environment information update. An-
other variant of RRT is Multipartite RRT, which combines ERRT and anytime RRT
[16]. It is suitable for environments containing moving objects with a priori known
behaviour. There are other extensions of RRT (ex. [17, 18, 19]), but, in most cases,
the future behaviour of moving objects is not considered at all or assumed a priori
known.
 Generally, guaranteeing motion safety requires a priori knowledge about the overall
trajectory of each moving object to ensure that a collision will never occur: that is
what is called absolute motion safety. However, when the future behaviour of objects
is unknown, this form of safety is impossible to guarantee [20]. Therefore, following
the opinion of some authors [21], it is better to settle for weaker levels of motion safe-
ty: it is better to guarantee less than to guarantee nothing. In [22], the proposed solu-
tion is to guarantee that the robot will be at rest if a collision took place. This is what
we called passive motion safety.
 The contribution of this paper is a variant of the classical RRT method [1]; a new
approach p-safe RRT is proposed. It is based on building an incremental tree in the
state time space. The generated nodes and trajectory primitives are checked for pas-
sive motion safety based on a verification algorithm of passively safe states that is
proposed in [22]. So, the planner computes a passively safe trajectory to the goal.
 The paper is organized as follows. Section 2 explains the paradigm collision-free
vs. passive motion safety. In Section 3, the classical RRT principle is first presented,
then the proposed extension p-safe RRT is described in detail. Finally, the validation
of the developed algorithms is illustrated in Section 4 thanks to a simulation imple-
mentation.

2 COLLISION-FREE VS. SAFETY OF MOTION

From a motion safety perspective, previous works (e.g. [23-29]) proposed approaches
that guarantee collision-free motion. However, it is not always sufficient; collision
occurs regardless the undertaken action. For example, in the case of a vehicle travel-
ing at high speed, confronted to a wall, it can be in a situation where collision is inevi-
table given its dynamic constraints (it is not possible to avoid the wall or to stop be-
fore collision). In other words, the vehicle is placed in an inevitable collision state,
i.e. whatever the future trajectory of the vehicle, collision occurs. Therefore, to guar-
antee motion safety, inevitable collision states should be avoided.

 Given the perceptual limitations of the robot and the unknown future behaviour of
the moving objects present in the environment, it is not possible to guarantee absolute
motion safety (collision will never occur given a priori known model of the future).
This is why, we settled for weaker level of motion safety, but stronger given the harsh
constraints related to the robot and the environment. This level of safety is called
passive motion safety (p-safety). It is passive in a sense that the robot takes its own
responsibility to not to be harmful with respect to its surrounding environment, re-
gardless if the other obstacles will collide with him. Passive safety guarantees that if a
collision takes place, the robot will be at rest. From this strategy, the braking inevita-
ble collision states concept (braking ICS) was proposed [22]. A braking ICS (denoted
ICSb) is a state for which whatever the future trajectory of the robot, a collision occurs
before the robot is stopped. A state that is ICSb-free is a p-safe state.
 To verify if a state is ICSb or not (by duality p-safe or not), a braking ICS checker
(called ICSb-CHECK) was developed in [22]. The developed planner presented in sec-
tion 3 is based on ICSb-CHECK to check the p-safety of the planned trajectory.

3 THE DEVELOPED MOTION PLANNING TECHNIQUE

This paper proposes a new motion planning approach called p-safe RRT. It is inspired
from RRT method [1]. However, unlike RRT, p-safe RRT has to guarantee passive
motion safety criterion and takes into account the field-of-view limits and occlusions
besides to the future behaviour of moving objects.

3.1 The classical RRT

RRT is a diffusion technique based on probabilistic sampling of the search space [11,
1]. It has been used to solve motion planning problems in high dimensional configura-
tion spaces. A tree is incrementally expended through the space (set of nodes related
by primitives) for planning a path from an initial state ݏ଴ to a goal state ݏ௚. The basic
principle of this technique is explained in the algorithm presented in figure 1.
 First, the tree (noted TREE) is initialized by the initial state of the robot. It represents
the root node ߟ௥௢௢௧ . The function TREE_EXPANSION grows the tree from ߟ௥௢௢௧
toward randomly selected nodes (using the function RANDOM_TARGET): when a
random target ߟ௧௔௥௚௘௧ is generated, the function NEAREST_NEIGHBOR selects the
nearest node ߟ௡௘௔௥௘௦௧ in the tree relatively to ߟ௧௔௥௚௘௧. ߟ௡௘௔௥௘௦௧ is then extended toward
 ௡௘௔௥௘௦௧ that is generally selected from a set of possibleݑ ௧௔௥௚௘௧ by applying a controlߟ
controls ௖ܷ௧௥௟ (thanks to NEAREST_CTRL). This selection is based on a minimized
Euclidean distance between ߟ௡௘௔௥௘ and ߟ௧௔௥௚௘௧ . The resulting node is ߟ௡௘௪ ; it is
added to the tree with its corresponding new primitive ݌ߜ௡௘௪. If the expansion of the
tree is obstructed by an obstacle, ߟ௡௘௪ is not generated. This process is repeated until
the state ݏ௚ is reached (i.e. when the distance between ߟ௡௘௪ and ݏ௚ is lower than a
certain threshold).
 Generally, RRT and its variants [1, 11, 12, 13] solve motion planning problem only
in the configuration space or the state space, the time parameter is not considered at
all. Furthermore, most of these works are applicable in static environments. Even if

RRT has been extended for dynamic environments [14-19], as the future behaviour of
moving objects is not considered or a priori known, motion safety cannot be guaran-
teed.
 To solve such issue, we propose a modified version of RRT; p-safe RRT. It extends
a tree in the state time space and computes a p-safe trajectory that drives the robot to
the goal in a safe manner.

RRT_CONSTRUCTION()
1. Initialization: TREE = ; {௥௢௢௧ߟ}
2. While ݏ௚ not reached do
௧௔௥௚௘௧ߟ .3 ← RANDOM_TARGET();
4. TREE_EXPANSION(TREE, ;(௧௔௥௚௘௧ߟ
5. end while
6. return TREE;

TREE_EXPANSION(TREE, (௧௔௥௚௘௧ߟ
௡௘௔௥௘௦௧ߟ .7 ← NEAREST_NEIGHBOR(TREE, ;(௧௔௥௚௘௧ߟ
௡௘௔௥௘௦௧ݑ .8 ← NEAREST_CTRL(ߟ௡௘௔௥௘௦௧, ௧௔௥௚௘௧ߟ , ௖ܷ௧௥௟);
,௡௘௪ߟ) .9 (௡௘௪݌ߜ ←GENERATE_PRIM(ߟ௡௘௔௥௘௦௧, ;(௡௘௔௥௘௦௧ݑ
10. if ߟ௡௘௪ ≠ ∅ then
11. TREE = TREE ∪ ;௡௘௪ߟ
12. TREE = TREE ∪ ;௡௘௪݌ߜ
13. end if

Fig. 1. The classical RRT algorithm.

3.2 P-safe RRT

The developed technique p-safe RRT constructs a tree thanks to an exhaustive ex-
ploration of the state time space, i.e. using a fixed set of feasible controls ௖ܷ௧௥௟. The
expanded tree is checked for passive motion safety using the algorithm ICSb-CHECK
proposed in [22] based on a model of the future ܨܯ (this point is detailed in [22]).
Besides ICSb-CHECK, an important property should be established concerning the p-
safety guarantee of a trajectory, it is expressed as follow:

 Property 1:
A trajectory ܲ is p-safe (i.e. not a braking ICS) if P is collision-free and the final state
of P is p-safe.

For more details concerning the proof of this property, or other p-safety guarantee
properties and definitions, the reader is referred to [30].
 The p-safe RRT principle is explained through the algorithm presented in figure 2.
As for RRT, p-safe RRT is initialized by the root node ߟ௥௢௢௧. In addition, the algo-
rithm has as inputs ௖ܷ௧௥௟ and ܨܯ. During the planning time, each node ߟ௜ in the tree is
expanded thanks to the function PSAFE_TREE_EXPANSION according to a set of
controls ௖ܷ௧௥௟. Each control leads to the generation of a new primitive ݌ߜ௡௘௪ and a

new node ߟ௡௘௪ (i.e. the final state of ݌ߜ௡௘௪) (via GENERATE_TRAJ_PRIM). ݌ߜ௡௘௪
is checked for p-safety based on ICSb-CHECK (BRAKING_ICS_CHECK) and proper-
ty 1. In the case no p-safe primitive is found for a given node ߟ௜ , a braking trajectory
is generated to guarantee the motion safety (using GENERATE_BRAKING_TRAJ).
At the end of the process, different p-safe trajectories are possible, but only one tra-
jectory is selected. The function SELECT_BEST_TRAJ is responsible of this task
using an optimization function ݂ which is based on the Euclidean distance (∆݀௧௥௔௝)
between the trajectory final state ݏ௙ and the goal state ݏ௚ and the time cost of the tra-
jectory (∆ ௧ܶ௥௔௝). Weighting factors ݓௗ and ݓ௧ are respectively associated to ∆݀௧௥௔௝
and ∆ ௧ܶ௥௔௝. ݂ is expressed as follows:

݂ = ௗ∆݀௧௥௔௝ݓ + ∆௧ݓ ௧ܶ௥௔௝ (1)

PSAFE_RRT_CONSTRUCTION()
1. Initialization: TREE = ;ܨܯ ,௖ܷ௧௥௟ ,{௥௢௢௧ߟ}
2. While ݐ ൏ ௣௟௔௡ doݐ
3. for ݅ = 0 to ݉ do
4. PSAFE_TREE_EXPANSION(ߟ௜ , ௖ܷ௧௥௟);
5. if ߟ௡௘௪ = ∅ then
6. GENERATE_BRAKING_TRAJ();
7. end if
8. end for
9. end while
10. return TREE;
11. SELECT_BEST_TRAJ(TREE, ;(௚ݏ

PSAFE_TREE_EXPANSION(ߟ௜, ௖ܷ௧௥௟)
12. for ݑ௝ ∈ ௖ܷ௧௥௟ do
,௡௘௪ߟ) .13 (௡௘௪݌ߜ ←GENERATE_TRAJ_PRIM(ߟ௜, ;(௝ݑ
14. if BRAKING_ICS_CHECK(ߟ௡௘௪,ܨܯ)=False then
15. if ݌ߜ௡௘௪ is collision-free then
16. TREE = TREE ∪ ;௡௘௪ߟ
17. TREE = TREE ∪ ;௡௘௪݌ߜ
18. end if
19. end if
20. end for

Fig. 2. P-safe RRT algorithm.

 This algorithm illustrates the general principle of p-safe RRT technique, however,
for motion safety reasons, the planning process can be interleaved with the execution
process like in [14] or instead a partial motion planning can be applied like in [30,
31], where a new plan is periodically computed until the robot reaches its goal.

4 RESULTS

In order to illustrate p-safe RRT performances and demonstrate its motion safety
guarantee, p-safe RRT algorithm has been implemented in simulation scenarios that
feature fixed and moving objects with arbitrary trajectories. The application has been
developed in C++ and it has been tested on a laptop equipped with an Intel Core i7
(1.6GHz, 4GB RAM, OS: Linux).

4.1 The system’s dynamic model

P-safe RRT has been tested for a car-like robot that operates in a state time space. The
robot state is a 5 tuple ݏ = ,ݔ) ,ݕ ,ߠ ,ݒ ,ݔ) .(ߦ are the Cartesian coordinates (related (ݕ
to the midpoint of the rear axle of the robot), ߠ is the robot’s orientation, ݒ its linear
velocity and ߦ its steering angle. The dynamic of the robot is governed by the follow-
ing differential equations:

ۏ
ێ
ێ
ێ
ۍ
ሶݔ
ሶݕ
ሶߠ
ሶݒ
ےሶߦ

ۑ
ۑ
ۑ
ې

=

ۏ
ێ
ێ
ێ
ۍ

ߠݏ݋ܿݒ
ߠ݊݅ݏݒ

ܮ/ߦ݊ܽݐݒ
0
0 ے

ۑ
ۑ
ۑ
ې

+

ۏ
ێ
ێ
ێ
ۍ
0
0
0
1
ے0

ۑ
ۑ
ۑ
ې

ఈݑ +

ۏ
ێ
ێ
ێ
ۍ
0
0
0
0
ے1

ۑ
ۑ
ۑ
ې

కݑ (2)

Where ܮ denotes the robot’s wheelbase, ݑఈ is the linear acceleration and ݑక is the
steering angle velocity. These last two parameters represent the control inputs that
should be applied to the system. The robot behaviour is limited by kinodynamic con-
straints that should be respected, namely:
|ݒ| ≤ ௠௔௫ݒ , |ߦ| ≤ ௠௔௫ߦ , |ఈݑ| ≤ ఈ௠௔௫ݑ , หݑకห ≤ క௠௔௫ݑ

, where ݒ௠௔ = ௠௔௫ߦ ,ݏ/20݉ =

ఈ௠௔௫ݑ ,݀ܽݎ0.314 = కݑ ,ଶݏ/7݉ ௠௔௫
= .ݏ/݀ܽݎ0.314

4.2 P-safe RRT

To illustrate how the developed technique works, it has been tested in a scenario
called simple urban scenario (see figure 3.a); it contains fixed and moving objects
with an arbitrary behaviour. In this case, no information concerning the future behav-
iour of the moving objects is available, only the maximum velocity is considered
஻ݒ) ௠௔௫ = The robot has a limited field-of-view with maximum radius of .(ݏ/20݉
80݉ and it moves in a 2D workspace with 180 × 180 ݉ dimensions. The radius of
the disk objects is 2.5݉. P-safe RRT has to drive the robot starting from initial posi-
tion until a predefined goal while considering the passive motion safety guarantee.
Both seen and unseen objects (perception limits and occlusions) are considered. For
safety purpose, p-safe RRT computes at first ICSb set (see figure 3.b), the black region
represents the forbidden part of the environment that should be avoided by the robot.

The tree is expanded in the space following a set of controls (ݑఈ, ݑక) selected as
follows: ݑఈ=ݑఈ௠௔௫ , i.e. a constant maximum linear acceleration is considered and
కݑ ∈ కݑ−] ௠௔௫

, కݑ ௠௔௫
], i.e. a constant steering angle velocity is selected in this inter-

val of values.

Fig. 3. (a) Simple urban scenario; polygons are the fixed objects and black discs are the
moving objects with their corresponding trajectories represented in blue. The robot is the red
disc at the center. (b) ICSb set for a given position of the robot; the forbidden states (ICSb) are
represented in black while the p-safe states are represented in white (see [22] for more details).
The robot’s field-of-view is represented by the magenta segments (perception limits) and the
green segments (occlusions).

Figure 4 illustrates the behaviour of the robot further to the implementation of p-

safe RRT in the simple urban scenario. The executed trajectory is represented by the
thick trace behind the system while the trajectory in front of the robot is the planned
part. Based on the ICSb set computed given an updated model of the future, the robot
moves until it reaches the goal while avoiding seen and unseen objects (the limits of
the field of view). For example, in the second snapshot, the robot escaped an ICSb
region resulting from perception limits (unexpected objects). In the third snapshot, it
escaped a fixed object and an unexpected objects region. The built p-safe RRT trees
corresponding to these two snapshots are respectively illustrated in figure 5.a and
figure 5.b. Each tree’s primitive and node is checked for passive safety. Only p-safe
nodes are expandable. For an ICSb node, a collision-free braking trajectory is generat-
ed. This experiment shows the performance of p-safe RRT to guarantee a passively
safe behaviour for the robot. Even the avoidance is not possible, the robot brakes
down to remain in a p-safe state.

(a) (b)

Fig. 4. Snapshots of p-safe RRT at work in the simple urban scenario (the goal to reach is rep-

resented by the red point) (see text).

Fig. 5. P-safe RRT trees corresponding to the second (a) and third snapshot (b) of figure 4.

Tree’s primitives represented in blue are p-safe, those in cyan are ICSb (not p-safe) and those in
magenta characterize collision-free braking trajectories (for each ICSb node, a braking trajecto-

ry is generated). The selected trajectory (to be executed) is represented in red.

5 CONCLUSION

AGVs navigation in real road is still challenging up to now. In this paper, we pro-
posed a solution by developing a passively safe motion planner; p-safe RRT. It is a
variant of the classical RRT technique that is based on the guarantee of a passively
safe motion. This navigation system takes into account the dynamics of both the robot
and the environment, where an unknown model of the future is considered. P-safe
RRT has been validated through simulation tests; the robot showed a passively safe
behaviour by avoiding perceived objects and unexpected objects that are potentially
dangerous from a motion safety point of view.
 A logical future work to this one is the implementation of this planning system on
an experimental platform. On the other hand, concerning the approach concept, the
tree expansion strategy used in this paper is basic. The exploration of the space time
could be improved by means of other existing expansion techniques or strategies.

(a) (b)

REFERENCES

1. S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning”, International Jour-
nal of Robotics Research, V. 20, Issue 5, pages 378–400, 2001.

2. L. Fletcher, S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How, J. Leonard, I. Miller, M.
Campbell, D. Huttenlocher, A. Nathan and F.R. Kline, “The MIT—Cornell collision and
why it happened”, International Journal of Field Robotics, V. 25, Issue 10, pages 775-807,
2008.

3. S. Thrun, “What we’re driving”, at Google official blog, (9 October 2010).
4. J.-C. Latombe, “Robot Motion Planning”, Livre, Kluwer, Boston, MA, 1991.
5. H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki and S.

Thrun, “Principles of Robot Motion: Theory, Algorithms, and Implementation”, Livre,
MIT Press, 2005.

6. S. LaValle, “Planning Algorithms”, Livre. Cambridge University Press, 2006.
7. J.P. Laumond, “Robot Motion Planning and Control”, Livre, ISBN 978-3-540-76219-5,

1998.
8. R. Siegwart, I. Nourbakhsh and D. Scaramuzza, “Introduction to Autonomous Mobile Ro-

bots”, Livre, The MIT Press, 2004.
9. S. S. Ge and F. L. Lewis, “Autonomous Mobile Robots: Sensing, Control, Decision Mak-

ing and Applications”, Livre, SBN 9780849337482, 2006.
10. L. E. Kavraki, P. Svestka, J. C. Latombe and M. H. Overmars, “Probabilistic roadmaps for

path planning in high-dimensional configuration spaces”, IEEE Transactions on Robotics
and Automation, V. 12, Issue 4, pages 566–580, June 1996.

11. S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning”, Technical
Report (Computer Science Department, Iowa State University) (TR 98-11), October 1998.

12. K. E. Bekris, B. Chen, A. Ladd, E. Plaku and L. Kavraki, “Multiple query motion planning
using single query primitives”, In IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems, V. 1, pages 656–661, 2003.

13. M. Akinc, K.E. Bekris, B.Y. Chen, A.M. Ladd, E. Plaku, L.E. Kavraki, “Probabilistic
Roadmaps of Trees for Parallel Computation of Multiple Query Roadmaps”, The Interna-
tional Symposium on Robotics Research, V.15, pages 80-89, 2005.

14. J. Bruce and M. Veloso, “Real-time randomized path planning for robot navigation”, In
RoboCup 2002: Robot Soccer World Cup VI, Lecture Notes in Computer Science,
V.2752, pages 288–295, 2003.

15. D. Ferguson and A. Stentz, “Anytime RRTs”, Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5369-5375, 2006.

16. M. Zucker, J. Kuffner and M. Branicky, “Multipartite RRTs for Rapid Replanning in Dy-
namic Environments”, IEEE International Conference on Robotics and Automation, pages
1603 – 1609, 2007.

17. K. Macek, M. Becked and R. Siegwart, “Motion Planning for Car-Like Vehicles In Dy-
namic Urban Scenarios”, IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4375 – 4380, 2006.

18. L. Heon-Cheol, Y. Touahmi and L. Beom-Hee, “Grafting: A Path Replanning Technique
for Rapidly-Exploring Random Trees in Dynamic Environments”, Advanced Robotics,
V.26, Issue 18, pages 2145-2168, 2012.

19. L. Ma, J. Xue, K. Kawabata, J. Zhu, C. Ma, and N. Zheng, "Efficient Sampling-Based Mo-
tion Planning for On-Road Autonomous Driving”, IEEE Transactions on Intelligent
Transportation Systems, V.16, Issue 4, pages 1961-1976, 2015.

20. T. Fraichard, “Will the driver seat ever be empty?” INRIA” Research Report, 2014.

21. K. Macek, D.A. Vasquez-Govea, Th. Fraichard and R. Siegwart, “Towards safe vehicle
navigation in dynamic urban scenarios”, Automatika, V. 50, no. 3-4, pages 184-194, 2009.

22. S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe navigation for mobile robots with
limited field-of-views in dynamic environments,” Autonomous Robots, vol. 32, no. 3, pp.
267–283, 2012.

23. L. Pallottino, V. Scordio, A. Bicchi and E. Frazzoli, “Decentralized cooperative policy for
conflict resolution in multivehicle systems”, IEEE Transations on Robotics, 23(6), 2007.

24. J. Van den Berg, M. Lin and D. Manocha ,”Reciprocal velocity obstacles for real-time
multi-agent navigation”, In IEEE International Conference on Robotics and Automation,
2008.

25. E. Molinos, A. Llamazares, M. Ocana and F. Herranz, “Dynamic obstacle avoidance based
on curvature arcs”, IEEE/SICE International Symposium on System Integration (SII), pag-
es 186-191, 2014.

26. E. Lalish and K. Morgansen, “Decentralized reactive collision avoidance for multivehicle
systems”, In IEEE conf. decision and control, Cancun, 2008.

27. K. Bekris, K.Tsianos and L. Kavraki, “Safe and distributed kinodynamic replanning for
vehicular networks”, Mobile Networks and Applications, 14(3), 2009.

28. B. Gopalakrishnan, A.K. Singh and K.M. Krishna, “Time scaled collision cone based tra-
jectory optimization approach for reactive planning in dynamic environments”, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2014), pages 4169-
4176, 2014.

29. J. L. Blanco, J. González and J. A. Fernández-Madrigal, “Extending obstacle avoidance
methods through multiple parameter-space transformations”, Autonomous Robots, V. 24,
Issue 1, pages 29-48, 2008.

30. S. Bouraine, T. Fraichard, and O. Azouaoui and H. Salhi, “Passively Safe Partial Motion
Planning for Mobile Robots with Limited Field-of-Views in Unknown Dynamic Environ-
ment”, 2014 IEEE International Conference on Robotics and Automation (ICRA 2014),
pages 3576-3582, 2014.

31. S. Bouraine, “contrıbutıon a la planıfıcatıon de mouvements en envıronnements dy-
namıques pour des robots mobıles de type voıture : cas du robucar”, PhD thesis, 2016.

