
HAL Id: hal-01400452
https://hal.inria.fr/hal-01400452

Submitted on 22 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building a Domain Knowledge Model Based on a
Concept Lattice Integrating Expert Constraints

My Thao Tang, Aleksey Buzmakov, Yannick Toussaint, Amedeo Napoli

To cite this version:
My Thao Tang, Aleksey Buzmakov, Yannick Toussaint, Amedeo Napoli. Building a Domain Knowl-
edge Model Based on a Concept Lattice Integrating Expert Constraints. Proceedings of the Thirteenth
International Conference on Concept Lattices and Their Applications, Jul 2016, Moscow, Russia. 1624,
pp.349–362, 2016. <hal-01400452>

https://hal.inria.fr/hal-01400452
https://hal.archives-ouvertes.fr

Building a Domain Knowledge Model Based on a
Concept Lattice Integrating Expert Constraints

My Thao Tang1, Aleksey Buzmakov2,
Yannick Toussaint1, and Amedeo Napoli1

1 LORIA (CNRS - Inria NGE - U. de Lorraine), Vandœuvre-lès-Nancy, France
2 National Research University Higher School of Economics, Perm, Russia

my-thao.tang@loria.fr,avbuzmakov@hse.ru,

yannick.toussaint@loria.fr,amedeo.napoli@loria.fr

Abstract. Traditionally, FCA can be used as a tool for eliciting from
data a class schema in the form of either a set of attribute implications
or a concept lattice. However, such a schema does not necessarily fit the
point of view of a domain expert for different reasons, e.g. noise, errors or
exceptions in the data. For example, in the domain of animals, an expert
may expect that the rule “mammal implies do not lay eggs” holds, while
this may not be the case if the platypus is among the objects in the formal
context. In this paper, we propose to bridge the possible gap between the
representation model based on a concept lattice and the representation
model of a domain expert. The knowledge of the expert is encoded as a set
of attribute dependencies or constraints which is “aligned” with the set of
implications provided by the concept lattice, leading to modifications in
the original concept lattice. The method can be generalized for generating
lattices satisfying constraints based on attribute dependencies and using
extensional projections. This method also allows the experts to keep a
trace of the changes occurring in the original lattice and the revised
version, and to assess how concepts in practice are related to concepts
automatically issued from data.

Keywords: Formal Concept Analysis, projection, attribute implication,
attribute dependency

1 Introduction

Formal Concept Analysis (FCA) [1] is a classification method which is helpful
for the conceptualisation step in building ontologies [2]. FCA elicits from data a
class schema in the form of either a set of attributes implications or a concept
lattice. The concept lattice can be interpreted as a knowledge model in the form
of a concept hierarchy and the logical structures of formal concepts and con-
cept lattices are effective in supporting human reasoning [3]. However, building
knowledge bases is a cognitive process and does not obey to strict and formal
rules as domain experts may understand the domain in a different way than what
is represented in data. Thus, often there exists a gap between the representation

model based on a concept lattice and the representation model as imagined by
a domain expert. In order to bridge this gap, researchers [4–6] have tried to
integrate into lattices experts’ knowledge in the form of dependencies between
attributes. In these approaches, attribute dependencies serve as constraints that
lead to more comprehensible structures of formal concepts for domain experts:
formal concepts which satisfy the constraints are then provided to experts, and
formal concepts which do not satisfy the constraints are disregarded.

Accordingly, in this paper, we introduce a formal method for integrating
expert constraints into concept lattices in such a way that we can maintain the
lattice structure as this structure is effective in supporting human reasoning [3].
Moreover, instead of providing only concepts that satisfy experts’ knowledge,
the method allows experts to keep a trace of changes occurring in the original
lattice and the final constrained version, and to assess how concepts in practice
are related to concepts automatically issued from data.

In this work, we “align” a set of given attribute dependencies with the set of
implications provided by the concept lattice, leading to modifications in the orig-
inal lattice. The method extends the definition of dependencies between single
attributes introduced in [5] to the case of dependencies between attribute sets,
and allows domain experts to have more possibilities for expressing constraints.
We are able to build the constrained lattices without changing data and provide
the trace of changes by using extensional projections [7, 8] over lattices. From
an original lattice, two different projections produce two different constrained
lattices, and thus, the disagreement between the representation model based on
a concept lattice and the representation model as imagined by a domain expert
is filled with projections.

The paper is organized as follows. Firstly, we introduce some basic notions
that provide the foundations of our work. Next, we detail the method for gener-
ating constrained lattices, providing the trace of changes by using projections.
Finally, we conclude our work and draw some perspectives over the approach.

2 Preliminaries

In the following, we introduce some important definitions that support our work.
Firstly, we introduce attribute implications and dependencies and secondly, we
describe projections in a concept lattice. For the following definitions, we use
the notation of FCA in [1], where the formal context (G,M, I) is composed of a
set of objects G, a set of attributes M and an incidence relation set I ⊆ G×M .
An example of such formal context is presented in Table 1.

2.1 Attribute Implication and Dependencies

Implications in a formal context represent dependency relations between at-
tributes existing in data. In a nutshell, given an implication x → y we can
understand that “all objects having x also have y”. Attribute implications can
be read off directly from a formal context as stated in Definition 1.

Definition 1 (Attribute Implication [1]) An implication between sets of at-
tributes X,Y ⊆ M in a formal context (G,M, I) is denoted by X → Y , where
every object having all the attributes from X has also all the attributes from Y ,
i.e. X ′ ⊆ Y ′.

Following Definition 1, attribute implications can be verified in the formal
context and in the concept lattice thanks to Propositions 1 and 2.

Proposition 1 ([1]). An implication X → Y between sets of attributes X,Y ⊆
M holds in (G,M, I) iff Y ⊆ X ′′. It then automatically holds in the set of all
concept intents in the concept lattice as well.

Proposition 2 ([1]). An implication X → Y between sets of attributes X,Y ⊆
M holds in a concept lattice iff X → m, ∀m ∈ Y , where X → m ⇐⇒
(X ′, X ′′) ≤ (m′,m′′). (m′,m′′) is the attribute concept of m.

Animal h
a
s
t
w
o
l
e
g
s
(
m
1
)

l
a
y
s
e
g
g
s
(
m
2
)

c
a
n
f
l
y
(
m
3
)

h
a
s
w
i
n
g
s
(
m
4
)

h
a
s
f
i
n
s
(
m
5
)

h
a
s
f
e
a
t
h
e
r
s
(
m
6
)

h
a
s
m
i
l
k
(
m
7
)

h
a
s
b
a
c
k
b
o
n
e
(
m
8
)

l
i
v
e
s
i
n

w
a
t
e
r
(
m
9
)

bear (g1) x x x

carp (g2) x x x x

chicken (g3) x x x x x x

crab (g4) x x

dolphin (g5) x x x x x

honeybee (g6) x x x

penguin (g7) x x x x x x

wallaby (g8) x x x

Table 1: Formal context of animals

For example, the implication m7:has milk → m8:has backbone holds in the
formal context of Table 1. Different from implications, attribute dependencies do
not arise from data. They are dependency relations that experts expect to exist
as attribute implications. In the following, we provide the definition of attribute
dependencies based on [5] and [6].

Definition 2 (Attribute Dependency [6]) An attribute dependency is in the
form x ≺ y, where attribute x is less important than attribute y and the presence
of x is not meaningful without the presence of y.

Definition 3 (Formal Concept Satisfaction & Constrained Posets [5])
A formal concept (A,B) satisfies an attribute dependency x ≺ y between at-
tributes x and y iff whenever x ∈ B then y ∈ B.

(1) A concept lattice L constrained by an attribute dependency x ≺ y, is the
collection of all formal concepts from lattice L which satisfy x ≺ y.

(2) A concept lattice L constrained by a set of attribute dependencies D, is the
collection of all formal concepts from lattice L which satisfy all attribute
dependencies in D.

Notice that both collections are partially ordered subsets of the original lat-
tice L [5]. We will refer to them as constrained posets of lattice L w.r.t. depen-
dency x ≺ y (or w.r.t. the set of dependencies D). To illustrate Definitions 2
and 3 above, consider the formal context of animals in Table 1. The correspond-
ing concept lattice is shown in Fig. 1. The constrained poset w.r.t. attribute
dependency can fly ≺ has wings is the collection of formal concepts from the
lattice circled in blue in Fig. 1.

 m3 m4

(m3’,m3’’)

(m4’,m4’’)

Fig. 1: The lattice constrained by m3 ≺ m4 and the trace of changes.

2.2 Projections

Projections are mathematical functions that allow mapping extents or intents in
a concept lattice into “simpler” extents or intents, called extensional or inten-
sional projections respectively [8, 9]. Initially, projections are used for simplifying
descriptions of concepts in pattern structures [7, 10]. For our purpose, we use ex-
tensional projections.

Definition 4 (Extensional Projection [7]) An extensional projection ψ is
defined as a mapping verifying the following properties for each pair (A1, A2)
of extents of a lattice L: (1) if A1 ⊆ A2, then ψ(A1) ⊆ ψ(A2) (monotone), (2)
ψ(A1) ⊆ A1 (contractive), and (3) ψ(ψ(A1)) = ψ(A1) (idempotent).

Let L be a lattice, and ψ be an extensional projection of L, then the set
of extents E in L can be divided into two sets: E = {e ∈ E|ψ(e) = e} ∪ {e ∈
E|ψ(e) ⊂ e}. The set {e ∈ E|ψ(e) = e} is called the fixed point of ψ.

The mapping of a concept in a lattice onto the corresponding concept in the
projected lattice can be computed thanks to Proposition 3.

Proposition 3 ([9]). Let L be a lattice, and ψ be an extensional projection of
L, then a concept (A,B) in L is projected in the corresponding lattice ψ(L) onto
the concept (A1, B1) such that A1 = ψ(A) and B1 = A′

1.

It is worth noticing that the “projected lattice” which is the set of all pro-
jected concepts (or extents) is actually a concept lattice. For our purposes, this
adds the benefit that the result of constraining a lattice through a projection pre-
serves the lattice structure. Hereafter, we will refer to the result of constraining
the lattice through a projection as a constrained lattice.

3 Projections for Generating Constrained Lattices

As previously discussed, in a given formal context, there exists some implications
that represent attribute dependencies among attributes. However, implications
which can be checked within the concept lattice are usually not in the data.
For example, some objects may have missing attribute associations or may have
wrongly assigned attributes. In a different scenario, an expert may simply want
to observe formal concepts aligned through her particular point-of-view of the do-
main. Thus, often there exists a disagreement between the relations of attributes
in the data and the relations of attributes as a domain expert understands them.

3.1 Discussion about Constrained Lattices

In order to bridge the disagreement between the representation model based on a
concept lattice and the representation model as imagined by a domain expert, we
“align” a set of given attribute dependencies with the set of implications provided
by the concept lattice. According to Definitions 1 and 2, if an implication x→ y

holds in a lattice, then that lattice satisfies the attribute dependency x ≺ y. To
build a lattice satisfying a set of attribute dependencies, we look for a lattice
that satisfies the corresponding set of attribute implications. In our setting, we
want to use a well-founded process based on projections. Thus, we provide a
method for projecting the lattice in such a way that the lattice structure is
preserved. Moreover, we provide experts with a mapping of concepts in the
original lattice onto the corresponding concepts in the revised version to make
visible the changes in the lattice. We refer to these mappings as the trace of
changes occurring in the original lattice and the revised version. We achieve this
by using extensional projections over lattices.

We illustrate this scenario where a lattice L is mapped onto a lattice L1

which is a revised version w.r.t. the attribute dependency x ≺ y. Let us call this
mapping ς.

We observe the following characteristics of ς: (i) ς reduces the size of the
lattice L because the constrained lattice L1 do not contain formal concepts in
L which do not satisfy the constraints; (ii) In order to get formal concepts in
L satisfying the constraints, ς replaces the concept extents in that lattice with
smaller sets of objects which are still extents. This replacement may result in
a loss of information. Hence, the trace of changes should be kept as it may be
useful for domain experts to be aware that some concepts in the lattice will be
lost some important objects. Indeed, (i) and (ii) are consequences of the fact
that ς is an extensional projection. ς is a special case of projections from [7, 8].
This extensional projection does not create new extents, it replaces the concept
extents in the lattice with smaller extents.

In the following, we describe how extensional projection is defined in two
different cases, namely for a single attribute dependency and for a set of attribute
dependencies.

3.2 Projections for Constrained Lattices w.r.t. Dependencies
between Attribute Sets

Let us consider the problem of finding an extensional projection ψ : L → L1,
where L is a concept lattice which does not satisfy the implication x → y be-
tween attributes x, y ∈ M , L1 is the projected lattice of L which satisfies the
implication x→ y.

The following propositions state the main properties of ψ.

Proposition 4. Let L be a concept lattice which does not satisfy the implication
x→ y, then x′ 6⊆ y′ =⇒ x′ ∩ y′ ⊂ x′.

Proposition 5. Let L be a concept lattice which does not satisfy the implication
x → y, and ψ be an extensional projection of L such that the projected lattice
satisfies x→ y, then ψ(x′) = x′ ∩ y′.

Proof. see Appendix

Proposition 5 gives us an important property of ψ to observe changes in
lattice L: From lattice L which does not satisfy the implication x → y, we
are going to project x′ in lattice L to x′ ∩ y′ to get the projected lattice that
satisfies the implication x→ y. And this follows the properties of projections as
ψ(x′) = x′ ∩ y′ ⊂ x′.

Given an extensional projection ψ of L such that ψ(x′) = x′ ∩ y′, extents A
in L can be divided into three categories as shown in Fig. 2.

– Category I contains all extents A that are subsumed by x′ ∩ y′, i.e. A ⊆
(x′ ∩ y′) ⊂ x′ (x′ ∩ y′ ⊂ x′ by Proposition 4).

– Category II contains all extents A that are subsumed by x′ but not subsumed
by x′ ∩ y′, i.e. A ⊆ x′, A 6⊆ (x′ ∩ y′).

– Category III contains extents A that are not in categories I, II, i.e. A 6⊆ x′.

'' yx

I
II

III
'x

┬

Fig. 2: Three possible categories of extents in lattice L when ψ(x′) = x′ ∩ y′.

Consider an elementA in Category I. As the objects in the set x′∩y′ have both
attributes x and y, the concept with extent x′ ∩ y′ in L satisfies the implication
x→ y. Because A is subsumed by x′∩y′, the concept with extent A in L satisfies
x→ y and remains the same in the projected lattice, i.e. ψ(A) = A. Category I
is a component of the fixed point of the projection ψ.

Consider an element A in Category III. Because the objects in A do not have
attribute x, the concept with extent A in L satisfies the implication x→ y and
remains the same in the projected lattice, i.e. ψ(A) = A. Category III is also a
component of the fixed point of the projection ψ.

Consider an element A in Category II. We have: 1) ψ(A) ⊆ A by the con-
tractive property of projections; 2) As A ⊆ x′, ψ(A) ⊆ ψ(x′) by the mono-
tonic property of projections. Moreover, ψ(x′) = x′ ∩ y′ by Proposition 5. So,
ψ(A) ⊆ x′ ∩ y′. As a result of 1) and 2), ψ(A) ⊆ A ∩ (x′ ∩ y′).

In order to have the largest fixed point, we set ψ(A) = A∩ (x′ ∩ y′). ψ(A) =
A ∩ (x′ ∩ y′) complies with the properties of projections and the concept with
extent ψ(A) satisfies x → y because objects in ψ(A) = A ∩ (x′ ∩ y′) have both
attributes x and y. This introduces the fact that Category II constrains concepts
which are projected in such a way that ψ(A) = A ∩ (x′ ∩ y′).

Thus, the projection with the largest fixed point given by ψ(x′) = x′ ∩ y′ is:

ψ(A) =

{
A ∩ (x′ ∩ y′) if A ⊆ x′, A 6⊆ (x′ ∩ y′),
A otherwise.

(1)

This projection gives the projected lattice satisfying the implication x→ y.
This projection can be extended to support dependencies between attribute

sets of the form X ≺ Y , where X,Y ⊆ M . In such a case, the projection is
defined as:

ψ(A) =

{
A ∩ (X ′ ∩ Y ′) if A ⊆ X ′, A 6⊆ (X ′ ∩ Y ′),

A otherwise.
(2)

The trace of changes occurring in the original lattice L and the constrained
lattice L1 can be obtained thanks to Proposition 3.

Example 1. Consider the running example where the expert provides her knowl-
edge in the form of an attribute dependency m3:can fly ≺ m4:has wings. Ac-
cording to the data in Table 1: m3′={g3, g5, g6}, m4′={g3, g6, g7}, m3′ ∩
m4′={g3, g6}.

Applying Equation 2, the extensional projection ψ for generating the con-
strained lattice L1 from the original lattice L is:

ψ(A) =

{
A ∩ {g3, g6} if A ⊆ {g3, g5, g6}, A 6⊆ {g3, g6},
A otherwise.

(3)

Fig. 1 depicts the constrained lattice and the trace of changes provided by
the projection ψ. In Fig. 1, the formal concepts of the constrained lattice are
circled blue. The transformations correspond to: C4 → C12 ({g3, g5, g6} →
{g3, g6}), C9 → C18 ({g3, g5} → g3), and C15 → C19 (g5 → ∅). The other
transformation {g5, g6} → g6 does not apply as neither {g5, g6} or g6 are
extents in lattice L.

An interpretation of the change C4 in L to C12 in L1 according to the se-
mantics of the extensional projection is as follows. According to the data, ob-
jects g3:chicken, g6:honeybee are grouped together with object g5:dolphin to
form concept C4 whose intent is {m3:can fly}. According to the expert, animals
that can fly should also have wings (can fly ≺ has wings), g5:dolphin should
not be grouped together with g3:chicken and g6:honeybee to form a con-
cept. This is better represented by concept C12 whose extent is {g3:chicken,
g6:honeybee} and intent is {m2:lays eggs, m3:can fly, m4:has wings}. By
checking this change, we found that the data contain a noisy element: dolphins
can fly.

3.3 Projections for Constrained Lattices w.r.t. Sets of Dependencies

A “naive” way to generate a constrained lattice satisfying a set of dependencies
consists in generating first a constrained lattice for each dependency, and then
getting the final constrained lattice by the intersection of these constrained lat-
tices. A question raised here: is there a “good” way to generate the constrained
lattice? In the following, we will show that dependencies should be treated fol-
lowing an order of projections.

Definition 5 ([9, 10]) Let L be a concept lattice, and ψ1, ψ2 be two extensional
projections of L, we say that ψ1 ≤ ψ2, iff there is some projection ψ defined on
ψ2(L) such that for all extent A in L, ψ1(A) = ψ ◦ ψ2(A). If ψ1(L) ⊆ ψ2(L),
then ψ1 ≤ ψ2.

Definition 5 states that actually projections can be ordered from “general”
to “specific”. If ψ1 is a projection over the projected lattice of ψ2, then we say
ψ1 is more specific than ψ2 or ψ2 is more general than ψ1.

There is a partial order on projections of a lattice given by Proposition 6.
This proposition has been proven in [10].

Proposition 6 ([10]). Extensional projections of a lattice L ordered by Def-
inition 5 form a semi-lattice (F ,∧), where the semi-lattice operation between
ψ1, ψ2 ∈ F is given by ψ1 ∧ ψ2 = ψ3 iff ψ3(L) = ψ1(L) ∩ ψ2(L).

The order on projections for generating constrained lattices can be charac-
terized by Proposition 7.

Proposition 7. Let L be a concept lattice, ψ1 be an extensional projection of L
such that the projected lattice satisfies the implication X1 → Y1, and ψ2 be an
extensional projection of L such that the projected lattice satisfies the implication
X2 → Y2, where X1, Y1, X2, Y2 ⊆M , we have:

1) If X1 ⊆ X2 and Y1 ⊆ Y2, then ψ1 ≤ ψ2.
2) If ψ1 ≤ ψ2, then the projected lattice given by ψ1 satisfies X1 → Y1 and

X2 → Y2.
3) There exists an extensional projection ψ3 of L such that ψ3(L) = ψ1(L) ∩

ψ2(L). ψ3 gives the constrained lattice that satisfies X1 → Y1 and X2 → Y2.

As a result of Proposition 7, given two dependencies between attribute sets,
we can order the projections corresponding to these dependencies as follows.
First, if one dependency depends on attribute sets that are included in the
attribute sets of the other dependency, then the projection of that dependency
is more specific than the projection of the other. Second, if one projection is
more specific than the other, then we can use the more specific projection for
generating the final constrained lattice . Third, we can use the projection that
is the meet of the two projections for generating the final constrained lattice.

Let us now go back to our scenario of generating a constrained lattice that
satisfies a set of dependencies. Let L be a concept lattice, and ψi be an ex-
tensional projection of L such that the projected lattice satisfies an implication

Xi → Yi, where Xi, Yi ⊆M . The set of projections ψi can be ordered according
to the order of projections given by Proposition 7. This order forms a semi-
lattice given by Proposition 6. By Proposition 7, the projection that is the meet
of the most specific projections in this order gives the final constrained lattice
satisfying the set of implications.

According to the order of projections, we have two possible ways of generating
constrained lattices. The first way uses the meet of the most specific projections
in the order of the set of projections to generate the final constrained lattice.
The second way uses all the projections to generate a set of constrained lattices.
Applying the first or the second way to generate constrained lattices depends on
what experts need. The first way using the meet of the most specific projections
to generate the final constrained lattice is more efficient in computation than the
second way using all the projections to generate the corresponding constrained
lattices. However, by using the meet of the most specific projections to generate
the final constrained lattice, the first way only provides the trace of changes
between the original lattice and the final constrained lattice. In the case experts
need all the traces of changes, we need the second way using all the projections
to generate the corresponding constrained lattices.

Example 2. Consider the running example where the expert provides her knowl-
edge in the form of a set of dependencies di:

d1) {m3, m8} ≺ {m4},
d2) m3 ≺ m4,
d3) {m1, m2} ≺ {m3},
d4) m4 ≺ m3.

Let ψi be the extensional projection for generating the constrained lattice
satisfying dependency di, applying Equation 2, we have:

For d1 : ψ1(A) =

{
A ∩ {g3} if A ⊆ {g3, g5}, A 6⊆ {g3},
A otherwise.

(4)

For d2 : ψ2(A) =

{
A ∩ {g3, g6} if A ⊆ {g3, g5, g6}, A 6⊆ {g3, g6},
A otherwise.

(5)

For d3 : ψ3(A) =

{
A ∩ {g3} if A ⊆ {g3, g7}, A 6⊆ {g3},
A otherwise.

(6)

For d4 : ψ4(A) =

{
A ∩ {g3, g6} if A ⊆ {g3, g6, g7}, A 6⊆ {g3, g6},
A otherwise.

(7)

Lattices in Figs. 3, 4, 5 and 6 depict the constrained lattices and the traces
of changes provided by the projections ψ1, ψ2, ψ3, ψ4 respectively. In this set

of projections, ψ2 ≤ ψ1 and ψ4 ≤ ψ3. We can see that the constrained lattice
ψ2(L) is included in ψ1(L) and ψ4(L) is included in ψ3(L).

0

1 2 3 4

5 6 7 8 9 10

13 14 16 17 12

11

18 20 15 21

19

4}8,3){1 mmmd

Fig. 3: The constrained lattice for d1.

0

1 2 3
4

5 6 7 8 9
10

13 14 16
17 12

11

18 20 15 21

19

43)
2

mmd

Fig. 4: The constrained lattice for d2.

0

1 2 3
4

5 6 7 8 9
10

13 14 16
17 12

11

18 20 15 21

19

3}2,1){3 mmmd

Fig. 5: The constrained lattice for d3.

0

1 2 3
4

5 6 7 8 9
10

13 14 16
17 12

11

18 20 15 21

19

34)
4

mmd

Fig. 6: The constrained lattice for d4.

Let ψ5 be an extensional projection that is the meet of the most specific
projections: ψ5 = ψ2 ∧ ψ4. ψ5 can be defined such that:

ψ5(A) =

A ∩ {g3, g6} if A ⊆ {g3, g6, g7}, A 6⊆ {g3, g6},
A ∩ {g3, g6} if A ⊆ {g3, g5, g6}, A 6⊆ {g3, g6},
A otherwise.

(8)

1

2

3

4

5

Fig. 7: The semi-lattice of projections.

The set of projections ψi forms a semi-lattice as shown in Fig. 7. We have two
ways of generating the final constrained lattice. The first way uses the meet ψ5 of
the most specific projections. Lattice in Fig. 8 depicts the final constrained lattice
and the trace of changes between the original lattice and the final constrained
lattice provided by the projection ψ5. The second way uses all the projections to
have all the traces of changes. According to the semi-lattice of the projections,
because ψ2 ≤ ψ1 and ψ4 ≤ ψ3, in order to get all the traces of changes, ψ1 is
applied before ψ2 and ψ3 is applied before ψ4. By contrast, as ψ2 and ψ4 are
incompatible, it does not matter if ψ1 and ψ2 or ψ3 and ψ4 are applied first.
Thus, the projections can be applied according to either the order ψ1,ψ2,ψ3,ψ4,ψ5

or ψ3,ψ4.ψ1,ψ2,ψ5. The trace of changes can be either the chain of lattices in
Figs. 3, 4, 5, 6, 8 or lattices in Figs. 5, 6, 3, 4, 8. In both cases, experts still can
access the changes corresponding to each dependency.

0

1 2 3
4

5 6 7 8 9
10

13 14 16
17 12

11

18 20 15 21

19

Fig. 8: The final constrained lattice and the trace of changes.

4 Related Work, Discussion and Conclusion

Taking into account expert knowledge in the form of dependencies between at-
tributes in concept lattices has been proposed by several researchers [11, 12, 4, 5].
[11, 12] extended attribute exploration to include background implications, i.e.
the implications that experts already know to be valid. In these approaches, they
trust the original data and experts have to provide new objects as counterexam-
ples. To deal with a situation such that experts know dependencies between at-
tributes, but they do not know any new objects to provide, the other approaches

[4, 5] were proposed to build a concept hierarchy from a formal context extracted
from data and from a hierarchy of attributes provided by domain experts. Two
possible ways of adding knowledge to object descriptions were discussed in [4].
One way is to expand the formal context by adding to the description of each
object all attributes that are implied by the original attributes. Expanding the
context can lead to lose the original data and the formal context may become very
large. The other way is to work with an unexpanded formal context by adapting
the construction algorithms of lattices to extract formal concepts satisfying de-
pendencies. A similar idea was proposed by [5], in which the authors adapted an
incremental algorithm for computing constrained posets. By contrast, we do not
expand the formal context nor adapt the construction algorithms of lattices. Our
method uses projections to generate constrained lattices instead of constrained
posets and to provide the trace of changes.

To conclude, in this paper, we have presented a formal method based on
extensional projections for integrating expert knowledge into concept lattices in
such a way that the lattice structure and the trace of changes are preserved.
The expert knowledge is encoded as a set of attribute dependencies which is
aligned with the set of implications provided by the concept lattice. According
to the order of projections, the method offers two ways of generating constrained
lattices. The first way uses the meet of the most specific projections to generate
the final constrained lattice. The second way uses all the projections to generate
a set of constrained lattices. The first way is more efficient in computation, but
provides only the trace of changes between the original lattice and the final
constrained lattice while the second way provides all the traces of changes, but
less efficient in computation.

Currently, we are implementing the method for experiments with large datasets.
Future work includes defining intensional projections to integrate dependencies
between object sets. This is useful for many applications, e.g. when classifying
documents, this can be applied to integrate a partial order of documents from
experts into concept lattices. Another interesting application could be to com-
plete definitions in data, e.g. the method presented in this paper can be applied
to add implications that experts expect to exist.

Appendix

Proof (Proposition 5).

1) As the projected lattice satisfies the implication x → y, (ψ(y′), ψ(y′)′) ≥
(ψ(x′), ψ(x′)′) (by Proposition 2). So, ψ(x′) ⊆ ψ(y′).

2) ψ(y′) ⊆ y′ (by the contractive property of projections).
3) As a result of 1) and 2), we have ψ(x′) ⊆ ψ(y′) ⊆ y′.
4) ψ(x′) ⊆ x′ (by the contractive property of projections).
5) As a result of 3) and 4), we have ψ(x′) ⊆ x′ ∩ y′.
6) For any m ∈ M , m′ is the maximal set of objects having m in L. Since ψ

is contractive, this is also true in the projected lattice. Thus, ψ(x′) is the
maximal set of objects having attribute x in the projected lattice L1.

7) Because the objects in the set x′ ∩ y′ have both attributes x and y, the
concept with extent x′ ∩ y′ in L satisfies x→ y and remains the same in L1.
So, x′ ∩ y′ exists in L1 and the objects in this set have attribute x.

8) As a result of 6) and 7), we have x′ ∩ y′ ⊆ ψ(x′).

As a result of 5) and 8), ψ(x′) = x′ ∩ y′.

Proof (Proposition 7).

1) Let ψ1(L), ψ2(L) be the projected lattices given by ψ1, ψ2 respectively. As
ψ1 ≤ ψ2, according to Definition 5, ∃ψ: ψ1(L) = ψ ◦ ψ2(L). Hence, ψ1(L) ⊆
ψ2(L). So, the projected lattice given by ψ1 satisfies X1 → Y1 and X2 → Y2.

2) In order to give proof that ψ1 ≤ ψ2, we will show that a projection ψ can
be defined on ψ2(L) such that ψ1(L) = ψ ◦ ψ2(L):

ψ1(A) =

{
ψ2(A) ∩ (X ′

1 ∩X ′
2) if A 6⊆ X ′

2, A 6⊆ X ′
1 ∩ Y ′

1 , A ⊆ X ′
1,

ψ2(A) otherwise.
(9)

3) This follows from Proposition 6 that the set of projections F over L is a
semi-lattice, then the meet ψ3 = ψ1 ∧ ψ2 must exist.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer (1999)

2. Poelmans, J., Ignatov, D., Kuznetsov, S., Dedene, G.: Formal concept analysis
in knowledge processing: A survey on applications. Expert Syst. Appl. (2013)
6538–6560

3. Wille, R.: Why can concept lattices support knowledge discovery in databases?
Exp. Theor. Artif. Intell. (2002) 81–92

4. Carpineto, C., Romano, G.: Adding knowledge to concept lattices. In: Concept
Data Analysis: Theory and Applications. John Wiley & Sons (2004) 64–81

5. Belohlavek, R., Sklenar, V.: Formal concept analysis constrained by attribute-
dependency formulas. In: Formal Concept Analysis. Springer (2005) 176–191

6. Messai, N., Devignes, M.D., Napoli, A., Smail-Tabbone, M.: Extending attribute
dependencies for lattice-based querying and navigation. In: ICCS. (2008) 189–202

7. Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In: ICCS.
Volume 2120 of LNCS. Springer Berlin Heidelberg (2001) 129–142

8. Pernelle, N., Rousset, M.C., Soldano, H., Ventos, V.: Zoom: a nested galois lattices-
based system for conceptual clustering. Exp. Theor. Artif. Intell. (2002) 157–187

9. Soldano, H., Ventos, V.: Abstract concept lattices. In: Formal Concept Analysis.
Volume 6628 of LNCS. Springer Berlin Heidelberg (2011) 235–250

10. Buzmakov, A., Kuznetsov, S., Napoli, A.: Revisiting pattern structure projections.
In: Formal Concept Analysis. Springer International Publishing (2015) 200–215

11. Stumme, G.: Attribute exploration with background implications and exceptions.
In: Data Analysis and Information Systems. Springer (1996) 457–469

12. Ganter, B.: Attribute exploration with background knowledge. Theoretical Com-
puter Science (1999) 215 – 233

