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Principles of seismic imaging
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Motivations

Imaging methods
I Reverse Time Migration (RTM) : based on the reversibility

of wave equation
I Full Wave Inversion (FWI) : inversion process requiring to

solve many forward problems

Seismic imaging : time-domain or harmonic-domain ?
I Time-domain : imaging condition complicated but quite low

computational cost
I Harmonic-domain : imaging condition simple but huge

computational cost

Memory usage
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Motivations

Resolution of the forward problem of the inversion process
I Elastic wave propagation in the frequency domain : Helmholtz

equation

First order formulation of Helmholtz wave equations
x = ( x; y; z) 2 
 � R3,

(
i !� (x)v(x) = r� � (x) + fs (x)

i !� (x) = C(x) " (v(x))
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 � R3,

(
i !� (x)v(x) = r� � (x) + fs (x)

i !� (x) = C(x) " (v(x))

I v : velocity vector
I � : stress tensor
I " : strain tensor
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Motivations

Resolution of the forward problem of the inversion process
I Elastic wave propagation in the frequency domain : Helmholtz

equation

First order formulation of Helmholtz wave equations
x = ( x; y; z) 2 
 � R3,

(
i !� (x)v(x) = r� � (x) + fs (x)

i !� (x) = C(x) " (v(x))

I � : mass density
I C : elasticity tensor

I fs : source term, fs 2 L2(
)
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Approximation methods

Discontinuous Galerkin Methods
3 unstructured tetrahedral meshes
3 combination between FEM and �nite volume method (FVM)
3 hp-adaptivity
3 easily parallelizable method

7 7 large number of DOF as compared to classical FEM
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Approximation methods

Hybridizable Discontinuous Galerkin Methods
3 same advantages as DG methods : unstructured tetrahedral
meshes, hp-adaptivity, easily parallelizable method, discontinuous
basis functions
3 introduction of a new variable de�ned only on the interfaces
3 lower number of coupled DOF than classical DG methods

7 time-domain increases computational costs
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Hybridizable Discontinuous Galerkin method

B. Cockburn, J. Gopalakrishnan and R. Lazarov. Uni�ed
hybridization of discontinuous Galerkin, mixed and continuous
Galerkin methods for second order elliptic problems. SIAM Journal
on Numerical Analysis,Vol. 47 :1319-1365, 2009.

S. Lanteri, L. Li and R. Perrussel. Numerical investigation of a high
order hybridizable discontinuous Galerkin method for 2d
time-harmonic Maxwell’s equations. COMPEL, 32(3)1112-1138,
2013.
N.C. Nguyen, J. Peraire and B. Cockburn. High-order implicit
hybridizable discontinuous Galerkin methods for acoustics and
elastodynamics. Journal of Computational Physics,230 :7151-7175,
2011
N.C. Nguyen and B. Cockburn. Hybridizable discontinuous Galerkin
methods for partial di�erential equations in continuum mechanics.
Journal of Computational Physics231 :5955�5988, 2012
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HDG method

Contents

Hybridizable Discontinuous Galerkin method
Formulation
Algorithm

Numerical results
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HDG method Formulation

HDG formulation of the equations

Local HDG formulation
(

i !� v � r � � = 0

i !� � C" (v) = 0
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HDG method Formulation

HDG formulation of the equations

Local HDG formulation

8
>><

>>:

Z

K
i !� K vK � w +

Z

K
� K : r w �

Z

@K
b� @K � n � w = 0

Z

K
i !� K : � +

Z

K
vK � r �

�
CK �

�
�

Z

@K
bv@K � CK � � n = 0

b� K and bvK are numerical traces of � K and vK respectively on @K
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HDG method Formulation

HDG formulation of the equations

We de�ne :
bv@K = � F ; 8F 2 F h;
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HDG method Formulation

HDG formulation of the equations
We de�ne :

bv@K = � F ; 8F 2 F h;
b� @K � n = � K � n � � I

�
vK � � F �

; on @K

where � is the stabilization parameter (� > 0)
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HDG method Formulation

HDG formulation of the equations

Local HDG formulation

8
>><

>>:

Z

K
i !� K vK � w �

Z

K

�
r � � K �

� w +
Z

@K
� I

�
vK � � F �

� w = 0
Z

K
i !� K : � +

Z

K
vK � r �

�
CK �

�
�

Z

@K
� F � CK � � n = 0

We de�ne :
W K =

�
Vx

K ; Vy
K ; Vz

K ; � xx
K ; � yy

K ; � zz
K ; � xy

K ; � xz
K ; � yz

K
� T

� =
�
� F1 ; � F2 ; :::; � Fnf

� T
; where nf = card(Fh)

Discretization of the local HDG formulation
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Discretization of the local HDG formulation

AK W K +
X

F2 @K

CK ;F � = 0
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Discretization of the local HDG formulation

AK W K + CK � = 0
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HDG method Formulation

HDG formulation of the equations

Transmission condition
In order to determine � F , the continuity of the normal component
of b� @K is weakly enforced, rendering this numerical trace
conservative : Z

F
[[b� @K � n]] � � = 0

Discretization of the transmission condition
X

K2T h

�
BK W K + LK �

�
= 0
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HDG method Formulation

HDG formulation of the equations

Global HDG discretization
8
>><

>>:

AK W K + CK � = 0
X

K2T h

�
BK W K + LK �

�
= 0
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HDG method Formulation

HDG formulation of the equations

Global HDG discretization
8
>><

>>:

W K = � (AK ) � 1CK �

X

K2T h
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HDG method Formulation

HDG formulation of the equations

Global HDG discretization
X

K2T h

�
� BK (AK ) � 1CK + LK �

� = 0
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HDG method Algorithm

Main steps of the HDG algorithm

1. Construction of the global matrix M
with M =

X

K2T h

h
� BK (AK ) � 1CK + LK

i

for K = 1 to Nbtri do
Computation of matrices BK ; (AK ) � 1; CK and LK

Construction of the corresponding section of M
end for
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HDG method Algorithm

Main steps of the HDG algorithm

1. Construction of the global matrix M
2. Construction of the right hand side S
3. Resolution M� = S, with a direct solver (MUMPS) or hybrid
solver (MaPhys)
4. Computation of the solutions of the initial problem

for K = 1 to Nbtri do
Compute W K = � (AK ) � 1CK �

end for
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HDG method Algorithm

MaPhys Vs MUMPS
Pattern of the HDG global matrix for P1 interpolation and for a 3D
mesh composed of 21 000 elements
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HDG method Algorithm

MaPhys Vs MUMPS

Software packages for solving systems of linear equations Ax = b,
where A is a sparse matrix

I MUMPS (MUltifrontal Massively Parallel sparse direct
Solver) :

I Direct factorization A = LU or A = LDLT

I Multifrontal approach
I MaPhys (Massively Parallel Hybrid Solver) :

I Direct and iterative methods
I non-overlapping algebraic domain decomposition method

(Schur complement method)
I resolution of each local problem thanks to direct solver such as

MUMPS or PaStiX.

M. Bonnasse-Gahot - HDG method for Helmholtz wave equations September 14, 2016 - 14/20



Numerical results 3D plane wave in an homogeneous medium

3D plane wave in an homogeneous medium

1000 m

1000 m

1000 m

Con�guration of the
computational domain

 .

I Physical parameters :
I � = 1 kg.m� 3

I � = 16 GPa
I � = 8 GPa

I Plane wave :

u = r ei(kx x+ ky y+ kz z)

wherekx =
!
vp

cos� 0 cos� 1,

ky =
!
vp

sin� 0 cos� 1, and

kz =
!
vp

sin� 1

I ! = 2� f ; f = 8 Hz
I � 0 = 30� ; � 1 = 0�

I Mesh composed of 21 000
elements
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Numerical results 3D plane wave in an homogeneous medium

Cluster con�guration

Features of the nodes :
I 2 Dodeca-core Haswell Intel Xeon E5-2680
I Frequency : 2,5 GHz
I RAM : 128 Go
I Storage : 500 Go
I In�niband QDR TrueScale : 40Gb/s
I Ethernet : 1Gb/s
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Numerical results 3D plane wave in an homogeneous medium

3D Plane wave : Memory consumption

48 96 192 384 576

1

10

# cores

M
em

or
y
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B
)

Maximum local memory for HDG-P2 method

MaPhys
8 MPI, 3 threads
4 MPI, 6 threads
2 MPI, 12 threads

MUMPS
8 MPI, 3 threads
4 MPI, 6 threads
2 MPI, 12 threads

(matrix order = 772 416, # nz=107 495 424)
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48 96 192 384 576

1

10

# cores

M
em

or
y
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B
)

Maximum local memory for HDG-P3 method

MaPhys
8 MPI, 3 threads
4 MPI, 6 threads
2 MPI, 12 threads

MUMPS
8 MPI, 3 threads
4 MPI, 6 threads
2 MPI, 12 threads

(matrix order = 1 287 360, # nz=298 598 400 )
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Numerical results 3D plane wave in an homogeneous medium

3D Plane wave : Execution time
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Conclusions-Perspectives

Conclusion-Perspectives

I HDG method implemented in Total program (WP6)
I more detailled analysis of the comparison between MUMPS

and MaPhys (WP3)
I comparison between to PaStiX solver
I extension to elasto-acoustic case
I call for projects PRACE to test bigger test-cases
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Conclusions-Perspectives

Thank you !



Conclusions-Perspectives

Factorization time (s) for the HDG-P2 system
(Matrix order = 772 416, # nz = 107 495 424)

2 nodes 4 nodes 8 nodes 16 nodes 24 nodes
Maphys Mumps Maphys Mumps Maphys Mumps Maphys Mumps Maphys Mumps

8 MPI/n., 21.77 42.55 7.18 35.06 2.62 37.54 1.32 43.47 0.37 43.47
3 t./MPI
4 MPI/n. 42.37 44.66 14.05 33.69 5.28 26.80 2.48 31.20 1.1 37.27
6 t./MPI
2 MPI/n. 70.20 69.48 29.11 49.69 10.79 33.44 4.22 27.57 2.69 24.58
12 t./MPI
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