Robust selection of parametric motion models in image sequences

Abstract : Parametric motion models are commonly used in image sequence analysis for different tasks. A robust estimation framework is usually required to reliably compute the motion model. The choice of the right model is also important. However, dealing simultaneously with both issues remains an open question. We propose a robust motion model selection method with two variants, which relies on the Fisher test. We also derive an interpretation of it as a robust Mallows' Cp criterion. The resulting criterion is straightforward to compute. We have conducted a comparative experimental evaluation on different image sequences demonstrating the interest and the efficiency of the proposed method.
Type de document :
Communication dans un congrès
2016 IEEE International Conference on Image Processing (ICIP), Oct 2016, Phoenix, United States. pp.3743 - 3747, 2016, 〈10.1109/ICIP.2016.7533059〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01400895
Contributeur : Bertha Mayela Toledo Acosta <>
Soumis le : mardi 22 novembre 2016 - 16:03:32
Dernière modification le : jeudi 11 janvier 2018 - 06:12:25
Document(s) archivé(s) le : mardi 21 mars 2017 - 11:16:58

Fichier

icip16_paper1240_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Patrick Bouthemy, Bertha Mayela Toledo Acosta, Bernard Delyon. Robust selection of parametric motion models in image sequences. 2016 IEEE International Conference on Image Processing (ICIP), Oct 2016, Phoenix, United States. pp.3743 - 3747, 2016, 〈10.1109/ICIP.2016.7533059〉. 〈hal-01400895〉

Partager

Métriques

Consultations de la notice

178

Téléchargements de fichiers

50