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ABSTRACT

Parametric motion models are commonly used in image
sequence analysis for different tasks. A robust estimation
framework is usually required to reliably compute the mo-
tion model. The choice of the right model is also important.
However, dealing simultaneously with both issues remains an
open question. We propose a robust motion model selection
method with two variants, which relies on the Fisher test. We
also derive an interpretation of it as a robust Mallows’CP cri-
terion. The resulting criterion is straightforward to compute.
We have conducted a comparative experimental evaluation
on different image sequences demonstrating the interest and
the efficiency of the proposed method.

Index Terms— robust model selection, parametric mo-
tion model, image sequence.

1. INTRODUCTION

Adopting 2D parametric motion models is a common practice
in image sequence analysis, for video stabilization [16], im-
age stitching [27], optical flow computation [4, 7, 29], motion
segmentation [6], tracking [26, 30], or action recognition in
videos [12], to name a few. Two key issues then arise: which
motion model and which estimation framework?

Using a statistical information criterion such as Akaike
information criterion (AIC) or Bayesian information criterion
(BIC) [2, 5, 25], is the most classical way to deal with the mo-
tion model selection issue [8, 10, 28]. It amounts to add to the
conditional likelihood (or model fit) a penalty on the model
complexity or dimension given by the number of the model
parameters. The likelihood term is quadratic accounting for a
Gaussian distribution of the residuals involved in the regres-
sion issue. Let us add the Mallows’ CP criterion [15] and the
Minimum Description Length criterion (MDL) [21] respec-
tively equivalent to AIC and BIC under certain hypotheses.

On the other hand, adopting a robust motion estimation
framework is unavoidable to cope with the possible presence
of outliers within the model estimation support, due to oc-
clusions, local motion or any local violation of the required
assumptions associated with motion computation. However,

combining model selection and robust estimation for para-
metric motion computation has rarely been investigated [28].
In this paper, we propose a statistical criterion for robust mo-
tion model selection based on the Fisher test. An interpreta-
tion related to the Mallows’ CP criterion [15] is also provided.

The rest of the paper is organized as follows. Section 2 is
devoted to related work. Section 3 briefly recalls the robust
estimation of the motion model parameters and formulates the
model fit evaluation. Section 4 describes the robust motion
model selection method we have developed. Experimental
results and an objective comparison are reported in Section 5.
Concluding remarks are given in Section 6.

2. RELATED WORK

Robust model selection has been explored in the statistics lit-
erature along several directions [1, 18, 20, 22]. In [22], a
robust extension of AIC called AICR is developed by substi-
tuting a general robust estimator ρ of the model parameters θ
for the maximum likelihood estimator. M-estimators are in-
corporated in BIC and the asymptotic performance is studied
in [14]. A special case is the use of the Huber robust function
[11], leading to the RBIC criterion. The Mallows’ CP crite-
rion is revisited in [23] to yield a robust version. However,
these approaches were not explicitly concerned with jointly
maximizing the inlier set size.

In contrast, only a few investigations of that type have
been undertaken regarding motion estimation and segmenta-
tion. In [3], the authors designed a global energy function for
both the robust estimation of mixture models and the valida-
tion of a MDL criterion. The overall goal is to get a layering
representation of the moving content of an image sequence.
The MDL encoding acts on the overall cost of the represen-
tation comprising the number of layers, residuals and motion
parameters. However, the primary purpose was parcimonious
motion segmentation, and not motion model selection per se.
In [28], a robust extension of the Geometric Information Cri-
terion (GIC) [13] is proposed in the vein of AICR. It was
applied to the selection of the 3D geometric transformation
attached to a rigid motion and estimated through the match-
ing of image interest points. Geometrical and physical con-



straints are also explored in [9] for image motion segmenta-
tion, with the so-called surface selection criterion (SSC) pri-
marily designed by the authors for range data segmentation.
Better performance is reported than with several information
criteria, but the use of SSC in this work is comparable to a
regularization approach. We propose a different approach for
robust motion model selection based on the Fisher statistic.

3. ROBUST MOTION MODEL ESTIMATION

In this paper, we are interested in selecting the most rele-
vant parametric motion model accounting for the dominant
image motion. The latter is usually due to the camera motion.
Computing the dominant motion has numerous applications
such as image stabilization, background subtraction for a free
moving camera, image stitching or simply image registration.
However, the proposed scheme can be applied to other motion
configurations as well, for instance to select the right motion
models on image regions.

3.1. Computation of motion model parameters

We consider a set of 2D polynomial motion models. They
will be precisely defined in Section 4.3. Let θm denote the
parameters of model m, that is, the polynomial coefficients
for the two components of the velocity vector. The full model
will be denoted by M , if we have M models to test. wθm(p)
is the velocity vector supplied by the motion modelm at point
p = (x, y) of the image domain Ω.

To estimate the parameters of the motion model, we ex-
ploit the usual brightness constancy assumption [7], leading
to the linear regression equation relating the velocity vector
and the spatiotemporal derivatives of the image intensity I:

∇I(p).wθm(p) + It(p) = 0. (1)
Let us denote rθm(p) the left member of (1). Once we com-
pute an estimate θ̂m of the motion model parameters, we get
the residuals rθ̂m(p) for p ∈ Ω measuring the discrepancy be-
tween the input data and the estimated motion model. The
estimation of the motion model parameters is formulated as:

θ̂m = arg min
θm

∑
p∈Ω

ρ(rθm(p)), (2)

where ρ denotes a robust penalty function. As examples, the
Lorentzian function is used in [4], in [26] the Hampel estima-
tor is preferred, and in [19] the Tukey’s function is adopted.

3.2. Model fit evaluation

To evaluate how the estimated motion model fits the input data
over the associated inlier set, we consider the residual sum of
squares (RSS) obtained for the robustly estimated parameters
θ̂m of the motion model m given by:

RSSm =
∑
p∈Im

r2
θ̂m

(p), (3)

where Im represents the set of inliers associated with the es-
timated motion model m. The residual is in fact defined by
rθ̂m(p) = I(p+wθ̂m

(p), t+1)−I(p, t). We computeRSSm
on the inlier set Im and not on the overall domain Ω, to ob-
tain the model fit evaluation precisely on the subset of points
whose motion conforms with the estimated motion model.

Furthermore, we introduce the expression RSS+
m, which

represents the residual sum of squares computed over the in-
lier set Im attached to model m, but for the full model M :

RSS+
m =

∑
p∈Im

r2
θ̂M

(p). (4)

Solving for (2) with the publicly available Motion2D1

software [19], amounts to apply the Iteratively Reweighted
Least Squares algorithm within a coarse-to-fine framework.
At convergence, the final weights αm(p), p ∈ Ω, are given by

αm(p) =
ψ(rθ̂m (p))

rθ̂m (p) , where the influence function ψ(.) is the

derivative of the robust function ρ(.). p belongs to Im if its
final weight αm(p) is greater than τ , with αm(p) normalized
within [0, 1] and τ set to 0.6 in practice.

4. ROBUST MOTION MODEL SELECTION

As in [8], we first adopt a two-class hypothesis test approach.
This is motivated by the fact that we are dealing with an
unnested set of parametric motion models. For instance, both
the rotation and the scaling models involve three parameters
as described in Section 4.3, but respectively account for quite
different motions. In addition, we aim to select the model m
which explains the motion of the maximum number of points
in the image domain Ω, i.e., with the largest possible inlier set.
Let us point out that retaining the least complex motion model
while maximizing the size of the inlier set may be contradic-
tory, which is a key issue specific to robust model selection.

4.1. Fisher statistic

First, we want to compare any model m of the set of tested
models to the full model M . To this end, we resort to the
Fisher statistic [24] formulated in our case as:

F(m) =
(RSSm −RSS+

m)/(qM − qm)

RSS+
m/(|Im| − qM )

, (5)

where |.| designates the set cardinality, qm represents the
number of parameters of model m. Both RSSm and RSS+

m

are evaluated on the inlier set Im attached to the estimated
modelm. The denominator can be interpreted as a non-biased
empirical estimate of the full model variance computed on
Im, which will be denoted by:

σ̂2
M (Im) =

RSS+
m

|Im| − qM
. (6)

This statistic allows us to decide whether model m is a
more significant representation of the unknown true motion

1http://www.irisa.fr/vista/Motion2D/



than the full model M over Im which is the validity domain
of model m in Ω. However, it will supply all the models m of
that type. We need to take into account the dimension qm of
model m to further select the right one.

4.2. Model selection criterion

Starting from (5), and penalizing the complexity of the model
expressed by the number qm of model parameters, we define:

S1(m) = F(m)(qM − qm) + 2qm. (7)
Under the assumption of validity of model m, F(m) follows
a Fisher distribution F (qM − qm, |Im| − qM ). Then, the first
term of the right member of (7) (approximately) follows a χ2

distribution with qM − qm degrees of freedom. We can now
express the test for selecting the best motion model m̂:

m̂ = arg min
m
S1(m). (8)

The theoretical behaviour of this test can be qualitatively de-
scribed as follows. S1(m) is supposed to decrease when eval-
uating in turn the first successive models in decreasing (or
equivalently increasing) complexity order up to the optimal
model m∗, and then to increase for the subsequent models.

We design a second version of the robust model selection
criterion, by incorporating the number of inliers in the model
complexity penalization as in the BIC criterion, that is:

S2(m) = F(m)(qM − qm) + 2 log(|Im|)qm. (9)
We now provide another interpretation of the statistical crite-
rion (7). Let us first make σ̂2

M (Im) appear in the expression
of S1(m) as follows:

S1(m) =
(RSSm −RSS+

m)

σ̂2
M (Im)

+ 2qm, (10)

By exploiting (3) and (6), it can be further developed into:

S1(m) =
1

σ̂2
M (Im)

∑
p∈Im

r2
θ̂m

(p)− |Im|+ qM + 2qm. (11)

If we neglect qM which is a constant term for the test (8),
expression (11) can be viewed as the Mallows’ CP criterion
computed over the inlier set attached to modelmwith |Im| as
the number of observations. Then, our test (8) could also be
interpreted as a robust version of the Mallows’ CP criterion.

Let us point out that (11) explicitly involves the afore-
mentioned trade-off between maximizing the size |Im| of the
inlier set and minimizing the complexity (i.e., the number qm
of parameters) of the selected motion model. In contrast, in
existing robust model selection criteria as AICR or RBIC:

R(m) =
∑
p∈Ω

ρ(rθm(p)) + βqm, (12)

the model selection is only implicitly influenced by the size
of the inlier set attached to model m through the values of the
robust function ρ(.) at the outlier points. Hence, the impact
depends on the asymptotic behaviour of the robust function.
The same holds for [23] where in addition the penalty term
requires additional expensive computation to be evaluated.

Table 1. Set of 2D polynomial motion models
Motion model Dim. Expression
Translation (T) 2 wθ = (a1, a4)

Tr.+Rotation (TR) 3 wθ(p) = (a1 + a3y, a4 − a3x)
Tr.+Scal. (TS) 3 wθ(p) = (a1 + a2x, a4 + a2y)

Tr.+Rot.+Scal. (TRS) 4 wθ(p) = (a1 + a2x + a3y, a4 − a3x + a2y)
Full affine (FA) 6 wθ(p) = (a1 + a2x + a3y, a4 + a5x + a6y)

Pan-tilt (PT) 2 wθ(p) = (a1 + a1x
2 + a4xy, a4 + a1xy + a4y

2)

Pan-tilt-zoom (PTZ) 3 wθ(p) = (a1 + a2x + a1x
2 + a4xy,

a4 + a2y + a1xy + a4y
2)

Planar surface 8 wθ(p) = (a1 + a2x + a3y + a7x
2 + a8xy,

rigid motion (PSRM) a4 + a5x + a6y + a7xy + a8y
2)

Full quadratic (FQ) 12 wθ(p) = (a1 + a2x + a3y + a7x
2 + a8xy + a9y

2,

a4 + a5x + a6y + a10x
2 + a11xy + a12y

2)

4.3. Set of motion models

We are dealing with 2D polynomial motion models ranging
from translation (polynomial of degree 0) to quadratic models
(polynomials of degree 2), including different affine models
(polynomials of degree 1). They are forming a set of mod-
els which is only partly nested. The model complexity ranges
from dimension 2 to dimension 12. The full set of motion
models is given in Table 1 with their main features. The 8-
parameter quadratic motion model corresponds to a rigid mo-
tion between a planar scene and the camera. The 2-parameter
quadratic model accounts for a pan-tilt camera motion.

5. EXPERIMENTAL RESULTS

We first conducted a comparative objective evaluation of the
proposed selection criteria on a set of synthetic examples to
quantitatively assess performances. As illustrated in Fig.1, we
applied to a real image a velocity field to create an image pair
with known motion, i.e., with available ground truth. The ve-
locity field consists of two parametric subfields chosen in the
list given in Table 1. The first parametric motion subfield is
the dominant motion, and the outliers, forming a rectangular
region in the middle of the image, undergo the second one.

We generated 1200 image pairs. The first 400 ones in-
volve a translation (T) motion model as dominant motion and
a full affine (FA) as secondary motion, the next 400 ones a
FA motion model and a PSRM model respectively, and the
last 400 ones a PSRM model and a T model respectively. We
randomly select values in [−0.11, 0.11] for the parameters
a1 and a4 of the T model, in [−0.05, 0.05], [−0.02, 0.02],
[−0.04, 0.04], and [−0.03, 0.03] respectively for the first-
order parameters a2, a3, a5 and a6 of the FA model and the
PSRM model, while parameters a7 and a8 are fixed to 0.0004
and 0.0002 respectively. In the FA model, a1 and a4 are fixed
to 0.1 and -0.1 resp., while they resp. vary within [−0.5, 0.5]
and [−1, 1] for the PSRM model.

The true dominant motion T is selected by criterion S1 in
19.5% of the first 400 image pairs, in 55.75% of them by cri-
terion S2, and in 7.25% of them by RBIC, respectively. For
the next 400 image pairs, the true FA model is correctly se-
lected respectively in 30.75% of them for S1, 47% for S2,
and 54.75% for RBIC. Finally, the true PRSM model is cor-
rectly chosen by S1 for 70.75% of the last 400 image pairs,
for 82.75% of them by S2, and for 23.25% of them by RBIC.



Fig. 1. From left to right: the input image, the outlier subset
(in black) in the middle of the image, typical velocity field
applied to the input image formed by a dominant motion and
a secondary one.

Clearly, criterion S2 outperforms the two others. Table 2 de-
tails the scores obtained with S2 for all the tested models and
for the three subsets of experiments. As expected, selection
errors are spread and concern only more complex models than
the true one.

True dominant motion models
Tested models T FA PSRM

T 55.75 0 0
TR 10 0 0
TS 4.75 0 0

TRS 1.5 0 0
FA 0.25 47 0
PT 16.25 1.75 0

PTZ 4.25 0 0
PSRM 1.5 31 82.75

FQ 5.75 20.25 17.25

Table 2. Scores obtained with criterion S2 for all the tested
models and for the three subsets of experiments.

We now report results on two different real image se-
quences. The first one depicts a traffic scene acquired from
an airborne camera. It can be observed that the scene is al-
most planar and the main camera motion component is a ro-
tation around the axis of view, which advocates the PRSM
model. The sequence comprises 49 images, that is, 48 suc-
cessive image pairs. Table 3 contains the model selection re-
sults provided by the M-likelihood (L) alone (i.e., the first
term of (11)), our criteria S1 and S2, and RBIC. In contrast
to the Gaussian case, the M-likelihood does not necessarily
decrease with the model complexity, since it also depends on
the inlier set which may shrink for simple models. Clearly, a
penalized likelihood is required. S1 and S2 exhibit close satis-
factory behaviour, while RBIC always selects the full model.
Let us stress that all the motion models selected by S1 and S2

over the sequence involve a rotation component. By the way,
TRS and FA models can be considered as reasonable choices.

T TS TR TRS FA PT PTZ PSRM FQ
RBIC 0 0 0 0 0 0 0 0 48
L 11 8 2 5 5 1 0 16 0
S1 0 0 1 10 14 0 0 20 3
S2 0 0 1 11 15 0 0 18 3

Table 3. Motion models selected by the tested criteria over
the sequence of Fig.2 (48 image pairs).

In the second real experiment, we deal with a light fluo-
rescence microscopy sequence containing 32 frames (Fig.3).

Fig. 2. First and last frames of the traffic scene sequence, and
the computed dominant flow between frames 1 and 2.

The global motion is due to a shift of the acquisition setup,
and it was assessed as a global translation by the biologist.
Two cells are moving in the sequence, yielding local motions.
Here, we deal with the overall model selection within the se-
quence and we report in Table 4 the values of the criteria for
the 9 tested motion models. The right motion model T is cor-
rectly selected by S1 and S2, but not by RBIC which remains
stuck in the full model.

Fig. 3. Two images out of the fluorescence microscopy se-
quence and the computed dominant motion.

RBIC S1 S2
T 260439.74 38127519.72 38128065.67
TS 257574.24 38263744.05 38264562.99
TR 258755.35 38359977.80 38360796.72
TRS 255532.74 38505565.00 38506656.96
FA 257111.36 39094278.00 39095915.92
PT 262053.84 39642634.06 39643725.97
PTZ 257330.38 38462489.79 38463854.67
PSR 256541.99 39211062.78 39213246.69
FQ 254030.65 39789352.81 39792628.89

Table 4. Values of RBIC, S1 and S2 for 9 tested motion mod-
els, averaged over the sequence of Fig.3.

6. CONCLUSION

We have proposed a new approach for robust model selection
in the framework of motion model estimation. It relies on the
Fisher statistic and explicitly tackles the tradeoff between the
size of the inlier set (to be maximized) and the complexity
of the motion model (to be minimized). In addition, this new
criterion can be viewed as a proposition for a robust Mallows’
CP criterion. We propose two variants S1 and S2, both easy to
compute. Experiments on synthetic and real sequences along
with comparison with RBIC, demonstrate that our criterion
S2 provides superior performance.
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