
HAL Id: hal-01400918
https://inria.hal.science/hal-01400918

Submitted on 22 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards More Practical Time-Driven Cache Attacks
Raphael Spreitzer, Benoît Gérard

To cite this version:
Raphael Spreitzer, Benoît Gérard. Towards More Practical Time-Driven Cache Attacks. 8th IFIP
International Workshop on Information Security Theory and Practice (WISTP), Jun 2014, Heraklion,
Crete, Greece. pp.24-39, �10.1007/978-3-662-43826-8_3�. �hal-01400918�

https://inria.hal.science/hal-01400918
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Towards More Practical Time-Driven Cache Attacks

Raphael Spreitzer1,? and Benoı̂t Gérard2

1 IAIK, Graz University of Technology, Austria
raphael.spreitzer@iaik.tugraz.at

2 DGA-MI, France
benoit.gerard@irisa.fr

Abstract. Side-channel attacks are usually performed by employing the “divide-
and-conquer” approach, meaning that leaking information is collected in a divide
step, and later on exploited in the conquer step. The idea is to extract as much
information as possible during the divide step, and to exploit the gathered in-
formation as efficiently as possible within the conquer step. Focusing on both of
these steps, we discuss potential enhancements of Bernstein’s cache-timing attack
against the Advanced Encryption Standard (AES). Concerning the divide part, we
analyze the impact of attacking different key-chunk sizes, aiming at the extraction
of more information from the overall encryption time. Furthermore, we analyze
the most recent improvement of time-driven cache attacks, presented by Aly and
ElGayyar, according to its applicability on ARM Cortex-A platforms. For the
conquer part, we employ the optimal key-enumeration algorithm as proposed by
Veyrat-Charvillon et al. to significantly reduce the complexity of the exhaustive
key-search phase compared to the currently employed threshold-based approach.
This in turn leads to more practical attacks. Additionally, we provide extensive
experimental results of the proposed enhancements on two Android-based smart-
phones, namely a Google Nexus S and a Samsung Galaxy SII.

Keywords: AES, ARM Cortex-A, key-chunk sizes, optimal key-enumeration al-
gorithm, time-driven cache attack.

1 Introduction

Side-channel attacks have been shown to represent a powerful means of exploiting un-
intended information leakage on modern system architectures in order to break crypto-
graphic implementations. One specific form of such side-channel attacks is denoted as
cache attacks, which aim at the exploitation of different memory-access times within the
memory hierarchy. More formally, the central-processing unit (CPU) is able to access
data within the cache memory much faster than data within the main memory. These
timing differences allow an attacker to break cryptographic implementations [10, 16].

Recent investigations of the timing leakage due to the cache memory, i.e., cache hits
and cache misses, emphasized the general applicability of these attacks [2]. However,
especially on the ARM Cortex-A platform—the most commonly used architecture in

? This work has been supported by the Austrian Research Promotion Agency (FFG) and the
Styrian Business Promotion Agency (SFG) under grant number 836628 (SeCoS).



modern mobile devices—these investigations [18, 25] showed that timing information
is leaking, but the complexity of the remaining key-search phase is usually very high.
For instance, Weiß et al. [25] compared the vulnerability of different Advanced Encryp-
tion Standard (AES) implementations on the ARM platform. For the most vulnerable
implementation, i.e., Bernstein’s Poly 1305-AES implementation, they presented a re-
maining key-search complexity of about 65 bits. Such an order of magnitude has been
confirmed in [19]. While being clearly within the range of a mafia or state institution—
that have far more efficient techniques to recover information anyway—such attacks
may be out of reach for hackers and criminals. More precisely, such an attack would
require a huge effort that could only be invested for hacking a few users.

Motivation and Contribution. The motivation of this work is to investigate potential im-
provements of time-driven cache attacks to determine if such attacks could be massively
performed by skilled hackers. In this respect, we propose and investigate multiple en-
hancements to the cache-based timing attack of Bernstein [4] in order to evaluate more
accurately the actual security of ARM-based devices regarding this threat.

Bernstein’s timing attack is based on the so-called divide-and-conquer strategy.
While the divide part aims at the gathering of the leaking information, i.e., the over-
all encryption time, the conquer part focuses on the actual exploitation of the gathered
information to recover the employed secret key. We study potential improvements for
both steps. Thus, our contributions can be summarized as follows.

– Regarding the divide part we discuss the potential improvement of attacking dif-
ferent key-chunk sizes, i.e., key chunks not corresponding to one byte. Thereby,
we try to extract even more information from the observed encryption time under
a secret key. Furthermore, we investigate the proposed enhancement of Aly and
ElGayyar [2], i.e., the exploitation of the minimum encryption time, according to
its applicability on ARM Cortex-A platforms.

– Regarding the context of the conquer part we focus on an optimal way to iterate
over potential key candidates. While Bernstein initially proposed a threshold-based
approach to sort out potential key candidates for an exhaustive search, we apply the
optimal key-enumeration algorithm of Veyrat-Charvillon et al. [23]. This allows us
to iterate over potential key candidates according to their probability for being the
correct one and, thus, to reduce the complexity of the remaining key-search phase.

All discussions about potential improvements are supported by tests performed on
two smartphones employing an ARM Cortex-A processor, namely a Google Nexus S
and a Samsung Galaxy SII. These practical experiments demonstrate that the number of
key bits to be searched exhaustively can be reduced significantly, hence answering pos-
itively the motivating question: timing attacks are within the range of a skilled hacker.

Outline. The remainder of this paper is organized as follows. In Section 2, we cover
the required preliminaries including AES software implementations, CPU caches, and
cache attacks in general. Section 3 provides the required details of Bernstein’s timing
attack as well as follow-up work on Bernstein’s attack. We consider potential improve-
ments of the divide part in Section 4 and discuss the use of the optimal key-enumeration
algorithm within the conquer part in Section 5. Section 6 states our practical observa-
tions of the proposed enhancements. Finally, we conclude this work in Section 7.

2



2 Background

This section details the basic concept of the Advanced Encryption Standard, the CPU
cache memory, as well as the basic principles of cache attacks.

2.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) [12] is a block cipher operating on 128-bit
states—denoted as S = (s0, . . . , s15)—and supports key lengths of 128, 192, and
256 bits. The initial state is computed as S0 = P ⊕ K0, with P = (p0, . . . ,p15) being
the plaintext and K0 =

(
k0
0, . . . ,k0

15

)
the initial round key. After the initial key addi-

tion, the round transformations (1) SubBytes, (2) ShiftRows, (3) MixColumns, and (4)
AddRoundKey are applied multiple times, whereas the last round omits the MixColumns
transformation. The exact number of rounds depends on the actual key length.

For the purpose of cache attacks the details of these round transformations are
mostly irrelevant since software implementations usually employ so-called T-tables,
denoted as Ti. These T-tables hold the precomputed round transformations and are
composed of 256 4-byte elements. In every round the state bytes si are used to retrieve
the precomputed 4-byte values which are then combined with a simple XOR operation
to form the new state. The resulting state after the last round represents the ciphertext.

In this work, we consider a key length of 128 bits. However, the outlined concepts
shall apply to other key lengths analogously.

2.2 CPU Caches

Since the CPU is not able to access the main memory at the desired speed, the CPU
cache has been introduced. The purpose of the CPU cache—a small and fast memory
between the CPU and the main memory—is to hold close frequently used data and, thus,
to enhance the performance of memory accesses. The most commonly used caches are
so-called set-associative caches where the cache is divided into equally sized cache
sets, each consisting of multiple cache lines. Contiguous bytes of the main memory are
then mapped to a specific cache set and can be placed in any cache line of this cache set.
The actual cache line within a cache set where new data should be placed is determined
by the replacement policy, which can be either random or deterministic. In case of the
ARM Cortex-A platform a random-replacement policy is employed.

2.3 Cache Attacks

Combining the knowledge about T-table implementations and CPU caches leads to
the concept of cache attacks. First, AES T-table implementations make use of key-
dependent look-up indices to access the precomputed values of the round transforma-
tions. Second, these T-table accesses are not performed in constant time. The data might
be fetched either from the CPU cache (cache hit) or from the main memory (cache miss)
and, thus, leads to varying execution times. Hence, cache attacks are a specific form of
side-channel attacks that aim at the exploitation of variations within the execution time.

3



Cache attacks are separated into three categories: (1) time-driven attacks, (2) access-
driven attacks, and (3) trace-driven attacks. Time-driven cache attacks [4, 22] rely on
the overall encryption time to recover the used secret key by means of statistical meth-
ods. Hence, these attacks represent the most general type of cache attacks. In contrast,
access-driven cache attacks [9, 14, 20, 21] as well as trace-driven cache attacks [1, 6, 7]
rely on more sophisticated knowledge about the implementation and the underlying
hardware architecture. However, access-driven and trace-driven attacks require far less
measurement samples than time-driven attacks. In short, there is a trade-off between the
required knowledge and the number of required measurement samples. In this work, we
focus on the investigation of the time-driven cache attack proposed by Bernstein [4].

3 Related Work

In this section, we detail the basic concept of Bernstein’s timing attack [4] and outline
related work based on this attack.

3.1 Seminal Work: Bernstein’s Timing Attack
In 2005, Bernstein [4] proposed a timing attack against the AES T-table implementa-
tion. He suggested to gather timing information of different plaintexts under a known
key K as well as under an unknown key K̃. Afterwards, correlating the timing informa-
tion of these two sets of plaintexts should reveal potential key candidates. The attack
consists of four different phases which are outlined within the following paragraphs.

Study Phase. Within this phase the attacker measures the encryption time of multiple
plaintexts P under a known key K. Without loss of generality, we assume that the zero-
key is used for this phase. The information is stored in t[j][b] which holds the sum of
all encryption times observed for plaintexts where the plaintext byte pj = b, and n[j][b]
which counts the number of encrypted plaintexts where pj = b.

Attack Phase. In this phase the attacker collects the exact same information as in the
study phase, but this time under an unknown key K̃ that she wants to recover. The
gathered information is stored in t̃[j][b] and ñ[j][b], respectively.

Correlation Phase. The attacker computes the so-called plaintext-byte signature [13]
of the study phase as illustrated in Equation 1. The plaintext-byte signature of the attack
phase is computed analogously, except that v[j][b], t[j][b], and n[j][b] are replaced with
ṽ[j][b], t̃[j][b], and ñ[j][b], respectively.

v[j][b] = t[j][b]
n[j][b]

−
∑

j

∑
b t[j][b]∑

j

∑
b n[j][b]

(1)

Afterwards, the correlations of the plaintext-byte signature within the study phase and
the attack phase are computed as outlined in Equation 2.

c[j][b] =
255∑
i=0

v[j][i] · ṽ[j][i⊕ b] (2)

The correlations are sorted in a decreasing order and, based on a predefined threshold,
the attacker obtains a list of potential values for each key byte kj .

4



Key-Search Phase. Usually, more than one value per byte is selected in the correlation
phase. Thus, the attacker performs an exhaustive search over all possible key candidates
that can be formed from the selected values using a known plaintext-ciphertext pair.

3.2 Applications and Improvements of Bernstein’s Attack

Bernstein’s idea of exploiting the timing leakage of T-table based AES implementations
has gained particular attention among the scientific community. For instance, Neve [13]
and Neve et al. [15] performed a detailed analysis of Bernstein’s timing attack. In 2012,
Weiß et al. [25] compared the vulnerability of different AES implementations. Spreitzer
and Plos [18] investigated the applicability of time-driven cache attacks, including the
one of Bernstein, on mobile devices. Aly and ElGayyar [2] also investigated this timing
attack and introduced an additional timing information, which is used to correlate the
timing profiles obtained in the study phase with the timing profiles obtained in the attack
phase. This timing information consists of the overall minimum encryption time (global
minimum) and the minimum encryption time for a specific plaintext byte at a specific
position (local minimum). Recently, Saraswat et al. [17] investigated the applicability
of Bernstein’s timing attack against remote servers.

4 Analysis and Improvements of the Divide Part

In this section, we detail potential improvements regarding the gathering of the required
timing information. We present the corresponding experimental results in Section 6.

4.1 Attacking Different Key-Chunk Sizes

While Bernstein [4] considered the leaking timing information for exactly one key byte,
we investigate a potential improvement of this attack by considering the leaking tim-
ing information of different key-chunk sizes. To this end, we briefly analyze the main
concept of this idea as well as potential pitfalls.

Let nkc be the number of key chunks the whole key is comprised of, and skc be the
size of each key chunk, i.e., the number of possible values each key chunk might take.
If we attack each key byte separately (nkc = 16, skc = 256), then t[j][b] holds the total
of all encryption times where plaintext byte pj = b and n[j][b] counts the number of
plaintexts where pj = b, for 0 ≤ j < nkc and 0 ≤ b < skc. Hence, attacking larger
parts of the key at once leads to fewer key chunks nkc, but a larger number of possible
values per key chunk skc. In contrast, attacking smaller parts of the key leads to a larger
number of key chunks nkc with fewer possible values skc for each of these key chunks.

Considering the plaintext as a 4 × 4 matrix, we observe that larger blocks can be
formed in different ways. For instance, Figure 1 illustrates the gathering of the timing
information for two consecutive plaintext bytes of one specific row. In contrast, Figure 2
illustrates the combination of two plaintext bytes within one specific column. In case of
the T-table implementation provided by OpenSSL the former approach collects timing
information of two bytes accessing two different T-tables and the latter collects timing
information of two bytes accessing the same T-table. For the practical evaluation we

5



Fig. 1. Combination of bytes within a row. Fig. 2. Combination of bytes within a column.

implemented the approach that collects timing information of two bytes accessing the
same T-table. This case reduces the eventuality of corrupting key chunks with noise that
might affect a specific T-table. We illustrate this within the following example. Recall
that look-up indices si access T-table Tj , with i ≡ j mod 4. Now, suppose that noise
affects T-table T0. Then in case of attacking two-byte key chunks that access the same
T-table (e.g., T0), only two key chunks are affected by this noise. In contrast, if we
attack two-byte key chunks that access different T-tables (e.g., T0 and T1), four key
chunks are affected by this noise.

Within the following paragraphs we investigate potential pitfalls of attacking differ-
ent key-chunk sizes. Corresponding experimental results can be found in Section 6.

Memory Requirements. The memory consumption of the timing attack depends on
the number of key chunks nkc, the size of each key chunk skc, and the size sd of the
employed data type in bytes. Assuming the size of the data type sd = 8, then for
attacking each key byte separately (nkc = 16, skc = 256) the size of one such data
structure is 32 KB. Attacking two bytes at once (nkc = 8, skc = 2562) would result
in 4 MB for each data structure and attacking even four bytes at once (nkc = 4, skc =
2564) would result in 128 GB for each data structure. Thus, attacking more than two
bytes at once is not applicable for devices with limited resources, e.g., mobile devices.

Number of Measurement Samples. The key-chunk size also has an impact on the noise
reduction of the timing information. First, notice that the larger the key chunks are, the
smaller should be the algorithmic noise in the gathered encryption times. This positive
effect of large chunks is counterbalanced by the fact that the larger the chunks are, the
smaller is the number of samples obtained for a specific chunk value3. Thus, there is
a trade-off between the algorithmic noise and the number of samples per value. Ana-
lyzing this requires the full understanding of the noise behavior (what is the proportion
of algorithmic noise compared to measurement noise and what is the noise distribu-
tion) and is out of the scope of this paper. We thus ran experiments to get an empirical
evidence for the best trade-off.

Indistinguishable Key Bits. The cache-line size determines the number of contiguous
T-table elements to be loaded at once in the event of a cache miss. In case of a cache-
line size of 32 (resp. 64) bytes, each cache line holds 8 (resp. 16) T-table elements. This
in turn means that in general one cannot distinguish between accessed elements in one

3 Let N be the number of encrypted plaintexts, then each possible value b of a specific block pj

is encrypted approximately N
skc

times.

6



specific cache line and, therefore, the number of recoverable key bits is limited. Let
us denote by sc the cache-line size in bytes and by st the size of a T-table element in
bytes. Then, according to Tromer et al. [21] the number of non-recoverable key bits per
key byte—at least for attacks considering only the first round of the AES—is given as
log2

sc
st

. This means that in case of a cache-line size of 32 (resp. 64) bytes the number of
non-recoverable key bits per key byte are 3 (resp. 4). However, this is just a theoretical
observation since in practice more advanced features of the architecture like critical
word first4 or early restart5, as well as particular properties of the implementation itself,
i.e., disaligned T-tables, usually lead to more information leakage.

4.2 Template-Attack Approach

Template attacks [5] are optimal attacks if the attacker gets perfect knowledge of the
leakage distribution on the targeted device. The idea is to make a template of the leak-
age, i.e., computing the leakage distribution in a known-key setting, and then perform-
ing an attack by exploiting leakages and the knowledge of the computed distribution.

The templates can be made (i) by observing a twin device owned (and controlled) by
the attacker or (ii) by using the target device if the attacker is able to observe encryptions
performed with a known key. In both cases the attacker expects that the characterization
she made during the learning phase will still be valid during the attack.

4.3 Minimum Timing Information

Recently, Aly and ElGayyar [2] suggested to compute the correlation of the minimum
encryption time within the study phase and the minimum encryption time within the
attack phase. Therefore, tmin and t̃min hold the overall minimum encryption time of all
encrypted plaintexts in the study phase and the attack phase, respectively. In addition,
the data structure umin[j][b] holds the minimum encryption time of all plaintexts p
where pj = b. The same holds for the attack phase, except that umin[j][b] and p are

replaced by ũmin[j][b] and p̃, respectively. The computation of the correlation is based
on umin[j][b]−tmin and ũmin[j][b]− t̃min. Combining the timing information initially
proposed by Bernstein and the minimum timing information, they claim to recover the
whole secret key without a single exhaustive key-search computation. We assume that
the attacker computes the correlation with the timing information initially proposed
by Bernstein and the correlation with the minimum timing information. So for each
key byte ki the attacker retrieves two sets of potential key candidates. Afterwards the
attacker combines the sets of potential key candidates with the lowest cardinalities.

5 Analysis and Improvements of the Conquer Part

The main challenge of the conquer part is to gather information obtained during the
divide step to recover the full key.

4 Critical word first means that in case of a cache miss the missed word is loaded first and then
the CPU continues its work while the remaining words are loaded into the cache.

5 Early restart means that as soon as the critical word arrives, the CPU continues its work. In
practice this would impose a serious side channel.

7



5.1 Combining Information from the Divide Part

We briefly describe two possible approaches to recover the full key. The first one being
the one currently used in timing attacks, and the second one overcoming some of the
mentioned shortcomings of the first one.

Threshold Approach. Currently, timing attacks employ a threshold-based approach.
This means that one fixes a threshold on the computed correlations and considers sub-
key values as potential candidates only if the corresponding correlation is larger than
the threshold. Notice that one may use different thresholds for the different sub-keys,
either because a profiling phase has shown different behaviors for different sub-keys or
because they are dynamically computed.

The threshold approach is simple to implement but has two major drawbacks. The
first one is that the actual key may not be found. Indeed, if one of its sub-key values
led to a small correlation, then the key will never be tested in the search-phase and,
thus, the attack will provide no advantage over exhaustive search. The second draw-
back is a loss of information since the ordering of kept sub-key values is not exploited
in the search phase. Though Neve [13, p 58] suggested that the key search “could start
by the most probable key candidates”, no clear indication is given how this should be
accomplished. A somehow related approach has been suggested by Meier and Staffel-
bach [11] in 1991. However, they do not iterate over potential keys which are sorted
according to their probability for being the correct one, but instead they exploit the
non-uniform probability distribution of the key source. Thus, they generate the keys to
be tested from the actual probability distribution.

Optimal Enumeration Approach. Veyrat-Charvillon et al. [23] recently proposed an
optimal key-enumeration algorithm that solves the aforementioned problems at the cost
of additional computations for generating the next full-key to be tested. The algorithm
requires a combination function that computes the score of the concatenation of two
key chunks based on the scores of each chunk. Using such a combination function,
a global score can be computed for each full key by combining the sub-key scores.
The “optimal” notion comes from the fact that the algorithm ensures that keys will be
generated in a decreasing order of global scores.

5.2 Evaluating the Key-Search Complexity

Threshold Approach. The lower bound on the key-search complexity is easy to obtain.
Assuming that the attacker dynamically chooses a threshold for each targeted sub-key,
it will, for a given sub-key, keep at least all values with a score larger than the correct
one. The cardinality of the set of keys to be tested is then equal to the product of sub-key
ranks. This lower bound is very optimistic as no such magic threshold choice exists.

Concerning the upper bound, it will depend on the allowed probability of missing
the correct key. For given threshold(s), upper bounds on the key-search complexity and
estimates of the missing-key probability can be obtained by simulating attacks. The
upper bound being the size of the key-search space and the success probability being
the probability that the actual key belongs to this space.

8



Optimal Enumeration Approach. Following the proposition of a key-enumeration al-
gorithm in [23], Veyrat-Charvillon et al. [24] proposed a key-rank estimation algorithm
that bound the key-search complexity of the optimal key-enumeration algorithm for a
given combination function. More precisely, their algorithm requires the combination
function, the scores obtained for one attack and the correct key. When stopped, the
program provides an interval [2x; 2x+ε] ensuring that the key rank lies in this range.

5.3 Choosing Relevant Thresholds and Combination Functions

Choosing Thresholds. Thresholds are potentially based on any kind of statistical value
and provide a simple means of sorting out potential key candidates. Therefore, after
performing the correlation of the timing information gathered within the study phase
and the timing information gathered within the attack phase one retrieves a correlation
vector c[j][b] (see Section 3.1). These elements are sorted in a decreasing order and
byte values b with a correlation value above a predefined threshold are considered to
represent potential key candidates. For instance, Bernstein suggested a threshold which
is based on the standard error of the mean. By iterating over all possible key values
b, the idea is to take a key candidate b for a key byte kj only into consideration if the
difference of the byte value providing the highest correlation and the correlation of b is
smaller than the established threshold.

Choosing Combination Functions. From an information theoretical point of view the
optimal choice for a combination function is to turn scores into sub-key probabilities
and then combining these probabilities by multiplication. The so-called “Bayesian ex-
tension” in [23] uses Bayes’ relation and a theoretical model of obtained scores to com-
pute sub-key probabilities. This technique requires the attacker to model scores obtained
to be able to estimate relevant probabilities. A recent work on side-channel collision at-
tacks by Gérard and Standaert [8] has shown that even if the model does not accurately
match reality, the use of a Bayesian extension may improve attacks.

In the context of timing attacks the scores obtained are similar to correlations. Ac-
tually a small modification of the scoring function as defined by Bernstein turns the
scores into actual correlations without modifying the ordering of sub-key values. The
modified formula for computing scores according to Pearson’s correlation coefficient is
outlined in Equation 3. The equation is given for an arbitrary key-chunk size skc.

c’[j][b] =
∑skc−1

i=0 v[j][i] · ṽ[j][i⊕ b]√∑skc−1
i=0 v[j][i]2 ·

√∑skc−1
i=0 ṽ[j][i⊕ b]2

(3)

Then, using a Bayesian extension similar to the one in [8] (based on Fisher transform
of correlation coefficients) we are able to estimate sub-key probabilities. The idea is
that arctanh(c’[j][b]) follows a Gaussian distribution of variance 1

skc−3 and with mean
1 if kj = b and 0 otherwise. The estimated likelihood ratio between the probabilities of
the j-th key chunk to be equal to b or not is then:

l[j][b] = exp

[
(skc − 3)(arctanh(c[j][b])− 0)2

2
− (skc − 3)(arctanh(c’[j][b])− 1)2

2

]
,

= exp [(skc − 3) (arctanh(c’[j][b])− 0.5)] .

9



Table 1. Device specifications for the test devices.

Device Processor L1 Cache Critical Word First OS
Size Associativity Line Size Sets

Google Nexus S Cortex-A8 32 KB 4 way 64 bytes 128 yes Android 2.3.6
Samsung Galaxy SII Cortex-A9 32 KB 4 way 32 bytes 256 yes Android 2.3.4

The score of a full-key candidate k will be given by

SBayes =
∏
j

l[j][kj ]. (4)

To investigate the relevance of such Bayesian extension, Section 6 also contains
data obtained with a different combination function that does not use Fisher transform.
Natural combinations of correlation coefficients are operators + and ×. The latter one
is not relevant here since two values with correlation −1 will combine to a key with
correlation 1 what is not desirable. We thus propose results obtained using + as a com-
bination function to complement our study. In that case, the score of a full-key candidate
k will be given by

SAdd =
∑
j

c’[j][kj ]. (5)

Remark on the Threshold Attack Lower Bound. In [24] authors perform experiments
using the output of simulated template attacks. In this context the probabilities that are
computed are sound (i.e., not biased by a potentially wrong model) and thus the attack
using key enumeration is optimal from an information theoretic point of view. A figure
shows that the lower bound obtained by multiplying sub-key ranks (i.e., the lower bound
for threshold attacks) is far too optimistic by orders of magnitude from the actual key
rank. The optimality of the attack regarding information theory implies that an attacker
using threshold technique should not obtain better results and hence this experiment
discards this lower bound as a relevant statistic.

6 Experimental Results

In this section, we detail the employed measurement setup and later on we analyze
our observations regarding the practical evaluation. For the practical investigation of
the suggested enhancements we employed two Android-based smartphones, namely a
Google Nexus S and a Samsung Galaxy SII. The specifications of these two devices are
summarized in Table 1. One assumption for our attack to work is that the device under
attack must be rooted in order to allow for precise timing measurements via the ARM
Cycle Counter Register [3].

Definitions. We define the gathering of the measurement samples under a known key
and the gathering of the measurement samples under an unknown key as one run. Thus,
one run of the attack application constitutes the gathering of the measurement samples
for both of these phases. The number of measurement samples denotes the number of
gathered samples in each of these two phases.

10



6.1 Attacking Different Key-Chunk Sizes

We launched the attack multiple times on both devices, targeting either four bits, one
byte, or two bytes of the key. Figure 3 shows the rank evolution for a specific number
of measurement samples on the Samsung Galaxy SII, averaged over multiple runs for
one-byte chunks and two-byte chunks, respectively. More formally, these plots show
the range (bounds) of key bits to be searched with the optimal key-enumeration al-
gorithm after gathering a specific number of measurement samples. Our observations
show that below 221 measurement samples hardly any information leaks. Targeting
four-bit chunks we observed a similar rank evolution as for one-byte chunks. Hence,
we omitted this figure here.

Fig. 3. Rank evolution for one-byte key chunks (left) and two-byte key chunks (right).

According to the right part of Figure 3, the noise induced by the small number of
samples per chunk value is significantly larger than the noise reduction obtained by
considering larger chunks, which might be due to the random-replacement policy. The
problem can be illustrated as follows. Figure 4 shows the plaintext-byte signature for
one specific key byte during the study phase and the attack phase, respectively. The
abscissa shows the possible chunk values of a plaintext byte and the ordinate shows the
average encryption time for this specific byte subtracted by the overall average encryp-
tion time, after gathering 230 samples. We observe a visible pattern in both plots. Thus,
the correlation yields a few possible values for this specific key byte. We also point out
that most of the values lie in the range [−0.5; 0.5] with peaks up to 2.5.

Fig. 4. One-byte chunk signatures for the study phase (left) and the attack phase (right).

11



In contrast, Figure 5 illustrates the chunk signatures for an attack targeting two-
byte key chunks. Again, after gathering 230 measurement samples. Since the pattern
is not that clearly visible we marked the similar peaks appropriately. Neve [13] also
performed an investigation of such signature plots for one-byte chunks. In accordance
with his terminology, we note that both plots show rather noisy profiles with most values
lying in the range [−25; 25]. Due to these noisy profiles the correlation does not reduce
the key space significantly and the sub-key value for this specific key chunk cannot
be determined. Though we also observed rather noisy profiles for attacks targeting one-
byte chunks, most of the profiles established for one-byte chunks showed a clear pattern.
In contrast, for two-byte key chunks we mostly observed plots where we could not find
any specific pattern.

Fig. 5. Two-byte chunk signatures for the study phase (left) and the attack phase (right).

To conclude, our observations showed that attacking smaller key chunks potentially
works, while attacking larger key chunks seems to leak less information for the same
(realistic) number of measurement samples. Targeting even more samples is not realistic
anymore, at least for mobile devices. This results from the fact that a running time of
more than eight hours to gather more than 230 measurement samples does not allow for
a realistic scenario anymore.

6.2 Template Attack

As a first step we tried to identify the distribution of encryption times. Obviously the
classical Gaussian noise model (that is quite relevant for power-based attacks) does not
fit here. Moreover, the right tail of the distribution is meaningless since high encryption
times are caused by interruptions. The choice of a threshold above which we consider
points as outliers together with the characterization of the distribution of remaining
points is not straightforward and out of the scope of the paper.

Noting the difficulty of characterizing the time distribution, we mount attacks com-
bining the study phase and the attack phase from two different runs (that is the data sets
have not been measured one after the other). We used the key-rank estimation (and the
Bayesian extension as detailed in Section 5.3) to estimate the remaining workload for
the key-search phase. We observe that we obtain ranks 210 larger than the one obtained
from attacks where the attack phase directly follows the study phase.

One reason for this observation might be the fact that ARM Cortex-A series proces-
sors employ a physically-indexed, physically-tagged (PIPT) data cache, which means
that the physical address is used to map a location within the main memory to a cache

12



set. For different runs the physical address potentially changes and, thus, the locations
where memory accesses (resulting in cache evictions) occur change from run to run.

6.3 Minimum Timing Information

Aly and ElGayyar [2] argue that noise usually increases the encryption time and, thus,
the exploitation of the minimum timing information should significantly improve the
timing attack. Their idea is to capture only one single measurement sample without
noise, which is then stored and used for the correlation later on. They successfully
launched their attack against a Pentium Dual-Core and a Pentium Core 2 Duo proces-
sor. However, contrary to their conclusion that this approach significantly improves the
timing attack on Pentium processors, our results indicate that this approach does not
even work at all on ARM Cortex-A processors. The reasons for this approach to fail
on the ARM Cortex-A processor are potentially manifold. First, Aly and ElGayyar [2]
attacked an AES implementation employing 4-Tables. In contrast, we attacked an im-
plementation employing 5 T-tables.

Second, according to our understanding, gathering the minimum encryption time
misses potential useful information. As Neve et al. [15] put it, Bernstein’s timing attack
implicitly searches for cache evictions due to work done on the attacked device. Such
cache evictions lead to cache misses within the encryption function and, thus, to slower
encryptions. As a result, not only noise increases the encryption time, but also cache
misses increase the encryption time. While noisy encryption times do not carry useful
information, encryption times where a cache miss occurred definitely do so. However,
gathering the minimum timing information does not capture this information because
the minimum timing information seeks for encryption times where a cache hit occurred.
The problem is that once we observe a cache hit, i.e., a fast encryption, we store this
timing information. So this approach only searches for the cache hits and in the worst
case, after a certain number of measurement samples, we potentially observe a cache hit
for all possible key bytes due to the random-replacement policy on ARM processors.
Furthermore, in the long run, the local minimum as well as the global minimum might
become equal in which case these timings do not carry any information at all. Our
practical evaluation showed that after a certain number of measurement samples on the
Google Nexus S the minimum timing information umin[j][b]−tmin equals 0 for most of
the key bytes. Additionally, the random-replacement policy employed in ARM Cortex-
A processors strengthens this reasoning. Though Aly and ElGayyar implemented this
approach on Pentium processors with a deterministic replacement policy, we consider
the gathering of the minimum timing information also risky on such processors.

Concluding the investigation of the minimum timing information we point out that
instead of using the minimum timing information, we stick to the exploitation of the
timing information as proposed by Bernstein and only take encryption times below a
specific threshold into consideration. This approach also reduces the impact of noise if
the threshold is selected properly.

13



Table 2. Sample results on the Samsung Galaxy SII.

Run Key-Chunk Samples Bernstein Minimum

Size Optimal Threshold Threshold Key Enumeration Optimal Threshold

(4) (5)

1 4 bits 230 50 bits 102 bits 79.3 - 104.4 86.5 - 112.3 84 bits
2 4 bits 231 32 bits 87 bits 58.9 - 82.4 62.1 - 92.6 88 bits
3 1 byte 228 41 bits 93 bits 55.7 - 77.7 56.2 - 79.2 104 bits
4 1 byte 230 23 bits 64 bits 36.6 - 44.9 36.4 - 46.5 100 bits
5 1 byte 230 32 bits 92 bits 49.1 - 70.1 49.1 - 70.3 100 bits
6 1 byte 230 20 bits 74 bits 36.5 - 45.6 36.0 - 46.4 105 bits
7 2 bytes 230 107 bits 123 bits 118.9 - 125.3 118.9 - 125.3 104 bits
8 2 bytes 230 96 bits 128 bits 115.5 - 122.2 115.0 - 123.2 114 bits
9 2 bytes 230 90 bits 124 bits 110.5 - 119.7 110.5 - 119.9 118 bits

10 2 bytes 230 110 bits 126 bits 120.2 - 126.7 120.3 - 126.7 115 bits

6.4 Summary of Practical Results

Table 2 summarizes the results of our practical investigations on the Samsung Galaxy
SII smartphone. For different runs, we provide the attacked key-chunk size as well as
the number of samples acquired. The rest of the columns contain different log2 time
complexities of the key-search phase depending on the exploited information, e.g., ei-
ther Bernstein’s timing information or the minimum timing information from [2], and
depending on the conquer-phase technique. For the threshold-based conquer phase we
provide the remaining key space for: (1) an optimal threshold choice, such that for each
chunk the threshold is chosen in a way that only values with better scores than the cor-
rect one are selected (cf. Section 5.2), and (2) a threshold based on the standard error of
the mean as suggested by Bernstein [4]. The key-enumeration column contains bounds
of the obtained key rank if the optimal key-enumeration algorithm from [23] is used.
In Table 2 this column is separated into two, the first one being the result of the use of
the Bayesian extension (see Equation 4) the second being obtained by addition of cor-
relations (see Equation 5). We clearly observe that using the optimal key-enumeration
algorithm instead of the threshold-based approach has a strong positive impact on the
key-search complexity. For instance, in case of run 4 and run 6—that require far more
than 260 keys to be tested in case of the threshold-based approach—the optimal key-
enumeration algorithm recovers the key in less than 246 tests. Concerning the gained
improvement of using the Bayesian extension, we observe that it is very small when at-
tacking one-byte chunks but becomes more significant when attacking four-bit chunks.

Furthermore, for ARM Cortex-A processors we cannot confirm that the minimum
timing information improves the timing attack. The last column in Table 2 shows that
this information hardly leaks any information. Table 3 summarizes the exact same infor-
mation for the Google Nexus S smartphone. Since we observed only minor differences
between the usage of the Bayesian extension (Equation 4) and the usage of addition as
a correlation function, we only provide the bounds based on the former approach.

7 Conclusion

In this work, we analyzed multiple improvements of Bernstein’s timing attack. Consid-
ering these improvements we also provided practical insights on two devices employ-
ing an ARM Cortex-A processor. We performed theoretical investigations of attacking

14



Table 3. Sample results on the Google Nexus S.

Run Key-Chunk Size Samples Bernstein Minimum

Optimal Threshold Threshold Key Enumeration Optimal Threshold

1 1 byte 231 64 bits 108 bits 83.5 - 109.1 bits 105 bits
2 1 byte 230 62 bits 119 bits 77.6 - 104.9 bits 95 bits
3 1 byte 226 66 bits 101 bits 79.0 - 101.3 bits 104 bits
4 1 byte 230 67 bits 96 bits 77.6 - 104.4 bits 108 bits
5 1 byte 230 58 bits 91 bits 69.6 - 90.5 bits 107 bits
6 1 byte 228 82 bits 95 bits 105.3 - 115.2 bits 110 bits
7 1 byte 230 61 bits 97 bits 84.0 - 99.0 bits 97 bits
8 2 bytes 227 121 bits 128 bits 127.8 - 128.0 bits 121 bits
9 2 bytes 228 116 bits 128 bits 125.0 - 127.8 bits 124 bits
10 2 bytes 230 118 bits 128 bits 126.1 - 127.2 bits 121 bits

different key-chunk sizes and presented potential pitfalls. Our practical investigations
on ARM-based devices showed that attacking one-byte chunks seems to be the best
choice for resource-constrained devices. Furthermore, these investigations showed that
the minimum timing information [2] does not improve the cache timing attack on the
ARM Cortex-A devices at all. We also showed that due to the PIPT data cache of ARM
Cortex-A processors, template attacks seem to be useless here. Nevertheless, a thorough
analysis of the noise behavior might lead to more positive results. We let this point as
an open question.

The most important contribution of this work is the shift from the threshold-based
approach for the selection of potential key candidates towards the application of the
optimal key-enumeration algorithm. Instead of selecting potential key candidates on a
threshold basis, we iterate over potential keys according to their probability for being
the correct key. As our observations showed, this approach significantly reduces the
complexity of the remaining key-search phase, which brings this attack to a complexity
that can be considered as practically relevant.

References

[1] O. Aciiçmez and Çetin Kaya Koç. Trace-Driven Cache Attacks on AES (Short Paper).
In P. Ning, S. Qing, and N. Li, editors, ICICS, volume 4307 of LNCS, pages 112–121.
Springer, 2006.

[2] H. Aly and M. ElGayyar. Attacking AES Using Bernstein’s Attack on Modern Processors.
In A. Youssef, A. Nitaj, and A. E. Hassanien, editors, AFRICACRYPT, volume 7918 of
LNCS, pages 127–139. Springer, 2013.

[3] ARM Ltd. ARM Technical Reference Manual, Cortex-A8, Revision: r3p2, May 2010.
[4] D. J. Bernstein. Cache-timing attacks on AES. Available online at http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf, 2005.
[5] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. K. Jr., Çetin Kaya Koç, and

C. Paar, editors, CHES, volume 2523 of LNCS, pages 13–28. Springer, 2002.
[6] J.-F. Gallais and I. Kizhvatov. Error-Tolerance in Trace-Driven Cache Collision Attacks.

In COSADE, pages 222–232, Darmstadt, 2011.
[7] J.-F. Gallais, I. Kizhvatov, and M. Tunstall. Improved Trace-Driven Cache-Collision At-

tacks against Embedded AES Implementations. In Y. Chung and M. Yung, editors, WISA,
volume 6513 of LNCS, pages 243–257. Springer, 2010.

15



[8] B. Gérard and F.-X. Standaert. Unified and Optimized Linear Collision Attacks and their
Application in a Non-Profiled Setting: Extended Version. J. Cryptographic Engineering,
3(1):45–58, 2013.

[9] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games - Bringing Access-Based Cache
Attacks on AES to Practice. In IEEE Symposium on Security and Privacy, pages 490–505.
IEEE Computer Society, 2011.

[10] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel Cryptanalysis of Product Ci-
phers. In J.-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann, editors, ESORICS,
volume 1485 of LNCS, pages 97–110. Springer, 1998.

[11] W. Meier and O. Staffelbach. Analysis of Pseudo Random Sequence Generated by Cellular
Automata. In D. W. Davies, editor, EUROCRYPT, volume 547 of LNCS, pages 186–199.
Springer, 1991.

[12] National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption
Standard, November 2001.

[13] M. Neve. Cache-based Vulnerabilities and SPAM Analysis. PhD thesis, UCL, 2006.
[14] M. Neve and J.-P. Seifert. Advances on Access-Driven Cache Attacks on AES. In E. Biham

and A. M. Youssef, editors, Selected Areas in Cryptography, volume 4356 of LNCS, pages
147–162. Springer, 2006.

[15] M. Neve, J.-P. Seifert, and Z. Wang. A refined look at Bernstein’s AES side-channel anal-
ysis. In F.-C. Lin, D.-T. Lee, B.-S. P. Lin, S. Shieh, and S. Jajodia, editors, ASIACCS, page
369. ACM, 2006.

[16] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. IACR Cryp-
tology ePrint Archive, 2002:169, 2002.

[17] V. Saraswat, D. Feldman, D. F. Kune, and S. Das. Remote Cache-timing Attacks Against
AES. In Proceedings of the First Workshop on Cryptography and Security in Computing
Systems, CS2 ’14, pages 45–48, New York, NY, USA, 2014. ACM.

[18] R. Spreitzer and T. Plos. On the Applicability of Time-Driven Cache Attacks on Mobile
Devices. In J. Lopez, X. Huang, and R. Sandhu, editors, Network and System Security,
volume 7873 of LNCS, pages 656–662. Springer Berlin Heidelberg, 2013.

[19] R. Spreitzer and T. Plos. On the Applicability of Time-Driven Cache Attacks on Mobile
Devices (Extended Version). IACR Cryptology ePrint Archive, 2013:172, 2013.

[20] J. Takahashi, T. Fukunaga, K. Aoki, and H. Fuji. Highly Accurate Key Extraction Method
for Access-Driven Cache Attacks Using Correlation Coefficient. In C. Boyd and L. Simp-
son, editors, ACISP, volume 7959 of LNCS, pages 286–301. Springer, 2013.

[21] E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache Attacks on AES, and Countermea-
sures. J. Cryptology, 23(1):37–71, 2010.

[22] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Cryptanalysis of DES Imple-
mented on Computers with Cache. In C. D. Walter, Çetin Kaya Koç, and C. Paar, editors,
CHES, volume 2779 of LNCS, pages 62–76. Springer, 2003.

[23] N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F.-X. Standaert. An Optimal Key Enu-
meration Algorithm and Its Application to Side-Channel Attacks. In L. R. Knudsen and
H. Wu, editors, Selected Areas in Cryptography, volume 7707 of LNCS, pages 390–406.
Springer, 2012.

[24] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. Security Evaluations beyond Com-
puting Power. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of
LNCS, pages 126–141. Springer, 2013.

[25] M. Weiß, B. Heinz, and F. Stumpf. A Cache Timing Attack on AES in Virtualization
Environments. In A. D. Keromytis, editor, Financial Cryptography, volume 7397 of LNCS,
pages 314–328. Springer, 2012.

16


