
HAL Id: hal-01401251
https://inria.hal.science/hal-01401251

Submitted on 23 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seamless content distribution with OpenFlow
Ahmed Amine Loukili, Damien Saucez, Thierry Turletti, Mathieu Bouet

To cite this version:
Ahmed Amine Loukili, Damien Saucez, Thierry Turletti, Mathieu Bouet. Seamless content distribu-
tion with OpenFlow. Student Workshop at ACM CoNEXT, Dec 2016, Irvine, United States. pp.3.
�hal-01401251�

https://inria.hal.science/hal-01401251
https://hal.archives-ouvertes.fr


Seamless content distribution with OpenFlow

Ahmed Amine Loukili∗, Damien Saucez∗, Thierry Turletti∗, Mathieu Bouet†
∗ Université Côte d’Azur, Inria – France

† Thales – France

ABSTRACT
With the advent of virtualization and network function

softwarization, the networking world shifts to Software De-
fined Networking (SDN) and OpenFlow is one of the most
suitable candidates to implement the southbound API. In the
meanwhile, the generalization of broadband Internet has led
to massive content consumption. However, while content is
usually retrieved via layer 7 protocols, OpenFlow operations
are performed at lower layers (layer 4 or lower) making the
protocol ineffective to deal with contents. To address this
issue, we define an abstraction to unify network level and
content level operations and present a straw-man logically
centralized architecture proposal to support it. Our imple-
mentation demonstrates the feasibility of the solution and its
advantage over fully centralized approach.

1. INTRODUCTION
Over the last decade we have seen the emergence of

Software Defined Networking (SDN) making networks
programmable thus enabling network operators to au-
tomate their network management. In parallel to the
advent of SDN, network communications have diverted
to massive content distribution via the HTTP proto-
col that operates at the layer 7 of the networking stack
(e.g., YouTube). However, OpenFlow ([8]) that is the
most prominent solution to implement SDN concepts
relies on match-action rules on layers up to 4 such that
it cannot be directly used to manage content distribu-
tion.

Several approach are taken to reconcile content distri-
bution and SDN ([6, 7, 9]) and our approach is to define
an abstraction that unifies the network and content re-
lated tasks. Our abstraction uses network and content
operations as primitives and leaves the details of which
layers the operations must be performed on to the im-
plementation of the abstraction itself. To implement it,
we propose an architecture offering a centralized con-
trol with a distributed state by the means of control
plane caches. To validate our straw-man proposal, we
implemented a proof-of-concept leveraging, OpenFlow
controllers, HTTP proxy, and a REST API. This im-
plementation shows that by introducing the notion of

compute node

port2port1

router

network node storage node
{} slice node

{}

fib route2 
-to: 192.0.2.0/24 

-via: port2
route1 
-to: 203.0.113.0/24 
-via: port1

linux

Figure 1: Model of a two ports router with two
routes.

control plane caches, a centralized approach can be used
to manage content distribution with OpenFlow.

In the remaining of the paper, Sec. 2 defines our
OpenFlow content distribution abstraction, Sec. 3 presents
a straw-man logically centralized architecture proposal
to implement this abstraction, and Sec. 4 provides a
first evaluation of the architecture based on a prototype
implementation. Finally, Sec. 5 concludes this work.

2. NETWORK ABSTRACTION
To leverage the SDN principle and distribute contents

using OpenFlow, it is necessary to provide a new layer
of abstraction that hides the notion of network layers
to focus on network operations and on contents. To
that aim, we propose to model the content distribution
network as an abstract directed graph where each node
represents an entity or an operation of the network and
where edges indicate the relationship between them.

Our model defines the following three atomic types of
node: (i) compute, (ii) network, and (iii) storage. Com-
pute nodes are used to represent entities and functions
related to processing (e.g., CPU, process) while net-
work nodes are used to represent entities and functions
related to networking (e.g., NIC, routes). Finally, stor-
age nodes are used to represent entities and operations
related to contents (e.g., hard-drive, file). As elements

1



of a content distribution network are often constituted
of compute, network, and processing parts our model
defines the meta-node type called slice that allows to
compose complex entities. Each node is allocated a
unique identifier such that, in conjunctions with types
and attributes, the validity of the model can be verified
with static analysis before deploying it in the network.

Fig. 1 shows a simple two-network-ports Linux router
with two routes abstract graph representation. The
router is composed of two network ports (port1 and
port2) modeled as network nodes, the Linux instance
is modeled as a compute node, and the FIB modeled
as a storage node. Each route (route1 and route2)
is represented by a network node with attributes cor-
responding to the destination and the port to use. All
these independent nodes are linked to a slice represent-
ing the whole router.

3. ARCHITECTURE
Our abstraction puts at the same level content and

network features but content distribution usually relies
on HTTP while OpenFlow matching is limited to the
lowest level of the network stack. Unfortunately, HTTP
is transported over TCP and by virtue of separation
principle, no content information is visible at the TCP
layer that is the upper layer at which OpenFlow works.
In addition, to offer reliability, TCP relies on sessions
which state is built before the HTTP flow itself. To
implement the abstraction, it is thus necessary to use
HTTP proxies that will terminate the TCP connection
until they learn the content actually requested in or-
der to reconstruct the TCP sessions to the endpoints
fulfilling the policies defined in the model. As proxies
operations are computationally expensive, they are only
performed at the edge where HTTP flows enter the net-
work. Each such proxy is also an OpenFlow switch and
flows are colored by the proxy with tags that can be
processed directly by OpenFlow. To ensure core stabil-
ity, it is possible to predefine the tags, at most one per
potential path, such that the arrival of a new flow does
not cause flow table modifications in the core network.

We leverage the centralized nature of OpenFlow to
simplify the abstraction implementation via the Open-
Flow controller. However, networks being inherently
distributed, concentrating all information and decisions
would impair performances by causing high signaling
load. To alleviate the signaling cost but keep the cen-
tralized decision making, we introduce the concept of
control plane cache. The principle of control plane caches
is the same as the flow tables in OpenFlow but extended
to our abstraction needs such that packet tagging and
statistics are always performed locally by using the con-
trol plane cache. Before taking specific decisions, the
controller gets statistics from the control plane caches
and updates them with the new tagging rules. To ensure

101 102 103

Demand rate [demands/s]

0

200

400

600

800

1000

1200

1400

P
ac

ke
tr

at
e

[p
ac

ke
ts

/s
] data plane

control plane

(a) Centralized

101 102 103

Demand rate [demands/s]

0

200

400

600

800

1000

1200

1400

P
ac

ke
tr

at
e

[p
ac

ke
ts

/s
] data plane

control plane

(b) Control plane caches

Figure 2: Evolution of the control and data plane
rates with content demand.

the scalability of the overall system, the abstraction is
implemented by the intermediate of a REST API.

4. EVALUATION
We prototyped our proposition with open source soft-

ware. We use Open vSwitch [4] and Floodlight [3]
for OpenFlow parts, and CherryProxy for the HTTP
parts [1]. The REST API and the control plane cache
are implemented with Flask [2] and PostgreSQL [5].

The implementation demonstrates the feasibility of
the model and the architecture and illustrates the ben-
efits of the control-plane caches. The first scenario is
the case where all information and decisions are treated
centrally by the controller, i.e., without cache. The sec-
ond scenario corresponds to the case where both tagging
and statistics are ensured by the control plane caches.

Fig. 2 shows the evolution of the data plane and con-
trol plane rates with the content demand rate. Each
network function runs in a separate virtual machine de-
ployed on the same host. The network is fed with HTTP
requests sent according to a Poisson process which av-
erage is given on the x-axis. As expected, the control-
plane caches approach guarantees a control plane load
independent of the data plane rate. On the contrary,
the centralized scenario shows a direct correlation be-
tween control and data plane rates. Interestingly, when
control plane caches are used, the proxy requires more
CPU cycles to process flows, which reduces data plane
rates. This performance drop can be explained by our
suboptimal implementation of the control plane with
SQLAlchemy that adds overhead.

5. CONCLUSION
This work proposes an abstraction and a straw-man

architecture with logically centralized decision making
to implement content distribution with OpenFlow. Our
first prototype demonstrates the feasibility of the ap-
proach and its potential performance gains.

Acknowledgments
This work is funded by the French ANR under the

"ANR- 13-INFR-013" DISCO project on SDN.

2



6. REFERENCES
[1] CherryProxy - a filtering HTTP proxy extensible

in Python | Decalage. See
http://decalage.info/python/cherryproxy.

[2] Flask (A Python Microframework). See
http://flask.pocoo.org.

[3] Floodlight OpenFlow Controller - Project
Floodlight. See http:
//www.projectfloodlight.org/floodlight.

[4] Open vSwitch. See http://openvswitch.org.
[5] PostgreSQL: The world’s most advanced open

source database. See
https://www.postgresql.org.

[6] A. Chanda and C. Westphal. Contentflow:
Mapping content to flows in software defined
networks. CoRR, abs/1302.1493, 2013.

[7] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian,

A. Ghodsi, T. Koponen, B. Maggs, K. Ng,
V. Sekar, and S. Shenker. Less pain, most of the
gain: Incrementally deployable icn. In Proceedings
of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, pages 147–158, New
York, NY, USA, 2013. ACM.

[8] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: Enabling innovation in
campus networks. SIGCOMM Comput. Commun.
Rev., 38(2):69–74, Mar. 2008.

[9] Y. Sakurauchi, R. McGeer, and H. Takada. Open
web: Seamless proxy interconnection at the
switching layer. In Networking and Computing
(ICNC), 2010 First International Conference on,

pages 285–289, Nov 2010.

3


