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1 Introduction

The amount of people living in cities by 1800 was roughly around 3 percent of
the world population. This number has increased dramatically during the last
centuries, and currently it is estimated that one out of two people lives in cities.
Furthermore, according to United Nations1 60 percent of the world population
will live in cities by 2030.

This situation brings new challanges on how to conceive cities that host such
amounts of population in a sustainableway while sacri�cing as little as possible
the inhabitants' quality of life. This sustainability should address to several
aspects that can be classi�ed aseconomical, social and environmental. The
cities are and will be centers ofeconomical activity, and thus should provide
facilities for business, innovation and culture. Sucheconomical development
should bene�t all the levels of the social hierarchy, preventing inequalities and
social segregation. Theenvironmental part concerns the e�cient utilization of
the resources as well as the minimization of the impact on the ecosystems that
sourround such cities. A convenient public transportation network, the preser-
vation of green areas, the recycling of waste or the use of renewable energies are
some examples of means to reduce the cities'environmental impact.

Unluckily by taking a look at the current megacities, it can be easily ob-
served that very few of them meet thesustainability characteristics formerly
reviewed. This can be partly explained by theurbanism pattern that derives
from the processes ofindustrialization . When a city experiences suchindustri-
alization, with the related economic growthand the expansion of transportation
networks, the middle class tends to migrate towards the outskirts of the city,
potentially to live in terraced houses sorrounded by green areas. Such a pattern
is commonly referred to asurban sprawl, and it was �rst observed in London
and Paris during the 19th century. Cities like New York, Chicago went through
this process during the early 20th century, and so did most central and northern-
European cities around 1970-1990. Nowadaysurban sprawl might even be more
prevalent in developing countries, as it is the case with Mexico City, Beijing,
Delhi, Johannesburg or Cairo.

Contributions and Outline This work reviews �rst the existing literature
on urban sprawl in Section 2, comparing the term's various de�nitions. Addi-
tionally, a set of measures proposed to gauge the phenomena are audited and
brought to a common notation for better comprehension and comparability.
Then, in Section 3 a selection of this measures is performed according to certain
suitability criterias, and a framework able to collect crowd-sourced data and
compute the elected measures is presented. Some analysis with the currently
implemented measures over data corresponding to real cities is performed in
Section 4.1. Some perspectives for future work are described in Section 5

1Lewis, Mark (2007-06-11). \Megacities Of The Future". Forbes. Retrieved 2011-11-30
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2 Literature Review

The �rst reference to the term urban sprawl was made by Earle Draper, as
part of a conference ofurban planners of the southeastern United States in
1937 (Wassmer 2002; Nechyba and Walsh 2004). Ever since then the use of the
term has been spreading to a wide range of domains, nevertheless a common
consensual de�nition has not been adopted. This led to the current situation
whereurban sprawl is an ambiguous term that might be used in several domains,
such as urbanism, geography, economics or more recently also remote sensing
and data science.

2.1 Urban Sprawl: Timeline of a Loose Term

This section intends to chronologically review the literature on urban sprawl fo-
cusing on the descriptions of the term that are proposed, and separating among
them what can be consideredcauses, characteristics and consequences.

Early Works: Characteristics and Speculation The �rst studies on the
domain focus mostly on a series ofcharacteristics that devise the term of urban
sprawl: (Whyte 1958) considers it \scattered leapfrog development". A more
exhaustive characterization is found in (Harvey and Clark 1965), where it is
stated that urban sprawl is located at the \urban fringe", scattering around
undeveloped or agricultural land, and \occurs in three major forms": (1) \low
density continuous development", (2) \ribbon development" and (3) \leapfrog
development".

On the other hand, (Clawson 1962; Bahl 1968; Archer 1973) identifyland
speculationas acause, while also alluding to scatteredand leapfrog development.

Diversely, (McKee and G. H. Smith 1972) discerns some othercauses: the
\love a�air between people and metropolis is over." and that the \ideal place to
live is now the suburbs", as well as \poor planning" or \haphazard expansion".
It also points out a few characteristics as in \very low density development
over a large area", \ribbon extending axially along the access routes of major
urban areas", leapfrog development, and an excessive \consumption of land re-
sources". Furthermore, (McKee and G. H. Smith 1972) contextualizessprawl by
associating it to \single family homes" in developed countries and to \squatter
settlements" in less developed ones. The study also mentions as aconsequence
that \metropolitan populations do not grow as fast as the urban areas".

The 90s: Land Use Mix, Automobile Dependency, and Social Seg-
regation In the decade of the 90s, most of the works kept hinting at the
characteristics of urban sprawl reviewed formerly, notwithstanding the articles
start to reveal a new magnitude: the land use mix. Lack of planning and co-
ordination is pointed out as a cause in (Nelson and Duncan 1995) resulting in
this fresh characteristic of dysfunctional mix of uses. An emphasis on theland
use mix is also clear in (HUD, 1999).
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The literature reivew of (R. H. Ewing 1995) lists low density, strip, scat-
tered and leapfrog development as the classic patterns ofurban sprawl, and
associates to it thepoor accessibility and lack of open space. It points to several
causes: \subsidies for suburban development", \externalities" and \government
regulation". As consequences, the study refers to \environmental deprivation",
automobile dependencyand tra�c congestion, the excessive costsof providing
public services as well asenvironmental e�ects such as air pollution and loss of
farmland.

The automobile dependencyis also considered aconsequenceof urban sprawl
in other works as well: (Sierra Club, 1998) states that it \separates where people
live from where they shop, work, recreate and educate - thus requiring cars to
move between zones", while (PTCEC, 1998) refers to \automobile-dependent
development pattern of hosuing, shopping centers and business parks".

Furthermore (Burchell et al. 1998) mentions land use types \segregated from
one another" and also adducessocial segregationas a side-e�ect of such a parti-
tion. Coetaneously, (Downs 1999) gathers 10 recurring traits ofurban sprawl in
the literature, which in addition to the lack of land use mix and the automobile
dependencyalso featurepolitical aspects like \fragmentation of powers over land
use among many small localities", \no centralized planning or control of land-
uses" andsocio-economicfacets such as \�scal disparities among localities" or
\reliance mainly on the trickledown or �ltering process to provide housing to
low-income households".

Focusing on the land use issue, (Rolf Pendall 1999) explores the inuence
of local land usecontrols, and its results indicate that adequate provisioning of
public facilities and expensive housing (among other factors) discourageurban
sprawl whereas jurisdictional fragmentation increases it, thus making the lack
of coordinated land use planning a causeof the process.

Three more works from this decade must be remarked: �rst, (Nelson and
Duncan 1995) provides one of the most broad de�nitions ofurban sprawl, which
in accordance to formerly mentioned studies, describesurban sprawl as \Un-
planned, uncontrolled, and uncoordinated single-use development that does not
provide for an attractive and functional mix of uses and/or is not functionally
related to surrounding land uses and which variously appears as low density,
ribbon or strip, scattered, leapfrog, or isolated development". Secondly, one
of the most cited articles on the topic is (Reid Ewing 1997), which delineates
the characteristics of urban sprawl in three forms: (1) \leapfrog or scattered"
(2) \commercial strip" and (3) large \low-density or single use" and conversely
\low accessibility" and \lack of functional open space". At last, (Gordon and
Richardson 1997) examines the costs and bene�ts of compactness versus sprawl
and concludes, in contradiction to most of the related literature, that compact-
ness is not the most preferable and feasible planning goal.

The 21 st Century: Environment, Health and GIS Data Science The
increase of the ease to access data through the internet together with signi�cant
advances ondata sciencemethods as well as computing capacity brought the
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�eld to a data-driven era. An important part of the research focuses on de�ning
quantitative techniques to measureurban sprawl through the processing Geo-
graphical Information Systems (GIS) data, such as images obtained fromremote
sensing. Another main research axis aims its attention to gathering data from a
loose set of categories (socio-economics, environment, health, transportation...)
and correlating it to urban sprawl indicators.

An extensive survey on the literature on the environmental impacts ofurban
sprawl is found in (Johnson 2001), where the author associates to the phe-
nomenon a large set of ecological damages, such asair pollution , high energy
consumption, ecosystem fragmentationwith an excessive loss ofenvironmentally
fragile lands, open space, farmland species diversityas well as an increase of the
natural risks. The topic is also an issue in environment conservation: (Beach
2003) considers it, together with population growth, as one of the main threats
to the United States' coast, (Radelo�, Hammer, and Stewart 2005) assesses how
metropolitan ( fringe) and rural sprawl a�ect the surrounding forests, and (Blair
2004) evaluates that the occurrences of native bird communities is a�ected by
the distribution and intensity of urban patches.

After ranking metropolitan areas of the United States by its measure of
urban sprawl, (R Ewing, R Pendall, and D Chen 2002) suggests possiblecon-
sequencesby pointing out that the habitants of the most sprawled areas have
higher automobile dependency, tra�c fatalities, air pollution, as well as (af-
ter the ranking's posterior update (R. H. Ewing, Hamidi, and America 2014))
worse health conditions. On the other hand, (Song and Knaap 2004) reviews the
growth management policies adopted at Portland's metropolitan area (Oregon)
and its e�ects on several indicators of urban sprawl. Very similarly, (Arbury
n.d.) presents an analogous study in the case of Auckland, New Zealand. More-
over, (Ludlow 2006) remarks that sprawl represents an issue in Europe too, and
(Catal�an, Saur��, and Serra 2008) depicts a detailed portrait of growth patterns
in archetypal Mediterranean polycentric metropolitan regions (based in a case
study of the Barcelona metropolitan region).

Several reports, such as those of (Frumkin 2002; McCann and Reid Ew-
ing 2003; Sturm and Cohen 2004; Lopez 2004; Frumkin, Frank, and Jackson
2004), and remarkably (Reid Ewing, Schmid, et al. 2008) point to obesity and
bad physical conditions asconsequencesof urban sprawl. Nevertheless, (Eid
et al. 2008) reckons those works as politically biased and disputes thatcause-
consequencee�ect, indicating that the correlations are explained by the fact
that obese people prefers to live in sprawled areas.

Previous de�nitions of urban sprawl are categorized in (Galster et al. 2001)
as in: (1) by example, i.e. Los Angles, (2) by aesthetics, (3) cause of an ex-
ternality, as for example car dependency, (4) consequence of an independent
variable, such as poor planning, (5) patterns of development, (6) process of de-
velopment over time. Most works are built on such previous characterizations,
with the noteworthy exception of (Jaeger, Bertiller, Schwick, and Kienast 2010),
which proposes a de�nition in which landscapes \su�er from urban sprawl" when
\permeated by urban development", and the \degree of urban sprawl" is pro-
portional to the built-up area, dispersion and (after posterior de�nition update
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in (Jaeger and Schwick 2014)) land uptake per inhabitant".
In addition to the formerly mentioned research, a new line of research unveils

strongly: analysis of GIS data, often obtained through remote sensing. The
availability of time series of satellite images makes these methods extremely
powerful to monitor patterns of urban growth and land use changes, in the
USA: (Masek, Lindsay, and Goward 2000; Yang et al. 2003; Wilson et al. 2003;
Sutton 2003; Hasse and Lathrop 2003; C. Wu 2004; Xian and Crane 2005; Yuan
et al. 2005; Ji et al. 2006) ; fast-growing regions in Asia: (Yeh and Xia 2001;
Sudhira, Ramachandra, and Jagadish 2004; Li and Yeh 2004; Xiao et al. 2006;
Yu and Ng 2007; Jat, Garg, and Khare 2008; B Bhatta 2009) ; or presenting
generalizations to better assessurban sprawl morphology and dynamics globally:
(Nagendra, Munroe, and Southworth 2004; Huang, Lu, and Sellers 2007; Angel,
Parent, and Civco 2007; Ba Bhatta, Saraswati, and Bandyopadhyay 2010).

2.2 A Dynamic Process

In the previous section, a large set of studies were reviewed. Most of them focus
on providing metrics to gauge thecausesand consequencesof urban sprawl, as
well as the characteristics at a given snapshot of time. On the other hand, the
lastly revised works on GIS data do already consider thetime dynamics of the
phenomena.

It must then be remarked that, as pointed out by (Torrens and Alberti 2000),
urban sprawl is a dynamic process \at the forefront of dynamic urban growth".
Nevertheless, many of theurban sprawl metrics \are themselves static", and to
\examine sprawl in a truly dynamic fashion it may be necessary to employ a
simulation model. These metrics could still be used to calibrate the model".

These simulations constitute themselves another line of research, where cities
are modelled asself-organizing systems, as extensively described in (Portugali,
Benenson, and Omer 1997; Portugali 2000). To appraise the dynamics of urban
systems, a series of land use/cover change (LUCC) models have been proposed,
often based on cellullar automata (CA) and multi-agent systems (MAS). Exam-
ples of works include (White and Engelen 1993; O'Sullivan and Torrens 2001;
Batty 2007) the review of (Parker et al. 2003), and the integrated land use and
transport models (LUTI) of (De La Barra 1989) and (Waddell 2002).

2.3 Dimensions of Urban Sprawl

The diversity of contexts in which urban sprawl is mentioned outlines a com-
plexity that is embedded with the term. Consequently, it must be considered
as a multidimensional phenomenon and in order to appraise it, a dimensional
breakdown is a mandatory preliminary stage.

2.3.1 Decompositions from the Literature

Most of the dimensional decompositions ofurban sprawl were drawn in the 21st

century, arguably because by then there was already a large volume of literature
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on the subject, and the data and means for computing measures started to gain
availability to researchers.

The work of (Galster et al. 2001) presents one of the most exhaustive and
cited dissections ofurban sprawl, distinguishing 8 dimensions: (1)density (of
residential units), (2) continuity , (3) concentration, (4) clustering, (5) centrality ,
(6) nuclearity, (7) mixed uses(land use mix) and (8) proximity .

The previously reviewed works of (R Ewing, R Pendall, and D Chen 2002)
and (R. H. Ewing, Hamidi, and America 2014) calculate aggregated indices of
urban sprawl out of four dimensions: (1)density, (2) land use mix, (3) centering
and (4) accessibility.

Focusing on the measurement of urban forms, (Tsai 2005) distinguishes two
main types of urban sprawl, which are intensity-based and spatial pattern-based.
A four-dimensional representation is proposed: (1) populationsize, (2) popu-
lation density (intensity-based), (3) evennessof distribution (spatial pattern-
based) and (4)clustering (spatial pattern-based).

In (Jaeger, Bertiller, Schwick, Cavens, et al. 2010) and its posterior amend
(Jaeger and Schwick 2014), an indicator is proposed after a decay ofurban
sprawl into (1) fraction of developed area, (2) its dispersion and (3) utilization
density.

Another intensive analysis of the multidimensionality of the term is found
in (Arribas-Bel, Nijkamp, and Scholten 2011), where the authors present a hi-
erarchical characterization: in the category ofurban morphology there are the
dimensions of (1)scattering, (2) connectivity and (3) availability of open space;
and categorized byinternal composition there is (4) density, (5) decentralization
and (6) land use mix.

2.3.2 Meta Decomposition

Summarizing the formerly audited decompositions and most frequent terms used
when referring to urban sprawl in Section 2.1, the phenomenon'sdimensionscan
be listed as:

1. Density as the low density developmentterm suggests. It is arguably the
most mentioned characteristic ofurban sprawl.

2. Development's Distribution deduced from the terms ofopen space,
leapfrog, scattered or segregateddevelopment. The decompositions from
Section 2.3.1 atomize thedispersion in di�erent dimensions, such ascon-
tinuity , concentration, clustering, centrality , and nuclearity. Nevertheless,
they all respond to the same magnitude: how the areas with high con-
centration of activities are distributed. Furthermore, clustering already
englobescentrality and nuclearity in a more general way: it gauges how
activities tend to clump together, regardless if it is around one center
(monocentric) or several ones (polycentric).

3. Land use mix (or absence of thereof) is often considered as a consequence
of the lack of coordinated planning. In pursuance of a clear dimensional
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decomposition, this characteristic can be seen as, how the land uses are
distributed for a given urban development.

4. Accessibility after the associations ofurban sprawl with automobile de-
pendency. This is often attributed to fringe and ribbon development
around suburban highways, however such characteristic is rather related
to the dispersion (the former dimension) of the developed patches. Conse-
quently, in order to separate these two dimensions,accessibility will rather
denote how well the transportation network e�ciently serves a given urban
development.

Such a decomposition is practically the same as the four-factor one proposed
by (R Ewing, R Pendall, and D Chen 2002) and (R. H. Ewing, Hamidi, and
America 2014) (activity centering is a particular acception of development dis-
tribution ). It is also very similar to the characterizations of (Tsai 2005) and
(Jaeger and Schwick 2014), nevertheless these do not consider theland use mix,
which several studies arguably consider as a key factor ofurban sprawl.

2.4 Indicators in the Literature

Given the looseness of the term and its multi-dimensionality, a large set of indi-
cators have been proposed to measure di�erent characteristics ofurban sprawl.
This part will put together and audit the most common ones, according to the
four dimensions highlighted in Section 2.3.2.

2.4.1 Density

Density has a very simple and intuitive de�nition. In spatial analysis, for a given
magnitude f , its density will correspond to its value divided by the areaa that
f involves. In the context of urban sprawl, such a magnitude might correspond
to the number of housing units, the number of jobs or the number of residents.

Works like (Galster et al. 2001; Malpezzi and Guo n.d.; R Ewing, R Pendall,
and D Chen 2002; Reid Ewing, Rolf Pendall, and Don Chen 2003) and (R. H.
Ewing, Hamidi, and America 2014) borrow from several statistics of the tract
densities, such as percentile-based tract density or the extreme values. However,
as (Tsai 2005) points out, such variables have been empirically shown to be
highly correlated to the average density itself.

Density Gradients gauge how the density decays with the distance to the
city centers. As (Torrens and Alberti 2000) remarks, this is a key factor in
economics andurban sprawl since it inuences the development of residential
units at the urban fringe based on the housing prices and the commuting costs.
The gradients are often characterized by theinverse power function, as in:

D (x) = D0x � � (1)
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whereD0 is the density at the center and� is the decay parameter as moving
away from it (increasing x).

Very similarly, the same magnitude can be modelled with anegative expo-
nential function such as:

D(x) = D0e� �x (2)

� being then the decay parameter.
According to (Torrens and Alberti 2000), the inverse power function of Equa-

tion 1 has \a tendency to over-predict" the density of \areas close to the CBD",
whereas the negative exponential model of Equation 2 usually \does a poor job
of predicting central densities" (Batty and Kim 1992).

2.4.2 Distribution

The distribution of urban development distinguishes two di�erent facets: the
evennessand the clustering (or centrality). The evennessdetermines how eq-
uitably a magnitude is distributed among the studied area. Nonetheless, this
does not reveal any spatial relation among the sub-areas with high density off ,
such as whether they are clustered or randomly distributed. The latter in fact
constitutes the other facet, the clustering of high density sub-areas.

Most of the distribution measures are determined after an areal decomposi-
tion (i.e. grid or census tracts) of a given region. As (D. Smith 1975) exposes,
their values often depend on such areal decomposition features as the shapes and
sizes of sub-areas. This issue is described in detail in (De La Barra 1989), with
the denomination of the modi�able areal unit problem (MAUP). Furthermore,
(Openshaw 1991) states that this problem might induce unspeci�ed inuence
on the results of the spatial analysis.

Notation The areal decomposition will be noted by 
, which will be a set of
N = j
 j sub-areas. For any given magnitude� , its value in the i sub-area will
be noted as� i . The magnitude's capitalization B will represent its total value
in all N sub-areasB =

P

 � i =

P N
i =1 � i whereas its mean will be noted as

�� = B
N .

The letter a will be reserved to denote the area, whereasf will be used gener-
ically and can correspond to any occurence, such as points of interest (POIs).
Most of the measures in the literature are proposed based on a particular mag-
nitude (such as f = number of housing units) or a combination of magnitudes
(such asf = number of inhabitants + number of jobs). Despite this, the equa-
tions in this section will be expressed in terms of a generic magnitudef , to
allow more versatility in their semantics.

Measures of Evenness
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Delta Index is an adaptation of the index of dissimilarity of (Massey and
Denton 1988), initially formulated to reect levels of residential segregation. In
(Galster et al. 2001), it is tailored as:

� =
1
2

NX

i =1

j
f i

F
�

ai

A
j (3)

which computes the proportion of f that is located in sub-areasai with above
average density off . Higher values of� indicate that f is more concentrated in
fewer sub-areas.

Gini Coe�cient is the most commonly used measure ofeconomic inequal-
ity , and can be adapted to determine theequality distribution among sub-areas
as in:

G =
1
2

NX

i =1

NX

j =1

jf i � f j j
f i

(4)

ranging from 0 to 1, 0 corresponding to perfect equalty and 1 to one sub-area
i concentrating all F . This adaptation is acknowledged as an indicator ofurban
sprawl in (Malpezzi and Guo n.d.) and (Tsai 2005).

Shannon's Entropy was �rst proposed in (Shannon 1948) in the context
of information theory. For spatial analysis, it can be expressed as:

H = �
NX

i =1

f i

F
ln(

f i

F
) (5)

whose value starts at 0, indicating a compact distribution of f , and ap-
proaches ln (N ) for very dispersed ones. For cities, a halfway markln (N )

2 is
considered by some authors a sprawling threshold. OftenH is rescaled into a 0
to 1 range, as inH 0 = H

ln (N ) and denominatedrelative entropy.
The �rst use in spatial analysis is found in (Theil 1967), and according to

(Thomas 1981) it is better than other dispersal statistics since it is invariant
to the areal decomposition and thus not a�ected by the MAUP. This claim is
rea�rmed by (Yeh and Xia 2001; Ba Bhatta, Saraswati, and Bandyopadhyay
2010) when adopting it to measurespatial dispersion. It is also used in this
sense in (Sudhira, Ramachandra, and Jagadish 2004; Li and Yeh 2004) and
(Jat, Garg, and Khare 2008), among other works.

On the other hand, (Tsai 2005) discards choosing entropy to gauge dispersion
since it cannot be determined for sub-areas of density 0 (ai such that f i = 0),
and notes that those sub-areas do exist in metropolitan areas (i.e. parks).
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Theil's Index (Theil 1967) de�nes one of the main measures of economic
inequality, determined as:

T =
NX

i =1

ai

A
ln(

ai =A
f i =F

) (6)

which is adapted as a measure ofurban sprawl in (Malpezzi and Guo n.d.).

Measures of Clustering, Centrality and Compactness Across the liter-
ature, the terms clustering, centrality and compactnessare used to refer to the
same semantics: to which degree the sub-areas with high-density are clumped
closely or dispersed randomly.

Some of the reviewed measures assume the existence of a central business
district (CBD), especially those that refer to the centrality term. Consequently,
they might not be appropriate to assess cases of polycentric metropolitan areas.

Morans I (Moran 1950) proposed a measure ofspatial autocorrelation,
which given an areal decomposition of a region, is determined as:

I =
N

P N
i =1

P N
j =1 wi;j

P N
i =1

P N
j =1 wi;j (f i � �f )( f j � �f )
P N

i =1 (f i � �f )2
(7)

with wi;j being a weighting between sub-areasi and j . It ranges from -1
to +1, where -1 corresponds to a \chessboard" pattern, 0 to random scattering
and +1 to a strong clustering of high-density sub-areas.

It is proposed in (Torrens 2008) and (Tsai 2005) as a measure ofcentrality
and clustering in the context of urban sprawl. Furthermore, (Tsai 2005) shows
that I characterizes well all the following:

� number of centers (clusters of high density), as inmonocentric (high I ),
polycentric (medium I ) and decentralised (low I ). This feature is also
noted asnuclearity in (Galster et al. 2001)

� discontinuous or leapfrogging development

� strip development

It also argues that weighting wi;j with the inverse distance between i , j 's
centroids is more accurate than withcontiguity, sincecontiguity only considers
neighboring cells.

However, in the same study it is shown howI measures only the geographical
2-dimensional dispersion, without considering the equality of the distribution.
This entails that in order to well assessurban sprawl, I shall be used in conjunc-
tion with density and evenness of distributionmeasures. Additionally, (Jelinski
and J. Wu 1996) shows that I can be a�ected by the MAUP.
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Geary's C (Geary 1954) de�ned another index of spatial autocorrelation
as:

C =
(N � 1)

2
P N

i =1

P N
j =1 wi;j

P N
i =1

P N
j =1 wi;j (f i � f j )2

P N
i =1 (f i � �f )2

(8)

which ranges from 0 indicating a positive autocorrelation to 2 indicating
a negative one. A value of 1 means that there is no spatial autocorrelation
whatsoever. The index can also be adjusted as inC0 = � (C � 1) so that it
matches Moran's I range.

Despite their similarity, Moran's I is a measure of global autocorrelation
whereasC is more sensitive to local patterns. Moreover, (Tsai 2005) experiments
with di�erent urban forms and shows that Moran's I is more adequate to gauge
urban sprawl, which coincides with the fact that C has a lesser presence in the
topic's literature.

Suen's level of Scatter (Suen 1998) formulates the equation:

Ss =
NX

i =1

f i dci ;C 0

F
(9)

which is also used in (Torrens and Alberti 2000). Hereci is the centroid of
the sub-areai , and dci ;C 0 represents the distance fromci to the weighted global
centroid C0. To determine C0 each sub-areai weighted by its f i value as in
C0 = 1

F

P N
i =1 f i ci .

The existence of a CBD is not considered inSs, and intuitively C0 should
respond well to polycentric cases given its weighting. Nonetheless, very few
works borrow from this indicator, so there is no empirical evidence of how it
responds.

Bertaud's � (Bertaud and Malpezzi n.d.) introduce a compactness index
as:

� =

P N
i =1 di

f i
a i

� c
(10)

where di is the distance of i 's centroid to the CBD, and � c corresponds to
the converse measure for acylindrical city with a circular base equal to the total
area A and a constant height equal to the average density�f . Nevertheless the
author admits that � might not have much signi�cance in polycentric cities.

Galster's Clustering Coe�cient (Galster et al. 2001) builds the follow-
ing clustering coe�cient :

G =
NX

i =1

P S
s=1 j f i;s

a i;s
� f i

a i
j

ai
(11)
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where the indexs corresponds to a sub-decomposition of the sub-areaai into
S further sub-areas ai;s . The indicator aims to measure how \development is
bunched to minimize occupied space" in each sub-areaai .

Given that in the original work an areal squared decomposition is used, on
it each ai is decomposed intoS = 4 equal sub-squaresai;s . Notwithstanding
the values ofG are clearly very sensitive to the chosen decompositions.

Galster's Centralization Index (Galster et al. 2001) proposes acentral-
ization index based on the work of (Massey and Denton 1988). It operates by
iterating a series of concentric rings around the CBD, intending to capture how
a magnitude f accumulates relative to the area as moving away from the CBD.
Additionally, the study proposes to use the average distance off to the CBD
as acentrality indicator as well. However, both measures are strongly based on
the assumption of the existence of a CBD.

2.4.3 Land Use Mix

A pervasive audit of the land use mix measures is found in (Song, Merlin, and
Rodriguez 2013), where two main types of measures are de�ned: theintegral
ones, that operate over a whole area, and thedivisional ones, which are built
upon an areal decomposition.

The author also decomposes the semantics of the mixity of land uses into two
di�erent facets: the quantity of mix and the (geographical)distance or proximity
of the most mixed areas. Such delineation is semantically akin to the two facets
of distribution : the evennessand clustering. Often the evennessindicators of
the land use mixdo not borrow from an areal decomposition (integral measures),
whereas theclustering ones are necessarilydivisional measures.

On the other hand, another set of measures that will be reviewed are included
in the landscape metrics of the noteworthy software FRAGSTATS (McGarigal
and Marks 1995), in a framework of more general patch-like landscape analysis.

Notation In order to formally consider the land use, an extension to the
notation from Section 2.4.2 will be introduced: the generic magnitudef will be
categorized into di�erent land uses asf (k ) , where k is one of the M land use
types (i.e. k = residential units o4 k = shops). Analogously, F (K ) will denote
the magnitude's total value in all N sub-areasF (k ) =

P N
i =1 f (k ) , and its mean

is �f (k ) = F ( k )

N . If the sub-areal index i is not speci�ed, f (k ) will refer to the sum

of the k use magnitudes over theN sub-areas as in:f (k ) =
P N

i =1 f (k )
i .

Note that the aggregation of all land uses in a given sub-areai as
P M

k=1 f (k )
i

does not make sense unless the values of the di�erent land uses are comparable.
For example, in a city with F (act ) = 100 activities and F ( res ) = 10000 resi-
dential units and a sub-areai with f (act )

i = 2 and f ( res )
i = 1000, the addition

f (act )
i + f ( res )

i = 2 + 1000 = 1002 does not give any interpretable information.
Instead the relativization of those sub-areal quantities with respect to the city's
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total, as in f ( act )
i

F ( act ) = 0 :02 and f ( res )
i

F ( res ) = 0 :1 might provide more comprehensi-
ble information, such as the predominance of residential development in the
sub-areai .

Another convenience is the use of the letterp as in p(k )
i to denote the propor-

tion of the land use k in the sub-area i 2 
. Then P (k ) denotes the proportion
of the land usek in the whole area. Such proportion might be de�ned in terms
of area, so thenp(k )

i corresponds to the amount ofi 's area destined to the land

usek as in p(k )
i = a( k )

i
a i

. To do so, some works assume that a given sub-areai is
destined to only one land use, but in such case the results might be too sensitive
to the chosen areal decomposition. When the amounts of POIs of di�erent land
uses are comparable,p(k )

i might also be de�ned in terms of quantity of POIs of

type k as in p(k )
i = f ( k )

i =F ( k )

P M
l =1 f ( l )

i =F ( l )
. Furthermore, the availability of data can also

condition the de�nition of p(k )
i . Nonetheless, the construction of the indicators

in this section will generically usep(k )
i to allow more exibility.

Measures of Evenness, Exposure Most of the metrics reviewed in this
section are adaptations of the measures ofevenness of distributionlisted in Sec-
tion 2.4.2, but with their summations de�ned over the land uses k 2 [1; M ]
instead of the areal decomposition 
, turning them into integral measures ac-
cording to the classi�cation of (Song, Merlin, and Rodriguez 2013). Such mea-
sures are not sensible to the MAUP but ignore the geographical con�guration
of the uses.

On the other hand, some measures of this section do borrow from an areal
decomposition 
, and usually respond capture better some patterns that integral
measures ignore. Nevertheless, the formulations of such measures tend to be
more complex unless they are formulated for the mix of only two land uses
(k; l ).

Shannon' s Diversity Index relying on (Shannon 1948) communication
entropy index, it can be modi�ed to measure the diversity of \information" (or
land uses) as in:

HD = �
MX

k=1

P (k ) ln (P (k ) ) (12)

where a HD equals zero in case of absence of diversity, and approaches
ln (M ) when the diversity is maximal. It can be adjusted to the 0 to 1 scope as
in H 0

D = H D
ln (M ) , in the same manner as for (5).
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Her�ndahl-Hirschman Index is a common measure employed often in
economics to appraise marked concentration, and it is de�ned as:

HHI =
MX

k=1

(P (k ) )2 (13)

which ranges from 1
M when all land uses are equally present to 1 when there

is only one use in the whole area.
For the most part, HHI behaves very similar to HD of Equation 12, but

HHI is more sensitive to the most prevalent use.

Simpson's Evenness Index is propounded by (Torrens 2008) as a mea-
sure of activity evenness as:

Se =
1 �

P M
k=1 P (k )

1 � 1
M

(14)

which nears zero for (uneven) distributions dominated by one land use and
reaches one for an area-proportional land use allocation. It is used also in
(Arribas-Bel, Nijkamp, and Scholten 2011) as the indicator of land use mix.

Dissimilarity Index is presented by (Massey and Denton 1988) to reect
the levels of residential segregation. In the same way as in Equation 3, it can
be adapted to measure to which degree the distribution of di�erent land uses
among sub-areas of 
 is similar to the same distribution in the whole area.

D (k;l ) =
1
2

NX

i =1

jp(k )
i � p( l )

i j (15)

where D (k;l ) denotes the dissimilarity of the land usek with respect to l .
The index's values range from 0 to 1, indicating high and low levels of use mix
respectively.

One of the interests ofD (k;l ) is that it weights each sub-areai 2 
 according
to its p(k )

i and p( l )
i values, so greater land mix in areas of high density ponders

more than in low density ones.

Exposure Index (Massey and Denton 1988) de�nes twoexposureindices
for residential segregation, considering only two types of residents: the minority
k and the majority l . In this pretext, the indices are de�ned as:

E (k;l )
inter =

NX

i =1

f (k )
i

F (k )

f ( l )
i

F (k ) + F ( l )
(16)

E (k;l )
isol =

NX

i =1

f (k )
i

F (k )

f (k )
i

F (k ) + F ( l )
(17)
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where both range from 0 to 1, with higher values indicating higher exposure
of k to l . The metric E (k;l )

inter refers to the interaction of the minority k with the
majority l , whereasE (k;l )

isol refers to the isolation of the minority k.
The work of (Galster et al. 2001) provides an adaptation more suited for

gauging land use mix in the context of urban sprawl:

E (k;l ) =
NA

F (k ) F ( l )

NX

i =1

f (k )
i f ( l )

i

a2
i

(18)

where an E (k;l ) = 0 means that k is not exposed to l (f (k )
i and f ( l )

i are
orthogonal, hf (k )

i ; f ( l )
i i = 0 8i 2 
). The value can reach the maximum when

corresponding to areal density of one of the land uses (f ( k )
i
a i

or f ( l )
i
a i

) in a cell i .
The three former metrics correspond semantically to measures ofexposure

(of k to l) rather than evenness. As reviewed in (Massey and Denton 1988) and
(Song, Merlin, and Rodriguez 2013), such metrics depend \on the relative sizes
of the two groups being compared while evenness measures do not". This means
that when one of the land use typesk or l is small over the whole area,exposure
measures will always produce low values, whereasevennessones might not.

Measures of Clustering and Proximity The formerly reviewed land use
mix metrics are invariant to spatial permutations of the decomposition's sub-
areasi 2 
. However, whether the areas with high diversity of land uses tend
to be clumped together or randomly scattered in space is very relevant tourban
sprawl. Although for land use mix this magnitude is often referred to asprox-
imity , it actually corresponds to the more generalized concept ofclustering or
spatial autocorrelation (analogously to the clustering of Section 2.4.2).

Contagion (Turner et al. 1989) delineates an index for spatial analysis
that corresponds to the probability that two randomly chosen adjacent sub-
areas belong to the same class. It is constructed as:

CONT = 1 +
1

2ln(M )

MX

k=1

MX

k=1

P (k ) gk;l

gk
ln (P (k ) gk;l

gk
) (19)

with gk;l representing the number of adjacencies between sub-areas of land
usesk and l, and gk =

P M
l =1 gk;l the total number of adjacences of the land use

k with other land uses. Values of zero indicate maximum disaggregation (small
dispersed sub-areas of di�erent land uses), whereas the maximum value of one
corresponds to a large cluster of sub-areas of a single land use.

Although not considered explicitly in its formulation, 
 is implicit in Equa-
tion 19 through the adjacenciesgk;l . Additionaly, the indicator is built on the
assumption that sub-areas are only of one hard land use type. This might not
be a problem for studies like (Torrens and Alberti 2000; Torrens 2008) that
propose to work at a pixel level, nevertheless it might be a problem for grid
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divisions or census tracts. Besides, the value is though very sensitive to the
areal decomposition 
: for the same urban development pattern, CONT can
change signi�cantly depending on the sub-areas' sizes.

With data about land covers other than urban development (i.e. forest,
agricultural, often obtained through remote sensing), C might be used as an
index of distribution of development, like the ones of Section 2.4.2.

Clustering Index (Massey and Denton 1988) intoduced aclustering met-
ric for residential segregation among a minorityk and a majority l as in:

C(k;l ) =

P N
i =1 p(k )

i

P N
j =1 wij f (k )

i � F ( k )

N 2

P N
i =1

P N
j =1 wij

P N
i =1 p(k )

i

P N
j =1 wij (f (k )

j + f ( l )
j ) � F ( k )

N 2

P N
i =1

P N
j =1 wij

(20)

where the weighting wij among sub-areasi and j originally corresponds to
a negative exponential of the distance betweeni and j respective centroidsdij

as in wij = e� dij .
In (Song, Merlin, and Rodriguez 2013) it is readjusted to appraiseland use

mix in the context of urban sprawl considering two land use types: residential
and non-residential.

2.4.4 Accessibility

The accessibility facet is inuenced by urban sprawl to an important extent.
A low-density development, with a given distribution and land uses certainly
conditions the possibilities of providing goodaccessibility to the residents and
the services.

Some research on the topic uses scalar indicators such as average commuting
times as measures ofaccessibility, nevertheless such measures do not o�er any
analytic approach that permits the modelling of the phenomena. A remarkable
review of accessibility measures forurban sprawl is done by (Torrens and Alberti
2000). Those measures will be listed in this section.

Gravity Models are built upon ideas of Newtonian physics, and are ex-
pressed as:

A i;j =
hi hj

(di;j ) � (21)

where hi and hj are respectively the capacities of the origini to generate a
trip, and of j to receive one. The distancedi;j betweeni and j has a weighting
mechanism represented by� that discourages long trips.

Utility Models are based on discrete-choice models and are determined by
the choice that a given individual makes out of a set of available options. These
measures tend however to require a large amount of data in order to build a
comprehensive utility model for a set of individual prototypes.
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Isochronic Measures gauge the intuition of how many di�erent POIs can
be reached from a starting point i in a time cost lower than certain threshold � .

3 A Framework for Measuring Sprawl

3.1 Data Sources

As pointed out in (Torrens and Alberti 2000), data is one of the main bottlenecks
when it comes to de�ne the extent of a study onurban sprawl. The availability
of data can vary dramitically among di�erent regions of the world, so that
it constitutes already a constraint on the scope of studies onurban sprawl:
very few intend to replicate analysis around many diverse manifestations of the
phenomena. In fact, as audited in Section 2, most of the works determine their
measures ofsprawl over areas in the United States, most probably due to the
greater availability of data.

Nonetheless, the latter literature brought urban sprawl to a more transversal
geographical context, specially those built on data obtained through remote
sensing. Moreover, a new generation of sources of data is emerging: crowd-
sourced data. There are several considerations to have in mind when working
with crowd-sourced data, such as the commonness of missing data or reliability
of the user inputs.

Despite such concerns, the amount of crowd-sourced data has been continu-
ously increasing during the last years, and it is reasonably expected to become
soon one of the main sources of data for many �elds of research. Besides, among
others, quality metrics and user reporting and contributor reviews are intended
to improve the data's soundness. At last but not least, one of the most impor-
tant advantages of this data is the ease of access to it.

There exist already signi�cant sources of crowd-sourced data that can be
useful in order to assess di�erent axes ofurban sprawl at a world scale. Although
at this point this work only uses data from OpenStreetMap (OSM), the following
sub-sections will comment on sources that can be relevant (and used in the
future) for extensions of this project.

3.1.1 OpenStreetMap

The OpenStreetMap (OSM) is a collaborative project to create a free editable
map of the world, which results to be a prominent example of volunteered
geographic information (VGI). It is a knoweledge collective that provides user-
generated street maps (Haklay and Weber 2008). Volunteers across the world
share geographic information to OSM in various ways, also considered as \in-
telligent sensors" (Goodchild 2007).

Since its creation, the project has been increasingly used across the world for
a wide variety of purposes. Quality metrics have been proposed in (Forghani and
Delavar 2014; Barron, Neis, and Zipf 2014; Mooney, Corcoran, and Winstanley
2010; Fan et al. 2014), followed by di�erent quality assessments, in particular
for di�erent countries. For instance, it has been concluded that the quality is
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"fairly accurate" for England (Haklay 2010), and it is even shown that OSM
data is superior to the o�cial dataset for Great Britain Meridian 2. Thus, the
previous work has been extended for France (Girres and Touya 2010). Studies
focusing on the street network of Germany have been also been conducted in
(Neis, Zielstra, and Zipf 2011), where it is concluded that the data-sets can be
considered complete in relative comparison to a commercial dataset. In addition,
the OSM data-set for Hamburg already covers about 99.8% of the street network
(Over et al. 2010) according to the surveying o�ce of Hamburg. The latter study
also remarks that \Besides the street network, the real advantage of the dataset
is the availability of manifold points of interest". These POIs allow for deeper
understanding of cities dynamics, enriched with the provided location and the
embedded information.

Extraction of information The documentation of the service is provided in
the OSM Wiki. The OSM data is usually represented as a tree of XML-like
named elements with key:value tags. Such elements might represent di�erent
kinds of roads, POIs, or land uses2.

Overpass API The OSM data can be retrieved through the read-only Over-
pass API which supports its own query language3.

Mapzen Metro Extracts A collection of OSM data is maintained by Mapzen
Metro Extracts and can be retrieved for a set of cities in form of the GIS data
Shape�les. The service bypasses the OSM to PostGIS conversion of the data
so the user can directly handle it with commonly used GIS software, such as
ArcGIS or the open-source QGIS.

3.1.2 Other Data Sources to Consider

Transitland The site Transitland gathers transit data from many sources to
o�er an API which users can query for routes, stops or schedules of di�erent
transportation means and operators. Nevertheless it does not have many con-
tributions outside the United States yet.

Bike Share Map Data about bicycle systems is collected and displayed in
The Bike Share Map for more than a hundred cities around the world.

2Tag speci�cations of OSM: roads ( http://wiki.openstreetmap.org/wiki/Key:highway );
POIs ( http://wiki.openstreetmap.org/wiki/Key:amenity , http://wiki.openstreetmap.
org/wiki/Key:shop , http://wiki.openstreetmap.org/wiki/Buildings ); and land uses
(http://wiki.openstreetmap.org/wiki/Key:landuse )

3Overpass Query Language: http://wiki.openstreetmap.org/wiki/Overpass_API/
Overpass_QL
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3.2 Formalization of the Framework

3.2.1 Notation

In addition to the notation previously de�ned when reviewing the indicators in
the literature in Section 2.4, the following conventions will be adopted:

� Region: S = f (lon; lat ) 2 B g � R2 where lon and lat mean latitude and
longitude respectively, andB is the region boundary. This will correspond
to the metropolitan area of the city in question. In the same way as in
Section 2.4, 
 will denote the areal decomposition of S into N sub-areas.

� Road Graph: G = ( V; E) in the primal form , where nodes v 2 V repre-
sent intersections and are geo-referenced as inv = ( lon; lat ) and eachedge
e = uv = ( u; v) 2 E represents adirected path between the nodesu 2 V
and v 2 V . There is also adistance function d : E �! R+ and a travel
cost function c : E �! R+ to gauge accessibility more precisely.

� Points of Interest (POIs): P = f p1; :::; pM g where everypoint of in-
terest (poi) is of the form p = ( cat; lon; lat ) 8p 2 P and is categorized
by the cat component and geo-referenced through (lon; lat ).

3.2.2 Obtaining Data

Given a region of interestS, two data structures must be constructed:

i A road graph G = ( V; E) with the nodes that are located inside the region
S as in v = ( lon; lat ) : ( lon; lat ) 2 S 8v 2 V . The distance function
for an edgee = uv, d(e) can be determined using theHaversine formula4

given that u and v are geo-referenced. For thetravel cost function of the
edgec(e), its value will be computed as a product of e distance d(e) and a
velocity coe�cient  that will depend on what kind of road does the edge
represent according toe's OSM tags 2.

ii A set of POIs P such that each poi is located inside the regionS as in
p = ( cat; lon; lat ) : ( lon; lat ) 2 S 8p 2 P. The categories will be divided
into two main axes: activities and residential, according to p's OSM tags2.

3.3 Considerations when Choosing Measures

3.3.1 Suitability

Measuring urban sprawl is a complex task which in certain situations is only
feasible under very subjective assumptions. An extensive series of suitability
criteria for such indicators is de�ned in (Jaeger, Bertiller, Schwick, and Kienast
2010). This speci�cations include ease of interpretation, simplicity and other
mathematical blueprints.

4Seehttp://en.wikipedia.org/wiki/Haversine_formula
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Some works often borrow from a large set of indicators that are strongly
correlated among themselves, and use statistical techniques such as principal
component analysis (PCA) in order to build measures. Such an approach can
give interpretable results but it does not provide any formal model to assess
urban sprawl outside of the data that has been used for the analysis.

On the other hand, there is a clear interdependence between the dimen-
sions ofurban sprawl. For example, a givendistribution of development clearly
constraints the accessibility. Furthermore, the accessibility is also most likely
related to the density and the allocation of land uses. This has to be taken into
consideration, and can mean that the aggregated indicators might not permit a
clear interpretation of the phenomena.

3.3.2 Data

Several works in the literature, such as (Torrens and Alberti 2000) and (Jaeger,
Bertiller, Schwick, and Kienast 2010), remark that the availability of data is
one of the main bottlenecks that limit the potential extent of studies of urban
sprawl. The choice of crowd-sourced data is principally justi�ed by the following
reasons:

� crowd-sourced data is often of open access, so the measures that are de-
termined out of it can be commented, compared, contrasted or improved
by the research community more easily

� there exist a very active community of developers that craft libraries that
interact with the data sources APIs, and process its data into easily ma-
nipulable formats

� the amount of crowd-sourced data as well as its reliability already has,
and is expected to improve greatly

In the context of this framework, the two main data structures mentioned
in Section 3.2.2,G and P can be easily obtained through OSM. For the case of
P 's categories, the OSM tag speci�cation2 allows for many categorical classi�ca-
tions, however for this �rst version only two main axes are considered: activities
and residential. This choice is for the sake of simplicity, which is very subjective,
but it can be conveniently modi�ed if desired.

3.3.3 Quasi-Continuous Surfaces

Given a set of data points, the Kernel Density Estimation (KDE) interpolates
a continuous surface through a given kernel (e.g. aGaussian/Normal density
function ). As (Torrens and Alberti 2000) expounds, there can be advantages of
surface smoothing when measuring urban sprawl as it allows, for a sub-region,
the legitimate inference of its magnitude density based on the observations in
the neighbouring regions. A visualization of how a KDE overS region's POIs
P looks is displayed in Figure 1
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Figure 1: KDE inference of density for a given distribution of residential POIs.
Location: Grenoble, France

To determine the indicator's values given theS region's categorized POIsP,
and areal decomposition, the proposed framework o�ers two options:

(i) for each category k take the number of POIs that fall into each cell i as
f (k )

i as the magnitude to measure, or

(ii) compute a KDE  (k ) for each categoryk, and for each celli take its average
as the magnitude to measuref (k )

i (determined asf (k )
i = 1

a i

R
i  (k ) da)

The option (ii) can both be convenient when the missing data is distributed
spatially in an even way, the inference of density through a KDE function can
be reasonable. See Figure 2 for an example of this situation.
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Figure 2: KDE inference of density for an even spatial distribution of the
missing residential POIs. In such a situation, it is reasonable to assume that in
such a grid there are more residential POIs given the OSM-rendered gray color
and the existing roads. Location: Chandigarh, India

However, in some other situations such as regions with very dispersed POIs,
it does not make sense to introduce density since the areas around a POI are
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actually undeveloped. Furthermore, such an interpolation might impede the
spotting of urban sprawl manifestations such asleapfrog development. An illus-
tration of these conditions is shown in Figure 3.

Figure 3: Above there is the OSM rendering of the region. Below there is,
from left to right: (1) the spatial distribution of activity POIs, (2) number
of activity POIs inside every cell of a given decomposition 
, (3) KDE inferred
average densityactivity POIs of each 
's cell. For such a dispersed distribution,
interpolating a continuous density function might pollute the data and indicate
lessurban sprawl. Location: Sierra Vista, Arizona, USA

In any case, it must be accounted that interpolation of density, by its own na-
ture will smooth the evenness and consequently the values of the correspondent
measures listed in Section 2.4.2 and Section 2.4.3.
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3.4 Proposed Indicators

Bearing in mind the measures ofurban sprawl reviewed in Section 2.4 and the
considerations detailed in Section 3.3, this section proposes a set of indicators
conceived to gauge the di�erent dimensions ofurban sprawl.

3.4.1 Density

As reviewed in Section 2.4.1, the density itself is empirically strongly correlated
to other related measures such as statistics on tract densities. Consequently,
the following three straightforward indicators of density will be adopted:

� Activity Density deduced from the OSM activity POIs P that lay inside
the region S. The coverage of activities is reasonabliy satisfactory in all
the major cities.

� Residential Units Density determined out of the OSM residential POIs
P for the region S. It might not be a very reliable indicator since the
current contributions in this category vary dramatically among cities.

3.4.2 Development's Distribution

The measures used to gauge thedistribution of urban development will be de-
termined separately for both the activity and residential land uses. Each one of
the distribution 's facets will be assigned one indicator.

Evenness After the revision of some indicators of equality of distribution in
Section 2.4.2, the chosen indicator for this magnitude is:

� Shannon Entropy H determined by Equation 5, with f (k )
i being the

average KDE density of the land usek in the sub-area i . The choice is
justi�ed after its empirically-proven robust behaviour towards variations
of areal decompositions, as well as lower computational costO(N ) (instead
of O(N 2) of the Gini).

One of the advantages of the famework's KDE option described in Sec-
tion 3.3.3, is that with a KDE-based f (k )

i , H is calculable sincef (k )
i > 0 for any

i and k. The same does not happen when using the POIs count as the indexes'
magnitude f (k )

i because a given sub-areai can have zero occurrences of POIs of
the categoryk (i.e. a park i without residential units will have f ( res )

i = 0). Note
that ignoring such sub-areas would prevent the indicators of detecting patterns
of sprawl such asleapfrog or discontinuous development.

Clustering Considering the literature review of clustering, compactnessand
centrality indicators from Section 2.4.2, and after (Tsai 2005) exhaustive inspec-
tion of its behaviour, the measure used for this facet will be:
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� Moran's I calculated as in Equation 7 with f (k )
i as the number of POIs

of categoryk in the sub-areai , and with the inverse distance as weighting
function. Its computational cost O(N 2) can be though an issue to consider
for large regions.

3.4.3 Land Use Mix

The measures ofland use mix audited in Section 2.4.3 are rather similar to
those that asses the spatialdistribution . This is arguably because the semantics
of both dimensions are very similar and can also be divided intoevennessand
clustering (or compactness).

Evenness Thera are two important considerations to mention to justify the
choice of this measure, both having to do with the data extracted from OSM.
The �rst, is that such data does not permit a hard decomposition of the land
uses, with each sub-areai corresponding to one and only one land usek. The
second is that the data is classi�ed into two main categories: activities and
residential. Taking into account these concerns, the measures from Equation 12
and Equation 14 do not seem appropriate, and so the following indicator will
be employed:

� Exposure Index E calculated as in Equation 18 which given that only
two land uses are considered, it only needs to be determined once asEk;l

reveals the exposure of land usek to l (in this context k =activities,
l =residential) and it is symmetric.

Clustering Reckoning still with the former data considerations, it can be
observed that the Contagion index of Equation 19 does not appear to be con-
venient.

The idea is to conceive a new indicator based on Geary'sC (Equation 8),
that will be noted as �. Given an areal decomposition 
, � iterates over the
combination set of pairs of sub-areas

� 

2

�
. For each pair (i; j ) 2

� 

2

�
, a term � i;j

will be determined, ful�lling the following speci�cations:

1. mixity of land uses inside a given sub-areai should always increase the
global land use mixity �

2. mixity of land uses for adjacent or neighbouring sub-areasi , j should
always increase the global land use mixity as well �

Consequently, each term� i;j will be of the form:

� i;j = � intra (i ) + � intra (j ) + wi;j � inter (i; j ) (22)

where � intra will be a function that satis�es the �rst speci�cation, whereas
� inter ful�ls the second one. The weighting wi;j for � inter (i; j ) will increase
more the global mixity � for i and j that are close to each other. With the
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adequate choice of such functions, the indicator � should be able to gauge to
which extent zones with high mixity of land uses are situated closely. Such
magnitude is often referred to asproximity in the spatial analysis literature.

3.4.4 Accessibility

Given that OSM can provide the road graph G as described in Section 3.2.2,
the measures ofaccessibility should be built over this information.

A �rst approach can be to apply Equation 21 to an areal decomposition

, the trip's origin being then a sub-area i and the destination another sub-
area j . The capacities of generating and receiving trips could be determined
by the zones' intensity of land uses, with some function� depending on all the
combinations of f (k )

i , as in � (f (act )
i ; f ( res )

i ; f (act )
j ; f ( res )

j ).
Other topological properties of G might also reveal information relevant to

accessibility, such as theG's e�ciency " (ratio between the euclidean distance
between two points and the actual distance when traversingG's corresponding
edges) or the centrality indices ofG's nodesV . For example, Figure 4 shows an
illustration of how G's nodes' v 2 V centrality is correlated to its interpolated
activity density f (act )

v (which gives another case where the KDE pre-processing
of Section 3.3.3 might be useful).
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Figure 4: Road Graph G = ( V; E) with nodes colored according to theirclose-
ness centrality value, and plotted over the activity KDE  (act ) . There is a
signi�cant 0.591955 Pearson's correlation between thecloseness centrality of
each v 2 V and its interpolated activity KDE f (act )

v . Location: Grenoble,
France

4 Experiments

4.1 Chosen Dataset

A set of cities available in the Mapzen Metro Extracts (Section 3.1.1) have
been processed within the proposed famework in order to compute some of the
already implemented indicators. The datasets have previously been manually
explored in OSM in order that the missing data is not a determinant factor of
the analysis' results.
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�Avila is a medieval town of the historical region of Castille, in Spain. The
city's oldest part is surrounded by prominent walls. Such an architectural setting
can be expected to a�ect the distribution of the POIs. An OSM rendering of
the city's area and the distribution for the two categories of POIs is shown in
Figure 5.

Figure 5: Left: OSM rendering. Right: categorized POIs distribution. Loca-
tion: �Avila, Spain

Chandigarh is one of the early planned cities in the post-independence India,
and it is well known for its urbanism after the master plan conducted by the
remarkable Swiss-French architect and urban planner Le Corbusier. The city
is divided into 60 sectors of 800 x 1200 meters, where residential units and
activities such as stores, facilities or o�ces are distributed in an even way.
Additionally, the urban pattern assures a uid tra�c circulation as well as
a signi�cant availability of green spaces. The OSM rendering and POIs are
displayed in Figure 6.

Figure 6: Left: OSM rendering. Right: categorized POIs distribution. Loca-
tion: Chandigarh, India
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Dresden is an ancient city in the Free State of Saxony (currently Germany)
which has had several important remodellations throughout the history. The
most remarkable one corresponds to the transformation of the city after the
destruction that it su�ered during the World War II bombings. After the war,
an industrial period came, and with it, the urban growth came too. Specially
the satellite towns experienced important urban development in the form of
single residential units, that ended up creating a low-density scattered housing
zone in the city's outskirts. According to (Ludlow 2006), it is one of the most
sprawledcities in Europe. The OSM rendering and POIs are shown in Figure 7.

Figure 7: Left: OSM rendering. Right: categorized POIs distribution. Loca-
tion: Dresden, Germany

Grenoble is one of the major cities located in the Alps mountain range (in
the French part). Due to its location, it is often referred to as \The Capital
of the Alps". Its �rst settlements by Gallic tribes date back from 43 BC. The
city has lived several periods of important growth, the latter ones being in 1925
with the International Exhibition of Hydropower and Tourism, and after the
Xth Olympic Winter Games in 1968. Nowadays, the city is developed around
its historical center, clumped with its neighbouring municipalities in valley, and
then encompassed by small towns and ski resorts that are scattered over the
surrounding mountains. In such settling, the topography of the region can be
expected to condition the patterns of urban development. Its OSM rendering
and POIs are shown in Figure 8.
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Figure 8: Left: OSM rendering. Right: categorized POIs distribution. Loca-
tion: Grenoble, France

Raleigh is the capital of the state of North Carolina, in the United States of
America. It is one of the cities that has encountered greatest sub-urban growth
after the opening of the Research Triangle Park in 1959, which is now one of the
largest research centers in the world. The term \Triangle" comes from the fact
that three cities are part of that research pole: Raleigh, Durham and Chapel
Hill. The low density and scatteredness of the sub-urban development of the
three cities has practically connected them contiguously. According to (R. H.
Ewing, Hamidi, and America 2014), it is one of the mostsprawledmetropolitan
areas in the United States. Its spatial disposition is illustrated in Figure 9
through the OSM rendering and the POIs distribution.

Figure 9: Left: OSM rendering. Right: categorized POIs distribution. Loca-
tion: Raleigh, North Carolina, USA

4.2 Results

The values of the indicators designated in Section 3.4 are listed for each of
the cities in Table 1. For each column, the values are determined correspond-
ing to POI occurrences for the activity \act" and residential \res" categories
separately.

Several squared grid decompositions with di�erent step sizes each have been
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tested until the values showed a variation of less than a 5% variation in the last
3 samples.

City Area (km 2 ) POI count Moran's I Entropy H 05

act res act res act res

�Avila 40.9252 291 326 0.0563 0.0211 0.8654 0.7726
Chandigarh 474.3383 825 32848 0.0249 0.0597 0.7964 0.8293

Dresden 605.4000 21654 96645 0.0649 0.0399 0.9409 0.9696
Grenoble 376.4705 11260 84443 0.0547 0.0862 0.8697 0.9354

Raleigh 1575.2812 6718 126871 0.0147 0.1053 0.9389 0.9522

Table 1: City values for the POI count, Moran's I and Relative Shannon's
Entropy H' indicators.

Considering the cities aesthetics and their descriptions provided in Sec-
tion 4.1, it seems reasonable to assume that�Avila and Chandigarh will show a
lesser extent ofurban sprawl than Dresden, Grenoble and Raleigh. It has to be
observed though, that the data corresponding to the \POI count" column does
not vary proportionally to the city sizes, which probably indicates that some of
the cities have a greater contribution coverage of their activities and residential
POIs. Such factor could greatly inuence the results, so it has to be taken into
consideration before exposing strong claims based on the indicators' values.

The values for the Moran's I are relatively close to 0 in all the entries, which
reveals that the POIs distributions follow a random scattering. There do not
seem to be clear conclusions to be extracted, not when comparing between cities
nor when comparing between the \act" and \res" categories. With the exception
of �Avila, that has very few POIs, Moran's I seems to actually be correlated to
the amount of pois of each category, withI showing higher values as more POIs
are present. Further studies with cities of similar \Area" and \POI count" but
di�erent distribution patterns are certainly promising to accept or refuse that
I is strongly inuenced by the number of POIs. In any case, the patterns of
POIs' dispersion seem to be too complex to evaluate just with a scalar value
such asI .

On the other hand, the values of the relative entropyH 0 do clearly respond
more accordingly to the expected results. First, �Avila shows smaller values
of H 0, which can reasonabily be assumed that is related to the presence of a
medieval wall that concentrates the development in smaller parts of the city.
The iconic urban planning of Chandigarh also seems to have contributed to a
more uniform distribution of the POIs, as indicated by the also relatively small
H 0s. The cities that were assumed to besprawled, Dresden and Raleigh do show
noticeable higher dispersion of the POIs of both categories. Furthermore, the
H 0 index also captured a very particular pattern of the city of Grenoble, where
activity POIs are concentrated in the valley (lower H 0) and the residential ones
are more dispersed among the surrounding mountain ranges.
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5 Future Work

5.1 Comprehensive Characterization of Cities through Ur-
ban Sprawl

One of the experiments that are intended to be conducted through the proposed
framework intends to determine to what extent urban sprawl is related to aspects
of the cities more transversal than urban morphology and use composition, for
example socio-economic (car ownership, segregation, crime) or environmental
factors.

5.1.1 A Dataset of City Indicators

As mentioned before, the avability of data conditions the extend of any urban
analysis. This constraint must be considered when de�ning a datasetX for this
experiment, in two parts that are dependent on each other:

1. The dataset X should feature a large-enough number of citiesm so the
conclusions of further analysis are not too speci�c toX

2. A set of d indicators relevant to the context of the study must be available
for each city ~xi 2 X

There is then a compromise between (1) and (2), since the larger them, the
harder it is to �nd reliable data on the d indicators. Conversely, if the analysis
wants to consider a large number of indicatorsd, there will be a smaller number
of cities m that have available data for all the indicators.

Global Power City Index the Global Power City Index (GPCI) 6 provides a
considerable number of reliable indicators that are relevant to this study (d = 23
indicators have been selected), which are listed in Table 2.

6See http://www.mori-m-foundation.or.jp/english/ius2/gpci2/ for more information
on the GPCI series
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ID Description

1 Total Unemployment Rate
2 Total Working Hours
3 Level of Satisfaction of Employees with Their Lives
4 Average House Rent
5 Price Level
6 Number of Murders per Population
7 Disaster Vulnerability
8 Life Expectancy at Age 1 & 60
9 Number of Medical Doctors per Population
10 Population Density
11 Percentage of Renewable Energy Used
12 Percentage of Waste Recycled
13 CO2 Emissions
14 Density of Suspended Particulate Matter (SPM)
15 Density of Sulfur Dioxide (SO2), Density of Nitrogen Dioxide (NO2)
16 Water Quality
17 Level of Green Coverage
18 Number of Runways
19 Density of Railway Stations
20 Punctuality and Coverage of Public Transportation
21 Commuting Convenience
22 Transportation Fatalities per Population
23 Taxi Fare

Table 2: GPCI Indicators relevant to the study

Numbeo is a large database of user contributions which provides a set of indi-
cators classi�ed into seven main axes: (i) cost of living, (ii) property prices, (iii)
crime, (iv) health care, (v) pollution, (vi) tra�c, and (vii) quality of life. It pro-
vides an extensive API7 with a free academic license. The provided information
might be used in complemention of the GPCI indicators.

Building the Dataset given the choice of the GPCI indicators from Table 2,
there are m = 40 cities that appear in all the editions of GPCI that have been
accessible to this study, which are listed in Table 3.

7See http://www.numbeo.com/common/api.jsp for a detailed speci�cation of Numbeo's
API
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ID City ID City ID City ID City

1 Amsterdam 11 Frankfurt 21 Milan 31 Singapore
2 Bangkok 12 Fukuoka 22 Moscow 32 Stockholm
3 Barcelona 13 Geneva 23 Mumbai 33 Sydney
4 Beijing 14 Hong Kong 24 New York 34 Taipei
5 Berlin 15 Istanbul 25 Osaka 35 Tokyo
6 Boston 16 Kuala Lumpur 26 Paris 36 Toronto
7 Brussels 17 London 27 San Francisco 37 Vancouver
8 Cairo 18 Los Angeles 28 Sao Paulo 38 Vienna
9 Chicago 19 Madrid 29 Seoul 39 Washington
10 Copenhagen 20 Mexico City 30 Shanghai 40 Zurich

Table 3: Cities featured in all GPCI editions

The combination of d indicators and m cities yields the datasetX that will
be considered in further sections. In such dataset, each city is represented by
a vector ~x = ( x1; :::; xd) where each componentx j represents thej -th indicator
of the city ~x 2 X .

5.1.2 Clustering Cities

The number of samples ofX , m can be reduced into a smaller datasetX 0

with k << m prototypes through clustering techniques. The work of (Arribas-
Bel, Nijkamp, and Scholten 2011) presents a similar analysis (in the context of
European cities only) through the self-organizing maps (SOM) algorithm which
performs both (i) a reduction of the dimensionality d and (ii) a reduction of the
number of samplesm.

With the dataset X of Section 5.1.1, a �rst sample-clustering has been per-
formed with the k-means algorithm for several desired number of prototypes
k, and with 1000 di�erent initial centroid random choices. The strength of the
clustering results has been evaluated through the silhouette score for 4< k < 10,
with the best classi�cation found for k = 4 and corresponding to the clusters
shown in Table 4
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ID Characteristics Cities

(a) mainly European cities Amsterdam, Barcelona, Berlin, Brussels,
Copenhagen, Frankfurt, Fukuoka, Geneva,
Madrid, Milan, Osaka, Stockholm, Vancou-
ver, Vienna, Zurich

(b) developed mega-cities
from di�erent conti-
nents

London, New York, Paris, Seoul, Singapore,
Tokyo

(c) mega-cities of develop-
ing regions

Bangkok, Beijing, Cairo, Hong Kong, Istan-
bul, Kuala Lumpur, Mexico City, Mumbai,
Sao Paulo, Shanghai, Taipei

(d) mainly North-American
cities

Boston, Chicago, Los Angeles, Moscow,
San Francisco, Sydney, Toronto, Washington
D.C.

Table 4: results out of 1000 randomly initialized k-means clustering fork = 4
(silhouette average of 0.200395072433)

5.1.3 Linking City Indicators and Sprawl Measures

The objective of this part is to see to what extend the measures ofurban sprawl
proposed in Section 3.4 are related to the cities'd indicators.

The idea is to explore which combination of indicators city can precisely
determine to which of theprototypes (a, b, c or d of the clustering results of Ta-
ble 4) the city relates better. Such exploration can be formulated as asupervised
learning problem.

The available dataset will be represented withS = f ( ~ui ; yi ) 8i 2 [1; m]g
where for each city i :

� its r urban sprawl measures are determined as explained in Section 3.4,
so ~ui = ( ui; 1; :::; ui;r ) is known

� it belongs to one of thek clusters obtained in Table 4yi 2 [1; k]

With a training set Strain � S, the aim is to learn a multi-class classi�er of
the form hw : U ! K where:

� U is the vector space de�ned by ther urban sprawl measures' values

� K = f 1; :::; kg is the set of k possible classes that correspond to the clusters
of Table 4

Then, given the urban sprawl measured values of the training setStrain ,
the trained classi�er hw should be able to determine to which cluster the city
belongs for the remainingStest = S n Strain . Furthermore, the weight vector
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w associated to the classi�erhw should reveal clues about whichurban sprawl
measures are more determinant for the cluster choice.

It must be remarked however that the current state of the OSM's contribu-
tions do not allow to draw very reliable conclusions, since the coverage of the
POIs might vary dramatically among the cities of Table 3.

6 Conclusions

This work performs an extensive literature review for the loose an ambiguous
phenomena ofurban sprawl, in an e�ort to delineate the quanti�able aspects of
it. Several measures are audited in order to compute indicators that can help
assessing the phenomena for a con�guration given at certain time instance. It is
remarkable how many of the proposed measures are built on very questionable
assumptions, so their revision in a common notation might help spot these
weaknessess.

Choices of appropriate measures are justi�ed, and for the elected ones, its
computation is included in the framework. The framework allows exibility in
the calculation of the formulas and includes a kernel density estimation (KDE)
preprocessing that can help in some cases to overcome missing data. Further-
more, the KDE preprocessing also permits the calculation of Entropy measures
since the zones of zero density are smoothed.

The framework's operation over user-contributed and open-access data such
as OpenStreetMap (OSM), allows the research community to collaboratively
work on the subject in a common frame, and intends to reduce the ambiguity
and looseness of the research onurban sprawl. It is a novel contribution that is
not present in the reviewed literature. The current coverage of OSM presents
still important lacks of data in most of the world's big cities. However, the
contributions have been continuously increasing, and there exists an additional
large amount of literature in other aspects of crowd-sourced data that can help
ensuring its reliability.

The �rst experimentations conducted seem to indicate that most of the scalar
urban sprawl indicators might not be easy to interpret, as there is too much in-
formation to be extracted from just one value. Nevertheless the exibility of the
framework paves the way for many possible automated experiments based on
OSM data, and the inclusion of additional data sources as well as the implemen-
tation of new measures can make the framework a very important contribution
to the research ofurban sprawl.
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