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Interactive Modeling of Support-free Shapes for Fabrication
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Figure 1: Interactive modeling session for theSHAUN model. The user starts by sculpting four base legs and then attaches two spheres to
form the body. Note how the spheres get trimmed to produce a support-free arch. The user then applies little spheres to model the wool and
�nally sculpts the head.Right: 3D printed result. During modeling the shape always stays support-free.

Abstract
We introduce an interactive sculpting approach that enables modeling of support-free objects: objects which do not require any
support structures during 3D printing. We propose three operators – trim, preserve, grow – to maintain the support-free property
during interactive modeling. These operators let us de�ne brushes that perform either in an unconstrained manner (adapting
the shape to the brush effect), or selectively discard changes inside the brush volume. Our technique can be applied to many
modeling operations and we demonstrate it on brushes for adding or removing matter. We describe an ef�cient implementation of
a voxel-based modeling tool that produces only support-free shapes, and show example shapes modeled within minutes.

1. Introduction and Previous Work

Interactive modeling and sculpting is an accessible and fun way to
create 3D shapes. Many users would like to go one step further and
3D print their objects, but unfortunately this may turn into a frus-
trating experience as most shapes cannot print without temporary
support structures. This is in particular the case on �lament print-
ers, which are preferred by home users due to their low hardware
complexity and low material cost (PLA and ABS thermoplastics in
particular). Unfortunately, shapes having overhangs require support
structures to hold the �lament that would otherwise fall. Support
structures are removed manually after printing, a long and tedious
operation that can lead to breaking the object if not done carefully.

Recently there has been a strong effort to improve support tech-
niques [SU14,VGB14,DHL14]. Hu et al. [HJW15] go further by
deforming the model to reduce supports. Supports are crucial in a
general setting to allow any shape to be fabricated. Yet there exists a
class ofsupport-freeshapes that print much easier and without sup-
ports: Hu et al. [HLZCO14] and Herholz et al. [HMA15] propose to
locally approximate shapes by pyramids or height �elds; both print
easily. Hornus et al. [HLDC] give a generic de�nition of a support-
free shape with algorithms to create minimally �tting envelopes and
maximum inner carvings. We follow a similar analysis here.

The sculpting metaphor has been thoroughly explored from the
seminal work of Galyean and Hughes [GH91] to advanced software
used by the movie and video game industries, e.g., ZBrush. It is

accepted as one of the most accessible techniques, as witnessed by
the emergence of virtual clay software targeted at non-experts, such
as Cubify Sculpt or VRClay. We follow this natural way of mod-
eling and propose an interactive tool based on brushes for adding,
removing, or locally modifying matter.

These brushes always preserve the support-free property. Starting
from a shape that can be printed without support, a modeling ses-
sion always leads to a new shape which is again support-free. In a
standard modeling tool, adding or removing matter can lead to parts
which are no longer printable, such as overhangs or islands. To avoid
these issues, either the brush has to be constrained to discard some
changes, or the shape has to be modi�ed to adapt to the changes
made by the brush. We propose both options: using constrained
brushes, the user knows that he will not damage the shape around
the brush; with unconstrained brushes the user has full sculpting
freedom and the shape around adapts to enforce printability.

We introduce four basic brushes:add-trim, remove-preserve, add-
grow, remove-trim. The �rst two are constrained, while the remain-
ing two are unconstrained. The methodstrim, preserve, andgrow
observe printability constraints during brushing. These methods are
general and can be applied to any modeling operation, which we
demonstrate by implementing asmooth-trimbrush later. We imple-
mented our entire voxel-based system on the GPU, performing all
operations at interactive frame rates, and demonstrate our approach
with a variety of 3D printed models.
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2. Our Approach

We model the shape as a voxel gridV of resolutionN3. This is both
a natural representation for sculpting algorithms [FCG99] and for
expressing fabrication constraints. A voxel is indexed asV(i; j;k)
wherek aligns with the verticalz-axis (build direction). Each voxel
V(i; j ;k) stores a density (1: solid, 0: empty) and a material ID.

Before fabrication the shape isslicedby intersecting it with a set
of uniformly spaced planes [DGLC15]. Each slice contains a set of
contours delimiting inner areas that will be fabricated as a physical
layer. Layers are fabricated one after the other, from bottom to top.
The layer above will bond to the layer below, progressively forming
a solid object. For the sake of simplicity we align the slices with the
voxel grid, and obtain sliceSk as the plane of voxels

Sk = f V(i; j;k) j V(i; j ;k)
density= 1; 8(i; j) 2 N2g:

2.1. Fabrication Constraints

The two major restrictions to consider are overhangs and islands.
They appear where the slope of downward faces is too large, pre-
venting material to properly adhere to the layer below. Islands are
disconnected regions, typically protrusions with a downward angle.
On �lament printers they lead to failed prints with dangling material:
the �lament being deposited is not supported from below and either
fails to properly bond or falls by gravity. On resin printers similar
defects appear: disconnected regions end up �oating in the resin tank
and bond at random places on the object, while overhang areas can
distort when the print is pulled away from the fabrication surface.

Hornus et al. [HLDC] showed that both overhangs and islands
can be detected through morphology operations on the object slices.
Indeed, when considering slices, the overhang constraint translates
to verifying whether the sliceSk+ 1 is entirely included within a
dilation of sliceSk by a disk that captures the maximum allowed
overhang, a condition we denote as:

Sk+ 1 � Sk � B r ; (1)

where� denotes the dilation operator (	 the erosion),Br is a dis-
crete disk of radiusr = h� tanq, h being the layer thickness, andq
the max overhang angle. We useh = 0:25mm,q = 45� and perform
all operations in the discretized voxel setting. Intuitively,Br indi-
cates how farSk can grow without producing an excessive overhang,
while Sk � B r denotes the largest area that can be supported inSk+ 1.
Islands directly contradict Equation (1) since they only exist inSk+ 1.

A support-free shape has to enforce Equation (1) everywhere.
Areas violating the constraint in sliceSk+ 1 are easily detected as
Sk+ 1 n (Sk � B r ). (Note that we disregard the ability of �lament
printers to print straight bridges within a single layer.)

We use Equation (1) to determine whether each voxel issupported.
A voxel in sliceSk+ 1 is supported if and only ifV(i; j ;k + 1) 2
Sk � B r . Ground voxelsV(i; j;0) are always supported.

2.2. Brushes (Overview)

The four main brushesadd-trim, remove-preserve, add-grow, and
remove-trimare unrestricted in their shape and size. Two add matter

and two remove matter. There are two ways of preserving fabrica-
bility: either by constraining changes within the brush (add-trim,
remove-preserve), or by modifying the shape around the brush (add-
grow, remove-trim). We now introduce three operators that recover
from overhangs and islands:trim, preserve, andgrow.

Trim (add-trim, remove-trim). Trimming removes any problem-
atic part from the shape, such as �oaters, islands, and overhangs.
We perform a bottom-top sweep, removing unsupported voxels
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n �  = 45°trim
within all slices. This opera-
tion removes all unsupported
voxels; it cascades from bot-
tom to top and thus can have a
global impact on the shape.

Add-trim: this brush adds matter inside the brush volume, but only
the support-free subset. (This is equivalent to �lling the entire brush
and then calling the trim operation.) It is useful to add details while
never creating overhangs or islands. It never affects the surrounding
shape and the effect remains localized inside the brush volume.

Remove-trim: this brush deletes all matter inside the brush and then
calls a global trim operation. The effect propagates upwards in
cascade during the sweep, if previously supported voxels have been
turned into unsupported voxels. Eventually only the support-free
subset of the shape remains.

Preserve (remove-preserve).The previousremove-trimbrush can
lead to undesirably large deletions. We therefore propose another
removal brush that attempts topreservethe shape above the brush.
Particularly we want to preserve voxels inside the brush volume
necessary for support above.

To achieve this, we consider the minimal necessary support for a
sliceSk. LetUk� 1 be the smallest surface required at slicek� 1 to
supportSk, that isSk � Uk� 1 � B r (Equation (1)).

Let us assume for now thatSk = ( Sk 	 B r ) � B r , that isSk is
invariant by morphological opening. Under this assumption it fol-
lows from Equation (1) thatUk� 1 = Sk 	 B r . It is minimal since
removing any voxel would produce a surface that cannot supportSk,
asSk = Uk� 1 � B r .

!
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e This remark leads us to a simple algo-

rithm to preserve voxels necessary for
support. First delete all voxels within
the brush volume. Then sweep down
from the slice just above the brush
to the slice just below, replacing in

sequence each slice bySk = Sk [ Uk with Uk = Sk+ 1 	 B r . This
guarantees that the minimal set of necessary voxels is reintroduced,
under the assumption thatSk = ( Sk 	 B r ) � B r . Note how in the
example image a part of the green brush has been preserved.

Unfortunately the assumption breaks in two notable cases. The
�rst case is due to spurious voxels that are not included in the
opening ofSk. These voxels correspond to “corners” that cannot be
captured byBr . The second case is more problematic and is due to
small islands: surfaces smaller thanBr in Sk. While we experimented
several possible approaches, we �nd that for modeling purposes the
simplest technique is to trim these voxels.
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Grow (add-grow). This brush allows to paint in free space while
growing the shape to ensure the newly added matter is printable.

For this purpose we de�ne agrow operation. It is akin to sup-
port techniques, where a temporary structure is built to support the
shape during fabrication. However, we seek to de�ne amodeling
operation that will modify the shape to embed the support inside
its geometry. The requirements are very different. Support struc-
tures are optimized to use little material, to print fast and to snap
easily. Instead we de�ne an operation that behaves in a predictable
manner, connects seamlessly to the existing shape and feels natural
to the user. In addition, while support generation techniques have
access to the �nal object, our technique has to discover the shape
incrementally as it is gradually modeled by the user.

Our key intuition is that the shape should grow in a mini-
mal way, avoiding overhangs and islands while adding matter
which naturally connects to the existing shape. Letu = V(i; j;k)
be a single unsupported voxel in sliceSk. Consider a path
V(i0; j0;k0); :::;V(ip; jp;kp); :::;u of emptyvoxels that is monotoni-
cally growing, i.e.,kp+ 1 = kp + 1. Such a path issupportingiff:

1. k0 = 0 or V(i0; j0;k0) 2 Sk0� 1 � B r ;
2. V(ip; jp;kp) =2 Skp� 1 � B r ;
3. V(ip; jp;kp) 2 f V(ip� 1; jp� 1;kp� 1)g � B r ;

where 1) states that the �rst voxel is supported by the slice below, 2)
states that other voxels are not supported by the shape, but 3) would
be supported by their voxels below in the path if they were solid.
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Any such supporting path can
be added to the shape to support
voxel u. There is a large num-
ber of possibilities: all possible
support paths lie within a cone
of q slope with its tip onu. The

choice is critical as it de�neshowthe shape grows during modeling.

We propose to considerclosest supporting paths: supporting
paths that remain as close as possible to the existing surface. The
cost of a path is de�ned asC(v0; :::;vk) = å i(D(vi)) whereD(v)
is the distance between the empty voxelv and its closest �lled
voxel within the slice plane. The rationale is to reconnect with the
shape while staying as close as possible to existing surfaces. The
closest supporting paths achieve this by minimizing the distance
between the path and the existing shape. In practice, computing
D for every slice is expensive. We reformulate the cost to take
only the distance on the ground plane into account:C(v0; :::;vk) =
k+ Dground(v0). With this cost de�nition the closest supporting paths
can be computed very ef�ciently by a bottom-top sweep throughV.
This achieves a good compromise during interactive modeling.

The brush generates surfaces by connecting new matteras close
as possibleto the existing shape. It is therefore predictable and quite
natural to use after a few minutes. It lets the user freely paint without
being stopped mid-air by the constraint enforcement.

Generic Brushes.The trim, preserve, and grow operators can be
used in combination with other modeling operations. As an example,
we have implemented asmooth-trim brushwhich sets a voxel's
density according to an average of its neighborhood. Outliers and
isolated voxels are removed by subsequent trimming.

3. Implementation

We implemented our modeling tool using OpenGL 4.5 and make
extensive use of compute shaders for all modeling operations. The
entire modeling space spans5123 voxels, which allows us to sculpt
fairly large objects in the context of printing: using a layer thickness
of 0.25 mm every dimension can be up to 12.8 cm in size.

We allocate 3D textures for the voxel space, the shape of the
brush, and a shortest path map for the add-grow brush. We use two
channels (red and green) for the voxel space texture to store density
and material ID separately. On this voxel space we dispatch compute
shaders for every modeling operation; we do not keep an additional
copy of the shape in system memory.

3.1. Rendering and Shading

We render directly by raymarching ef�ciently through the voxel
space using a 3D Digital Differential Analyzer [AW87]. We use
a deferred shading approach to render the scene: a framebuffer
object (FBO) holds textures to store geometry (G-buffer), material
ID, surface normals, and depth information. We use screen-space
techniques to achieve smooth rendering, which decouples shading
from scene complexity.

3.2. Brushes (Implementation)

We considerq = 45� and setBr to be a3� 3 structuring element.
Performing a dilation on a voxel then leads to �lling its eight sur-
rounding neighbors within the same slice. Eroding a slice will retain
only voxels with a full neighborhood. With these morphological
operations we can now implement thetrim, preserve, andgrow
operations for our brushes.

A global trim operation(entire voxel space) can be implemented
by sweeping from bottom to top (layer 0 is always supported):
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The shader removes all voxels without support from below:
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We implemented theadd-trim brushby dispatching a shader
inside the brush volume and then adding only voxels with support
from below (no subsequent trim operation required):

��� � �����	���
�
�� 
 ��	�������������
����� � � �����
�� ���


� �
�

��� ��� � � � � � �


������������������ ��� �

� ��� !
"� ��� #$%& � �� %&
' 
����(�������������� ���� 
���)�%� �� *� *&&� +

The remove-preserve brushis implemented by dispatching a
shader inside the brush volume, layer by layer, fromtop to bottom,
and then dilating empty space from the layers above:
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