A. Ambainis, Y. Gao, J. Mao, X. Sun, and S. Zuo, New upper bound on block sensitivity and certificate complexity in terms of sensitivity, p.4466, 2013.

A. Ambainis and X. Sun, New separation between s(f ) and bs(f ), Electronic Colloquium on Computational Complexity (ECCC), vol.18, p.116, 2011.

R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. De-wolf, Quantum lower bounds by polynomials, Journal of the ACM, vol.48, issue.4, pp.778-797, 2001.
DOI : 10.1145/502090.502097

H. Buhrman and R. De-wolf, Complexity measures and decision tree complexity: a survey, Theoretical Computer Science, vol.288, issue.1, pp.21-43, 2002.
DOI : 10.1016/S0304-3975(01)00144-X

P. Hatami, R. Kulkarni, and D. Pankratov, Variations on the sensitivity conjecture, Theory of Computing, pp.1-27, 2011.

R. Impagliazzo and V. Kabanets, Fourier concentration from shrinkage, Electronic Colloquium on Computational Complexity (ECCC), vol.20, p.163, 2013.

C. Kenyon and S. Kutin, Sensitivity, block sensitivity, and ???-block sensitivity of boolean functions, Information and Computation, vol.189, issue.1, pp.43-53, 2004.
DOI : 10.1016/j.ic.2002.12.001

N. Nisan, and Decision Trees, SIAM Journal on Computing, vol.20, issue.6, pp.999-1007, 1991.
DOI : 10.1137/0220062

D. Rubinstein, Sensitivity vs. block sensitivity of Boolean functions, Combinatorica, vol.15, issue.2, pp.297-299, 1995.
DOI : 10.1007/BF01200762

M. Virza, Sensitivity versus block sensitivity of Boolean functions, Information Processing Letters, vol.111, issue.9, pp.433-435, 2011.
DOI : 10.1016/j.ipl.2011.02.001