Primal Infon Logic with Conjunctions as Sets

Abstract : Primal infon logic was proposed by Gurevich and Neeman as an efficient yet expressive logic for policy and trust management. It is a propositional multimodal subintuitionistic logic decidable in linear time. However in that logic the principle of the replacement of equivalents fails. For example, $\left(x \land y\right) \to z$ does not entail $\left(y \land x\right) \to z$, and similarly $w \to \left(\left(x \land y\right)\land z\right)$ does not entail $w \to \left(x \land \left(y \land z\right)\right)$. Imposing the full principle of the replacement of equivalents leads to an NP-hard logic according to a recent result of Beklemishev and Prokhorov. In this paper we suggest a way to regain the part of this principle restricted to conjunction: We introduce a version of propositional primal logic that treats conjunctions as sets, and show that the derivation problem for this logic can be decided in linear expected time and quadratic worst-case time.
Type de document :
Communication dans un congrès
Josep Diaz; Ivan Lanese; Davide Sangiorgi. 8th IFIP International Conference on Theoretical Computer Science (TCS), Sep 2014, Rome, Italy. Springer, Lecture Notes in Computer Science, LNCS-8705, pp.236-249, 2014, Theoretical Computer Science. 〈10.1007/978-3-662-44602-7_19〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01402046
Contributeur : Hal Ifip <>
Soumis le : jeudi 24 novembre 2016 - 10:52:01
Dernière modification le : jeudi 24 novembre 2016 - 11:14:10
Document(s) archivé(s) le : mardi 21 mars 2017 - 09:59:20

Fichier

978-3-662-44602-7_19_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Carlos Cotrini, Yuri Gurevich, Ori Lahav, Artem Melentyev. Primal Infon Logic with Conjunctions as Sets. Josep Diaz; Ivan Lanese; Davide Sangiorgi. 8th IFIP International Conference on Theoretical Computer Science (TCS), Sep 2014, Rome, Italy. Springer, Lecture Notes in Computer Science, LNCS-8705, pp.236-249, 2014, Theoretical Computer Science. 〈10.1007/978-3-662-44602-7_19〉. 〈hal-01402046〉

Partager

Métriques

Consultations de la notice

31

Téléchargements de fichiers

2