R. Airoldi, F. Campi, M. Cucchi, D. Revanna, O. Anjum et al., Design and Implementation of a Power-aware FFT Core for OFDM-based DSA-enabled Cognitive Radios, Journal of Signal Processing Systems, vol.24, issue.3, pp.257-265, 2015.
DOI : 10.1007/s11265-014-0894-z

A. S. Paul, S. Raju, and R. Janakiraman, Low power reconfigurable FP-FFT core with an array of folded DA butterflies, EURASIP J. Adv. Signal Process, vol.2014, issue.1, pp.1-17, 2014.

S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, Optimization of number representation. Handbook of Signal Processing Systems, 2010.

H. Bogucka, P. Kryszkiewicz, and A. Kliks, Dynamic spectrum aggregation for future 5G communications, IEEE Communications Magazine, vol.53, issue.5, pp.35-43, 2015.
DOI : 10.1109/MCOM.2015.7105639

G. Caffarena, C. Carreras, J. A. López, and ´. A. Fernández, SQNR Estimation of Fixed-Point DSP Algorithms, EURASIP Journal on Advances in Signal Processing, vol.2010, issue.1, p.12, 2010.
DOI : 10.1109/TCSI.2004.823652

C. H. Chang, C. L. Wang, and Y. T. Chang, A novel memory-based FFT processor for DMT/OFDM applications, IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.1921-1924758300, 1999.

W. H. Chang and T. Q. Nguyen, On the Fixed-Point Accuracy Analysis of FFT Algorithms, IEEE Transactions on Signal Processing, vol.56, issue.10, pp.4673-4682, 2008.
DOI : 10.1109/TSP.2008.924637

K. H. Chen, A Low-Memory-Access Length-Adaptive Architecture for 2 $$^n$$ n -Point FFT, Circuits, Systems, and Signal Processing, vol.51, issue.3, pp.459-482, 2015.
DOI : 10.1007/s00034-014-9862-x

Y. Chen, Y. C. Tsao, Y. W. Lin, C. H. Lin, and C. Y. Lee, An Indexed-Scaling Pipelined FFT Processor for OFDM-Based WPAN Applications, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.55, issue.2, pp.146-150, 2008.
DOI : 10.1109/TCSII.2007.910771

I. Cho, T. Patyk, D. Guevorkian, J. Takala, and S. Bhattacharyya, Pipelined FFT for wireless communications supporting 128-2048 / 1536-point transforms, Global Conference on Signal and Information Processing, pp.1242-12456737133, 2013.
DOI : 10.1109/globalsip.2013.6737133

T. Cho, H. Lee, J. Park, and C. Park, A high-speed low-complexity modified radix-2<sup>5</sup> FFT processor for gigabit WPAN applications, 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp.1259-1262, 2011.
DOI : 10.1109/ISCAS.2011.5937799

F. Cladera, M. Gautier, and O. Sentieys, Energy-Aware Computing via Adaptive Precision under Performance Constraints in OFDM Wireless Receivers, 2015 IEEE Computer Society Annual Symposium on VLSI, pp.591-596, 2015.
DOI : 10.1109/ISVLSI.2015.88

URL : https://hal.archives-ouvertes.fr/hal-01175920

F. De-dinechin and B. Pasca, Designing Custom Arithmetic Data Paths with FloPoCo, IEEE Design & Test of Computers, vol.28, issue.4, pp.18-27, 2011.
DOI : 10.1109/MDT.2011.44

URL : https://hal.archives-ouvertes.fr/ensl-00646282

R. Duan, M. Bi, and C. Gniady, Exploring memory energy optimizations in smartphones, 2011 International Green Computing Conference and Workshops, pp.1-8, 2011.
DOI : 10.1109/IGCC.2011.6008591

D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng et al., A survey of energy-efficient wireless communications, IEEE Communications Surveys & Tutorials, vol.15, issue.1, pp.167-178, 2013.
DOI : 10.1109/SURV.2012.020212.00049

M. L. Ferreira and J. C. Ferreira, Reconfigurable NC-OFDM Processor for 5G Communications, 2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing, pp.199-204, 2015.
DOI : 10.1109/EUC.2015.29

M. L. Ferreira, A. Barahimi, and J. C. Ferreira, Reconfigurable FPGA-Based FFT Processor for Cognitive Radio Applications, International Symposium on Applied Reconfigurable Computing, pp.223-232, 2016.
DOI : 10.1007/978-3-319-30481-6_18

M. P. Fitz and J. P. Seymour, On the bit error probability of QAM modulation, International Journal of Wireless Information Networks, vol.42, issue.2, pp.131-139, 1994.
DOI : 10.1007/BF02106515

Y. Gijung and J. Yunho, Scalable FFT processor for MIMO-OFDM based SDR systems, 5th IEEE International Symposium on Wireless Pervasive Computing (ISWPC), pp.517-521, 2010.

X. Guan, Y. Fei, and H. Lin, Hierarchical Design of an Application-Specific Instruction Set Processor for High-Throughput and Scalable FFT Processing, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.20, issue.3, pp.551-563, 2012.
DOI : 10.1109/TVLSI.2011.2105512

S. Haykin, Cognitive radio: brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications, vol.23, issue.2, pp.201-220839380, 2004.
DOI : 10.1109/JSAC.2004.839380

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. He, J. Wang, and X. Xu, Word-length optimization of a pipelined FFT processor, 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), pp.5485-5488, 2011.
DOI : 10.1109/CECNET.2011.5768197

S. J. Huang and S. G. Chen, A High-Throughput Radix-16 FFT Processor With Parallel and Normal Input/Output Ordering for IEEE 802.15.3c Systems, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.59, issue.8, pp.1752-1765, 2012.
DOI : 10.1109/TCSI.2011.2180430

N. Janakiraman, P. Nirmalkumar, and S. M. Akram, Coarse Grained ADRES Based MIMO-OFDM Transceiver with New Radix- $${2}^{5}$$ 2 5 Pipeline FFT/IFFT Processor, Circuits, Systems, and Signal Processing, vol.95, issue.7, pp.851-873, 2015.
DOI : 10.1007/s00034-014-9880-8

S. Johansson, S. He, and P. Nilsson, Wordlength optimization of a pipelined FFT processor, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356), pp.501-503, 1999.
DOI : 10.1109/MWSCAS.1999.867314

J. Kim, S. Yoshizawa, and Y. Miyanaga, Dynamic wordlength calibration to reduce power dissipation in wireless OFDM systems, 2010 IEEE Asia Pacific Conference on Circuits and Systems, pp.628-631, 2010.
DOI : 10.1109/APCCAS.2010.5774944

URL : http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/47343/3/APCCAS2010_628-631.pdf

J. Kim and S. Yoshizawat, Dynamic wordlength calibration for energy reduction FFT processors in wireless LAN, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), pp.1-4, 2011.
DOI : 10.1109/MWSCAS.2011.6026375

P. Korkmaz, B. E. Akgul, and K. V. Palem, Energy, Performance, and Probability Tradeoffs for Energy-Efficient Probabilistic CMOS Circuits, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.55, issue.8, pp.2249-2262, 2008.
DOI : 10.1109/TCSI.2008.920139

S. Lee and A. Gerstlauer, Fine Grain Precision Scaling for Datapath Approximations in Digital Signal Processing Systems, FIP/IEEE International Conference on Very Large Scale Integration-System on a Chip, pp.119-143978, 2015.
DOI : 10.1007/978-3-319-23799-2_6

URL : https://hal.archives-ouvertes.fr/hal-01380301

T. Y. Lee, C. H. Huang, W. C. Chen, and M. J. Liu, A low-area dynamic reconfigurable MDC FFT processor design, Microprocessors and Microsystems, vol.42, pp.227-234, 2016.
DOI : 10.1016/j.micpro.2016.02.001

D. Menard and O. , Sentieys, DSP code generation with optimized data word-length selection, International Workshop on Software and Compilers for Embedded Systems, pp.214-228, 2004.
DOI : 10.1007/978-3-540-30113-4_16

URL : http://www.springerlink.com/content/p95jqnycw29u1q3y/fulltext.pdf

R. Nehmeh, D. Menard, E. Nogues, A. Banciu, T. Michel et al., Fast integer wordlength optimization for fixed-point systems, J. Signal Process. Syst, pp.1-16, 2015.
DOI : 10.1007/s11265-015-0990-8

H. N. Nguyen, D. Menard, and O. Sentieys, Dynamic precision scaling for low power WCDMA receiver, 2009 IEEE International Symposium on Circuits and Systems, pp.205-208, 2009.
DOI : 10.1109/ISCAS.2009.5117721

URL : https://hal.archives-ouvertes.fr/inria-00432584

D. Novo, B. Bougard, A. Lambrechts, L. V. Perre, F. Catthoor et al., Catthoor, Scenario-based fixed-point data format refinement to enable energy-scalable software defined radios, Proceedings of the Conference on Design, Automation and Test in Europe, DATE'08, pp.722-727, 2008.
DOI : 10.1109/date.2008.4484764

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2010.

T. Patyk, D. Guevorkian, T. Pitkanen, P. Jaaskelainen, and J. Takala, Low-power application-specific FFT processor for LTE applications, 2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp.28-32, 2013.
DOI : 10.1109/SAMOS.2013.6621102

A. Pedram, J. D. Mccalpin, and A. Gerstlauer, A Highly Efficient Multicore Floating-Point FFT Architecture Based on Hybrid Linear Algebra/FFT Cores, Journal of Signal Processing Systems, vol.61, issue.2, pp.169-190, 2014.
DOI : 10.1007/s11265-014-0896-x

R. Rajbanshi, A. M. Wyglinski, and G. J. Minden, An Efficient Implementation of NC-OFDM Transceivers for Cognitive Radios, 2006 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, pp.1-5363452, 2006.
DOI : 10.1109/CROWNCOM.2006.363452

R. Rocher, D. Menard, P. Scalart, and O. Sentieys, Analytical Approach for Numerical Accuracy Estimation of Fixed-Point Systems Based on Smooth Operations, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.59, issue.10, pp.2326-2339, 2012.
DOI : 10.1109/TCSI.2012.2188938

URL : https://hal.archives-ouvertes.fr/hal-00741741

A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze et al., EnerJ: approximate data types for safe and general low-power computation, Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '11, pp.164-174, 2011.

V. Sarada and T. Vigneswaran, Reconfigurable FFT processor -A broader perspective survey, Int. J. Eng. Technol, vol.5, issue.2, pp.949-956, 2013.

M. K. Simon and M. S. Alouini, Digital Communication Over Fading Channels, 2005.
DOI : 10.1002/0471715220

S. Stotas and A. Nallanathan, On the Throughput and Spectrum Sensing Enhancement of Opportunistic Spectrum Access Cognitive Radio Networks, IEEE Transactions on Wireless Communications, vol.11, issue.1, pp.97-107, 2012.
DOI : 10.1109/TWC.2011.111611.101716

C. H. Van-berkel, Multi-core for mobile phones, 2009 Design, Automation & Test in Europe Conference & Exhibition, pp.1260-1265, 2009.
DOI : 10.1109/DATE.2009.5090858

C. Vennila, G. Lakshminarayanan, and S. B. Ko, Dynamic Partial Reconfigurable FFT for OFDM Based Communication Systems, Circuits, Systems, and Signal Processing, vol.51, issue.3, pp.1049-1066, 2012.
DOI : 10.1007/s00034-011-9367-9

L. Wilhelmsson, I. Diaz, T. Olsson, and V. Owall, Analysis of a novel low complex SNR estimation technique for OFDM systems, 2011 IEEE Wireless Communications and Networking Conference, pp.1646-1651, 2011.
DOI : 10.1109/WCNC.2011.5779382

M. Woh, S. Mahlke, and T. Mudge, Mobile Supercomputers for the Next-Generation Cell Phone, Computer, vol.43, issue.1, pp.81-85, 2010.
DOI : 10.1109/MC.2010.16

H. Xiao, A. Pan, Y. Chen, and X. Zeng, Low-cost reconfigurable VLSI architecture for fast fourier transform, IEEE Transactions on Consumer Electronics, vol.54, issue.4, pp.1617-16224711210, 2008.
DOI : 10.1109/TCE.2008.4711210

C. Yang, Y. Z. Xie, L. Chen, H. Chen, and Y. Deng, Design of a configurable fixed-point FFT processor, IET International Radar Conference, pp.1-4, 2015.

S. Yoshizawa and Y. Miyanaga, Use of a Variable Wordlength Technique in an OFDM Receiver to Reduce Energy Dissipation, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.55, issue.9, pp.2848-2859, 2008.
DOI : 10.1109/TCSI.2008.920098