Hardware division by small integer constants

Abstract : This article studies the design of custom circuits for division by a small positive constant. Such circuits can be useful to specific FPGA and ASIC applications. The first problem studied is the Euclidean division of an unsigned integer by a constant, computing a quotient and a remainder. Several new solutions are proposed and compared against the state of the art. As the proposed solutions use small look-up tables, they match well the hardware resources of an FPGA. The article then studies whether the division by the product of two constants is better implemented as two successive dividers or as one atomic divider. It also considers the case when only a quotient or only a remainder are needed. Finally, it addresses the correct rounding of the division of a floating-point number by a small integer constant. All these solutions, and the previous state of the art, are compared in terms of timing, area, and area-timing product. In general, the relevance domains of the various techniques are very different on FPGA and on ASIC.
Type de document :
Article dans une revue
IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2017, 〈10.1109/TC.2017.2707488〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01402252
Contributeur : Florent De Dinechin <>
Soumis le : mercredi 18 octobre 2017 - 12:30:58
Dernière modification le : samedi 27 octobre 2018 - 01:20:15
Document(s) archivé(s) le : vendredi 19 janvier 2018 - 12:53:44

Fichier

07933010 (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Fatih Ugurdag, Florent De Dinechin, Yılmaz Serhan Gener, Sezer Gören, Laurent-Stéphane Didier. Hardware division by small integer constants. IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2017, 〈10.1109/TC.2017.2707488〉. 〈hal-01402252v2〉

Partager

Métriques

Consultations de la notice

232

Téléchargements de fichiers

483