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Hardware division by small integer constants
H. Fatih Ugurdag, Florent de Dinechin, Y. Serhan Gener,

Sezer Gören, Laurent-Stéphane Didier

F

Abstract—This article studies the design of custom circuits for division
by a small positive constant. Such circuits can be useful to specific
FPGA and ASIC applications. The first problem studied is the Euclidean
division of an unsigned integer by a constant, computing a quotient
and a remainder. Several new solutions are proposed and compared
against the state-of-the-art. As the proposed solutions use small look-
up tables, they match well with the hardware resources of an FPGA.
The article then studies whether the division by the product of two
constants is better implemented as two successive dividers or as one
atomic divider. It also considers the case when only a quotient or only a
remainder are needed. Finally, it addresses the correct rounding of the
division of a floating-point number by a small integer constant. All these
solutions, and the previous state-of-the-art, are compared in terms of
timing, area, and area-timing product. In general, the relevance domains
of the various techniques are very different on FPGA and on ASIC.

Index Terms—Integer constant division, IP core generation, parameter-
ized HDL generator, low latency combinational circuit, FPGA synthesis,
ASIC synthesis.

1 INTRODUCTION

This article considers division by a small integer constant
and demonstrates operators for it that can be more efficient
than approaches based on standard division [1] or on mul-
tiplication by the inverse [2], [3], [4].

1.1 Motivation
Division by a small integer constant is an operation that oc-
curs often enough to justify investigating a specific operator
for it. For instance, the core of the Jacobi stencil algorithm
computes the average of 3 values: this involves a division
by 3. Small integer constants are quite common in such
situations. Division by 5 also occurs in decimal-binary con-
versions. Hardware Euclidean division by a small integer
constant can also be used to interleave memory banks in
numbers that are not powers of two: if we have D memory
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We first compute the Euclidean division
of 7 by 3. This gives the first digit of the
quotient, here 2, and the remainder is 1. We
now have to divide 176 by 3. In the second
iteration, we divide 17 by 3: the second
quotient digit is 5, and the remainder is
2. The third iteration divides 26 by 3: the
third quotient digit is 8, the remainder is
2, and this is also the remainder of the
division of 776 by 3.

Fig. 1. Illustrative example: division by 3 in decimal

banks, an address A must be translated to address A/D in
bank A mod D. Finally, a motivation of the present work
is the emerging field of High Level Synthesis, which studies
the compilation into hardware of applications written in
classical sequential languages. There, division by constants
will happen in all sort of situations, and it is interesting to
provide optimized architectures in such cases.

1.2 An introductory example

Let us introduce the proposed family of techniques with
the help of usual decimal arithmetic. Suppose we want to
divide an arbitrary number, say 776, by 3. Fig. 1 describes
the paper-and-pencil algorithm in this case.

The key observation is that, in this example, the iteration
body consists of the Euclidean division by 3 of a 2-digit
decimal number. The first of these two digits is a remainder
from previous iteration: its value is 0, 1, or 2, but no larger.
We may therefore implement this iteration with a look-up
table (LUT), which, for each value from 00 to 29, gives the
quotient and remainder of its division by 3. This small LUT
will allow us to divide numbers of arbitrary size by 3.

1.3 Related work

Division by a constant in a hardware context has actually
been studied quite extensively [2], [3], [4], [5], with good
surveys in [4], [6], [7]. There are two main families of tech-
niques: those based on additions/subtractions and those
based on multiplication by the reciprocal. The table-based
techique studied in this article was introduced in [8]. Prior
to that, it had, to our knowledge, only been described in
lecture notes [9] as an example of combinational circuit. It
is in essence a straightforward adaptation of the paper-and-
pencil division algorithm in the case of small divisors. The
reason why this technique is not mentioned in the literature
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is probably that the core of its iteration itself computes a
(smaller) division: it does not reduce to either additions
or multiplications. However, it is possible to express this
smaller division as a small LUT.

Tabulating a complex function is sometimes an efficient
technique, and it is the case here. In particular, the proposed
technique is very well suited to modern FPGAs, whose
reconfigurable logic resources are based on 4- to 6-input
LUTs. Nonetheless, this technique is also evaluated in this
article for application-specific integrated circuits (ASICs). It
is well-known that the optimal architecture for addition or
multiplication can be very different on these two targets,
ASIC and FPGA. One contribution of this article is to show
quantitatively that this is also true for table-based constant
division methods.

The proposed architectures will be compared with
the state-of-the-art of reciprocal-based architectures of [4],
which builds upon [10]. This architecture is called Recip in
our paper. [4] shows how to determine three integers A, B,
and p such that⌊

X

D

⌋
=

⌊
AX +B

2p

⌋
∀X ∈ {0, . . . , 2n−1} (1)

More specifically, it first determines the minimal bitwidth w
of A such that Eq. (1) is possible. There are two possible
choices for w in [4], and the smallest one is chosen. In
the present work, the value of w chosen is not always
the smallest one, but the one that minimizes the area of
the corresponding multiplier by A. Otherwise, our Recip
reimplementation is faithful to [4], which indeed provides
the minimal value of w. We expect Recip to have a timing
complexity of roughly log(n) and an area complexity of n2.

In software, division by a constant is best performed
through multiplication by the inverse. For instance, al-
though Intel processors have always included division in-
structions, optimizing compilers for these processors (we
tried GCC and CLang) will implement the division by
3 of an unsigned 32-bit integer by multiplication by
0xAAAAAAAB followed by a shift. This magic constant
is simply (233 + 1)/3, i.e., the best approximation to 1/3
that fits on 32 bits. A similar technique is used for signed
integers, and even for floating-point numbers [11]. In other
words, compilers also use Eq. (1), but minimize p among the
few values offered by the architecture (8, 16, 32, and 64 bits
on a recent Intel processor). For instance, it turns out that
the 32 × 32 → 64-bit multiplier is adequate for most 32-bit
integer divisions.

However, not all processors offer the necessary multi-
plier. In the Xilinx MicroBlaze 32-bit soft-core processor,
the compiler generates a call to a software integer division
routine (tens of cycles), unless invoked with the compiler
option -mxl-multiply-high. This option requires that
the processor is built with the optional instruction to recover
the high part of a multiplication. Then, the constant division
still requires 4 instructions (and a few more cycles).

The hardware dividers reviewed in this article all have
much shorter latency than the software solution. Also note
that the latency advantage of the hardware solution is
greater when both quotient and remainder are needed.

1.4 Outline of the article

Section 2 adapts the radix-10 algorithm demonstrated on
Fig. 1 to a radix that is a power of two. On LUT-based FP-
GAs, this radix is chosen so that the algorithm’s LUTs match
well with hardware LUTs in FPGAs. The linear architecture
obtained by unrolling this recurrence was introduced in [8]
and is called LinArch throughout this paper.

Section 3 studies variations of this recursion that lead
to binary tree implementations with shorter latency. These
architectures are called BTCD (for Binary Tree Constant
Divider) and generalize those introduced in [12].

Section 4 compares the area and delay of all the architec-
tures that compute quotient and remainder.

Section 5 considers the case when only the quotient, or
only the remainder, are needed.

Section 6 studies the case when the divider is a product
of two small numbers.

Finally, Section 7 studies the division by a small constant
of a floating-point input. It shows that it is possible to ensure
correct rounding to the nearest with very little overhead.

1.5 Methodology

All methods presented here have been implemented in
two hardware generators. One is the open-source project
FloPoCo1. The object of FloPoCo is application-specific
arithmetic for FPGA computing, and this generator has been
used to obtain most FPGA results. The other one is a Verilog
generator written in Perl at Ozyegin and Yeditepe Universi-
ties2. Both generators are completely parameterized and can
generate circuits for any dividend size and divisor value,
and power-of-two radix. Each generator also includes a test
framework that has been used to validate the generated
architectures.

The FPGA area (A) and delay (T) results in this paper are
place and route results obtained with Xilinx Vivado (version
2016-4), targetting a high-speed Kintex-7 (part 7k70tfbv484-
3). To compare area and delay of combinatorial architec-
tures, we wrap them between registers and set the target
frequency very low, at 1 MHz. This ensures that the tools
do not attempt to trade off area for delay for any of the
syntheses, thus enabling a fair comparison of latencies.

The A and T results for ASIC have been obtained with
Synopsys Design Compiler (version J-2014.09-SP2) using
the worst-case version of TSMC ARM 28-nm standard-cell
library with a wire-load model. The inputs and outputs
are connected to flip-flops in a wrapper module, and the
synthesis optimizes for the critical path.

2 BASIC RECURRENCE
AND LINEAR ARCHITECTURE

Let D be the constant divisor, and let k be a small integer.
We will use the representation of the input dividend X in
radix 2k, which may also be considered as breaking down
the binary decomposition of X into m chunks of k bits (see
Fig. 3):

1. http://flopoco.gforge.inria.fr/
2. http://github.com/nemesyslab/ConsDiv/
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TABLE 1
Notations used in this article

X , D, Q, R dividend, divisor, quotient, and remainder
such that X = DQ+R with 0 ≤ R < D
size of a chunk of X , i.e.,

k X and Q are considered in radix 2k

r size in bits of D − 1

Xi, Qi, etc. sub-words (or: digits in radix 2k) of X , Q, etc.
n number of bits of the dividend X

m number of radix-2k digits of the dividend X
` nominal LUT input size in the target FPGAs

X =
m−1∑
i=0

Xi.2
ki where Xi ∈ {0, ..., 2k − 1} (2)

In this article, we assume that D is not a multiple of 2, as
division by 2 reduces to a constant shift, which is simply
wiring in a circuit handling binary data.

2.1 Algorithm
The following algorithm computes the quotient Q and
remainder R of the high radix Euclidean division of X
by constant D. In each step of this algorithm, the partial
dividend, Yi, the partial remainder, Ri, and one radix-2k

digit of the quotient, Qi, are computed.

Algorithm 1 LUT-based computation of X/D
1: procedure CONSTANTDIV(X , D)
2: Rm ← 0
3: for i = m− 1 down to 0 do
4: Yi ← Xi + 2kRi+1

5: (This + is a concatenation)
6: (Qi, Ri)← (bYi/Dc, Yi mod D)
7: (read from a table)
8: end for
9: return (Q =

∑m−1
i=0 Qi.2

ki, R = R0)
10: end procedure

The line Yi ← Xi + 2kRi+1 is simply the concatenation
of a remainder and a radix-2k digit. This corresponds to
“dropping a digit of the dividend” in Fig. 1.

Let us define r as bitwidth of the largest possible remain-
der:

r = dlog2(D − 1)e (3)

Note that r is also the bitwidth of D, as D is not a power
of two. Then, Yi is of size k + r bits. The second line of the
loop body, (Qi, Ri) ← (bYi/Dc, Yi mod D), computes a
radix-2k digit and a remainder: it may be implemented as a
LUT with k + r bits of input and k + r bits of output (Fig.
2).

Theorem 1. Algorithm 1 computes the Euclidean division of X
by D: It outputs the quotient Q and the remainder R so that
X = Q×D +R. The radix-2k representation of the quotient Q
is also a binary representation, each iteration producing k bits of
this quotient.

Proof. The proof proceeds in two steps. First, Lemma 1 states
that X = D ×

∑m
i=0Qi.2

−ki + R0. This shows that we

reg

clk

rst
LUT

Ri−1

r

Xi

k

Ri
r

Qi

k

Fig. 2. Sequential architecture for Algorithm 1: LUT-based division of a
number written in radix-2k by a constant

compute some kind of Euclidean division, but it is not
enough: we also need to show that the Qi form a binary
representation of the result. For this, it is enough to show
that they are radix-2k digits, which is established through
Lemma 2.

Lemma 1.

X = D
m∑
i=0

Qi.2
−ki +R0

Proof. By definition of Qi and Ri we have Yi = DQi +Ri.
X =

∑m−1
i=0 Xi.2

−ki

=
∑m−1
i=0 (Xi + 2kRi+1).2

−ki

−
∑m−1
i=0 (2kRi+1).2

−ki

=
∑m−1
i=0 (DQi +Ri).2

−ki −
∑m
i=1Ri.2

−ki

= D
∑m−1
i=0 Qi.2

−ki +R0 −Rm.2−km

and

Rm = 0.

Lemma 2. ∀i 0 ≤ Yi ≤ 2kD − 1

Proof. The digit Xi verifies by definition 0 ≤ Xi ≤ 2k − 1;
Ri+1 is either 0 (initialization) or the remainder of a division
byD, therefore 0 ≤ Ri ≤ D−1. Therefore Yi = Xi+2kRi+1

verifies 0 ≤ Yi ≤ 2k−1+2k(D−1), or 0 ≤ yi ≤ 2kD−1.

We deduce from the previous lemma and the definition
of Qi as quotient of Yi by D that

∀i 0 ≤ Qi ≤ 2k − 1

which shows that the Qi are indeed radix-2k digits. Thanks
to Lemma 1, they are the digits of the quotient.

The algorithm computes k bits of the quotient in each
iteration: the larger k is, the fewer iterations are needed for
a given input number with bitwidth n. However, the larger
k is, the larger the required LUT. Section 2.3 quantifies this
trade-off.

2.2 Iterative or unrolled implementation of the basic
recurrence

The iteration may be implemented sequentially as depicted
in Fig. 2 or as the fully unrolled architecture depicted in Fig.
3. In all of the following, we will focus on the latter, which
we denote by LinArch, short for linear architecture, because
it enables high-throughput pipelined implementations.
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Fig. 3. Unrolled architecture (LinArch) for Algorithm 1: LUT-based divi-
sion by 3 of a 16-bit number written in radix 24 (k = 4, r = 2)

2.3 Cost evaluation of LinArch
Algorithm 1 performs dn/ke iterations. For a given D and k,
the architecture therefore grows linearly with the input size
n. Note that general division or multiplication architectures
grow quadratically.

Let us now consider how it grows with the constant D.
The area of a LUT in ASIC is essentially proportional to

the number of bits it holds. One LUT of Fig. 2 and 3 needs to
storeD·2k entries of r+k bits, orD·2k(r+k) bits. To remove
D from this formula, we may round up the table size to a
power of two: one table will store 2r+k(r + k) bits, some of
which are “don’t care” values. The latter can be optimized
out by synthesis tools. Table 2 justifies removing D from
the equation: it shows that the tools are able to considerably
reduce the area compared to the predicted area, however
different D (5 and 7) with the same r and k lead to exactly
the same area and delay results.

Finally, the area cost of the sequential architecture grows
as 2r+k(r + k), and that of LinArch as dn/ke2r+k(r + k).

The delay of a LUT is essentially proportional to the
number of input bits: the delays of both architectures grow
as dn/ke(r + k): it is linear in n (this was obvious in Fig. 3.

Section 3 will introduce a parallel architecture that offers
smaller delay, sometimes at the expense of larger area.

2.4 FPGA-specific remarks
The basic reconfigurable logic block of current FPGAs is a
small LUT with 4 to 6 inputs and one output. We denote it
LUT` in the following, with ` = 4 to ` = 6. In our case, these
LUT` can also be used to build the (r + k)-input, (r + k)-
output LUTs we need.

If the unit cost of FPGA logic is the LUT`, there is no
point in using tables with fewer than ` inputs. The value of
k should therefore be such that r + k ≥ `. Then the cost of
an (r+k)-input, (r+k)-output LUT is no longer 2r+k(r+k)
but 2r+k−`(r + k).

Finally, the area of LinArch in LUT` is
dn/ke2max(r+k−`,0)(r + k).

Therefore, the optimal choice of k in terms of area is the
smallest k such that r + k ≥ `. As r = dlog2(D − 1)e, the
method is very area-efficient for small values of D.

However, in each FPGA family, there are restrictions on
LUT utilization. In Altera Stratix IV to 10, the Adaptive
Logic Module (ALM) can be used as two arbitrary LUT4,
but may also implement two LUT5 or two LUT6 under the
condition that they share some of their inputs. For instance,
a 6-input, 6-output LUT may be built as 3 ALMs.

TABLE 2
Performance on Kintex-7 of LinArch dividers of a 32-bit value by D

D r k estimated synthesis results
A A T

3 2 4 48L 32L 6.0ns
5 3 3 66L 45L 9.3ns
7 3 3 66L 45L 9.3ns
9 4 2 96L 87L 17.9ns
11 4 2 96L 87L 17.9ns
17 5 1 192L 165L 18.5ns

In Xilinx series 5 to 7, the logic slice includes 4 registers
and 4 LUT6s, each of which is fractionable as two LUT5
with independent outputs. The sweet spot here is therefore
to build 5-input tables, unless we need to register all the
outputs, in which case 6-input tables should be preferred.

We may use, for instance, 6-input LUTs to implement
division by 3 (r = 2) in radix 16 (k = 4), as illustrated by
Fig. 3. Implementing the core loop costs 6 LUTs (for a 6 bits
in, 6 bits out table). The cost for the complete LinArch for
n bits is dn/4e × 6 LUT6s, for instance 36 LUT6s for 24 bits
(single precision), or 78 LUTs for 53 bits (double precision).

Table 2 reports some synthesis results – a general com-
parison with other division techniques will be provided in
the following sections. (Note that “L” in Table 2 is short for
LUT.

This table illustrates that the method is mostly suited to
small constants: for this FPGA (` = 6), starting withD = 17,
we have k = 1, so the architecture requires as many LUTs
as there are bits in the input. Besides, the size of these LUTs
then grows as the exponential term 2r+k−l.

3 PARALLEL DIVISION

In this section, we present the family of Binary Tree Constant
Division (BTCD) circuits. BTCD is to LinArch what fast
adders are to carry-propagate adders: its latency is expected
to have near logarithmic growth in n (versus the linear
growth of LinArch), however, its area is typically larger and
is supposed to have growth proportional to n log(n) (versus
again a linear growth for LinArch).

There are 6 fundamental variants of BTCD. On the one
hand, a BTCD can be naive, timing-driven, or area-driven
(i.e., 3 options). On the other hand, it may be based on
regular adder or carry-save adder (i.e., 2 options). When
these are paired, we get 3 × 2 = 6 options in total. The
architecture proposed in [12] is “BTCD naive with regular
adders”, and we call it simply BTCD. Timing-driven, area-
driven, and carry-save are indicated with ‘t’, ‘a’, and ‘c’
suffixes, respectively. Hence, the newly proposed versions
are BTCDt, BTCDct, BTCDa, BTCDca, and BTCDc.

3.1 The basics of BTCD

Let us first illustrate the method with an example in decimal:
Fig. 4 shows the division by 7 of X = 99767523.

The dividend X is first subdivided into its m digits. In
the example, radix is 10 and m = 8:

X = X8 =
7∑
i=0

X8,i10
i (4)



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2707488, IEEE
Transactions on Computers

5

Then each digit X8,i is divided by D in parallel, leading
to m quotient digits and m remainder digits:

X8,i = DQ8,i +R8,i (5)

therefore (4) becomes

X8 = D
7∑
i=0

Q8,i10
i +

7∑
i=0

R8,i10
i (6)

In Fig. 4, the Q8,i are written on the right-hand side,
and can be considered a single decimal number Q8 =∑7
i=0Q8,i10

i = 22060523. The R8,i are written on the left-
hand side, and can similarly be considered a single decimal
number R8 =

∑7
i=0R8,i10

i = 11101000, so (4) can be
simply written as:

X8 = D ×Q8 +R8 (7)

Now, let us define X4 = R8, and let us group its digits
two by two: X4 = 22 06 05 23. This is simply a rewriting in
a radix-100 representation:

X4 =R8 =
7∑
i=0

R8,i10
i

=
3∑
i=0

(10R8,2i+1 +R8,2i)100
i

=
3∑
i=0

X4,i100
i

(8)

Since each radix-10 digit R8,i is a remainder of the
division by 7, we have

0 ≤ X4,i ≤ 66 (9)

The next step is to write the Euclidean division of X4 by D.
Again, this can be achieved digit-by-digit:

X4 =
3∑
i=0

X4,i100
i

=
3∑
i=0

(DQ4,i +R4,i)100
i

= D
3∑
i=0

Q4,i100
i +

3∑
i=0

R4,i100
i

= DQ4 + R4

(10)

Fig. 4. BTCD’s algorithm is shown with radix-10 and D = 7

From (9), the Euclidean division by 7 of each X4,i digit
will lead to a quotient Q4 smaller than 10 (hence fitting on
one decimal digit), and a remainder between 0 and 6 (also
fitting one decimal digit). This explains the apparition of
zeroes on both sides of Fig. 4, where Q4 = 03000003 and
R4 = 01060502.

Finally, we can again pair two radix-100 digits to obtain
a radix-10000 representation of Q4 and R4 = X2, and start
again: (7) can be rewritten as

X8 = D ×Q8 +X4

= D ×Q8 + (D ×Q4 +X2)

= D ×Q8 +D ×Q4 +D ×Q2 +D ×Q0 +R0

= D × (Q8 +Q4 +Q2 +Q0) +R0

= D ×Q+R

(11)

As 0 ≤ R0 < D, we deduce that Q computed this way
is indeed the quotient of the division of X by D.

3.2 Architecture

All this can be generalized it to a dividend of 2m digits in
radix-2k.

X =X2m = D ×
m∑
j=0

2j−1∑
i=0

Q2j ,i(2
k)i2

m−j

+R0

while X2j−1,i = R2j ,2i+1(2
k)2

m−j

+R2j ,2i

(12)

The main idea of BTCD is that each Euclidean division
in this process can be performed in a LUT: although the
radix is squared at each level, the digits manipulated have
a constant number of non-zero digits (two decimal digits in
our example). Therefore, every arrow in Fig. 4 corresponds
to a LUT with the same number of non-zero input bits.

BTCD actually consists of two parallel binary trees. The
first is the binary tree of arrows on the left in Fig. 4, where
every arrow is a LUT. The first level of LUTs is named iLUT
for “initial LUT” (see Fig. 5). The LUTs of other levels are
named rLUT for “remainder LUT” (see Fig. 6). Every LUT
outputs a quotient (Q) and remainder (R). The R’s go to
next row, while the Q’s are sent to the right, to be added by
another binary tree, this time an adder tree, whose structure
matches the left tree.

The single binary tree topology shown in Fig. 6 is ob-
tained by overlaying the left and right binary trees described
above. In this combined tree, the first level is composed of
iLUTs. The nodes of the other levels are called cBLK, short
for “combiner BLocK”. They are depicted by Fig. 6.

The input and output bitwidths of cBLKs grow as we go
down the binary tree from iLUTs. Internally, the number of
words in rLUTs is the same in all cBLKs but their output
wordsize grows. The adder width grows as well.

In Fig. 5, the subscript of a submodule shows for which
bit range of the dividend it does division. Similarly, in Fig. 6,
the subscripts of Q and R show for which bit range of the
dividend they are respectively the quotient and remainder.
As shown in Fig. 5, cBLK15:0 receives a total of 9 bits of
input from each of the parent LUTs, namely, cBLK15:8, and
cBLK7:0. cBLK7:0 produces QR and RR of Fig. 6, which are
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Fig. 5. BTCD circuit for the division by D = 7 of a 32-bit binary number initially decomposed in hexadecimal (k = 4)

Fig. 6. Internals of cBLK15:0 of Fig. 5 (shaded)

respectively the quotient and remainder that result from the
bits [7:0] of the dividend. An 8-bit binary number divided
by 7 can at most be 6 bits. On the other hand, remainder out
of all subblocks can be at most 3 bits (maximum value of 6).
The total number of bits that go from cBLK7:0 to cBLK15:0
is hence 9 bits (6+3).

An iLUT block in Fig. 5 is simply a LUT that inputs k
bits and holds 2k words, each composed of a quotient on
dlog2 2k−1

D e bits and a remainder on r bits.
An rLUT, on the other hand, has an input of 2r bits. The

left r bits (RL) come from the left parent in the binary tree,
and the right r bits (RR) come from the right parent. At level

s (s = 0 corresponding to the iLUT), this combined input
actually represents the number 2k2

s

RL + RR, where RL is
shifted left by k2s bits with respect to RR: this is a k2s + r-
bit number. It outputs the quotient and the remainder of
the division of this number by D. The quotient always
fits in k2s bits: its size doubles at each level. However,
the number of words stored in an rLUT is D2 since there
are only D possible value for each input remainder: it is
constant for each level and remains small for small values
of D. Altogether, the number of bits stored in an rLUT is
therefore D2(k2s + r).

3.3 Naive BTCD

The BTCD generator and the FloPoCo based generator can
manage arbitrary size inputs. The initial chunk size k is an
input to the generator; its choice will obviously impact the
latency/area trade-off.

In the general case, the binary tree is not perfectly bal-
anced. This is easily managed: when there is an odd number
of nodes in one level of the binary tree, the leftmost pair
(quotient and remainder) is transfered directly to the next
level. The interested reader may find the relevant details in
the open-source code.

However, the observation that most cases lead to unbal-
anced binary trees suggests that in such cases, the architec-
ture could be improved by attempting to rebalance the tree.
For example, it is possible to reconsider the design choice of
splitting the input X into chunks of identical sizes.

Therefore, the implementation described so far will now
be called “naive BTCD”. The following studies alternative
constructions of BTCD trees. It replaces the bottom-up naive
BTCD construction with a top-down approach using divide
and conquer.
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3.4 BTCD with optimized partitioner

A BTCD partitioner recursively splits the n-bit input X into
two chunks of respectively nLeft and nRight bits, such that:

n = nLeft + nRight (13)

It then attemps to optimize the BTCD trees on both
sides. Two variants of this optimized partitioner are studied:
timing-driven and area-driven. The ideas behind both are
the same, only the optimization criteria are different.

Division can either be implemented by a simple iLUT
or by a BTCD tree. Therefore, the area or the timing of the
size-n circuit partitioned can be formulated as f(n):

f(n) = min(fiLUT (n),min
nLeft
{g(nLeft, nRight)}) (14)

Above, f(n) is a recursive function, which recurses in-
directly through function g. It computes the minimum-area
solution when f = fA, fiLUT = AiLUT , and g = gA, while
it computes the minimum-timing solution when f = fT ,
fiLUT = TiLUT , and g = gT . Therefore, the only difference
between area-driven and timing-driven partitioners is in
function g and fiLUT .

3.4.1 Area-driven optimization
The combined divider is composed of the left divider (nLeft
bits of input), right divider (nRight bits of input), and cBLK
(combiner circuit). Hence, the total area equals the sum of
the areas of the left divider (fA(nLeft)) and right divider
(fA(nRight)) plus the area of cBLK block shown in Fig. 6
(AcBLK(nLeft, nRight), a non-recursive function).

This leads to the area-specific formulation:

gA(nRight, nLeft) =

AcBLK(nLeft, nRight) + fA(nLeft) + fA(nRight)
(15)

3.4.2 Timing-driven optimization
The timing version of the formulation is more complicated,
because Q and R, at the output of cBLK, have different
settling times. Therefore, gT and fT are 2D vectors:

gT (nRight, nLeft) = {gRT , g
Q
T }

fT (n) = {fRT , f
Q
T }

(16)

The min operations in (14), in the case of timing, must
select the min of a number of 2D vectors. One component
of each vector is the timing of R, and the other is the timing
of Q. Given the design of cBLK (Fig. 6), the timing of Q is
always the larger. When the divider is implemented as an
iLUT, both timing components are equal. Therefore, this min
can be simply based on the Q timing.

As can be seen in Fig. 6, the timing gRT of the R output
of cBLK can be computed by adding TrLUT to the max of
fRT (nLeft) and fRT (nRight):

gRT (nRight, nLeft) =TrLUT(nLeft, nRight)

+ max(fRT (nLeft), f
R
T (nRight))

(17)

This also gives us the timing of Q output of cBLK’s
rLUT, which enters cBLK’s adder. Therefore, the timing of

the Q output of cBLK can be computed by finding the input
arriving the latest, hence the max operation in Eq. (18):

gQT (nRight, nLeft) =

TAdd(nLeft, nRight)

+ max(gRT (nRight, nLeft), f
Q
T (nLeft), f

Q
T (nRight))

(18)

3.4.3 Partitioning dynamic programming algorithm
Now, we will discuss the partitioning algorithm, which
is summarized by Eq. (14). A size-n divider can be im-
plemented n different ways at every level of the binary
tree. It can be implemented directly by an iLUT (i.e., no
partitioning) or nLeft can be any of {n−1, n−2, .., 2, 1} with
corresponding nRights of {1, 2, .., n− 2, n− 1}. Interestingly,
the search set of possible partitions can be significantly nar-
rowed down. Consider a partition of (nLeft = a, nRight = b)
versus (nLeft = b, nRight = a), where a > b. The two circuits
are identical except for the final cBLK as they both contain a
size-a and size-b divider. As for the cBLK, the rLUTs contain
the same number of entries (D2) but their wordsizes are
different (b + r bits for (a, b) partition versus a + r bits for
(b, a)). Also, the cBLK of (a, b) adds an n-bit number with
a b-bit number, while (b, a) adds an n-bit number with an
a-bit number. Thus, the cBLK of (a, b) would be definitely
smaller than (b, a) and slightly faster (due to the adder).
Consequently, it is enough to consider partitions with a > b.
This reduces the possibilities by around half at each stage
of partitioning. Also, we do not consider iLUTs (i.e., no
partitioning) when n > 7 as area starts to blow up although
better timing may be obtained.

The problem at hand is not an exponential recursive
search. It is a dynamic programming problem. Since the left
divider depends on only nLeft, right divider on nRight, cBLK
depends on only nLeft and nRight, we can independently
optimize each of the three subblocks. For instance, using
a non-optimal left divider will not allow us to design a
further optimized right divider or a further optimized cBLK.
Therefore, when we arrive at a subproblem of f(a) and
solve it optimally, we may save it and reuse it when we
arrive at the same problem in the recursion tree again.

To report results for up to n = 128, we produced the
optimal trees (separately for area and timing) starting from
n = 1 and going up to n = 128 with an increment of
1. Larger n use the solutions for the smaller n values.
In this approach, for each n, we just compute top-level
partition decision, as the lower-level partitioning decisions
have already been solved.

It now remains to define the A and T functions used in
the previous equations.

3.4.4 Area and delay estimators for ASIC
A LUT of w words of p bits is modelled as p parallel binary
trees of MUX2s. The first level of each tree is reduced to
wires 75% of the time and to an inverter 25% of the time
due to logic synthesis. The LUT area in terms of two-input
gates can thus be estimated as ( 4916w − 3)p.

For the iLUT and rLUT, this yields Eq. (19) and 21:

AiLUT (n) = (1 + n)(
49

16
2n − 3) (19)
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AcBLK = ArLUT +AAdd (20)

ArLUT (nLeft, nRight) = (r + nRight)(
49

16
D2 − 3) (21)

AAdd(n) = ((5/4)× dlog2(n)e+ 10.5)× n (22)

The timing (in two-input gate delays) is estimated as
4× addressBits− 4

3 , leading to:

TiLUT = 4k − 4

3
(23)

TrLUT = 4r − 4

3
(24)

TAdd(n) = 2× dlog2(n)e+ 4 (25)

Note that dividing a number smaller than D by D is
trivial, and the corresponding LUTs resume to wires (i.e.,
assumed to be zero area)

For an adder of n-bit numbers, we assume that a prefix-
graph based fast adder with Ladner-Fischer topology. We
ignore the impact of fanout on area and timing.

The above T and A discussion for the adder in cBLK is
for a regular adder. The formulations of AAdd and TAdd can
be easily extended to the version of our design with CSA in
cBLK.

3.4.5 Area and delay estimators for FPGAs
On FPGAs, there are two main differences from ASIC:

• A table of w words of p bits costs p LUT` as long as
log2 w ≤ ` (see Section 2.4). If log2 w > `, the cost
grows as p× w/2`.

• For the sizes targeted here, the optimal adder ar-
chitecture in an FPGA is a plain carry-propagation
adder exploiting the dedicated fast-carry lines. It has
linear delay and area.

In the presented implementation, the required A and T
functions are implemented in the Target class hierarchy of
the FloPoCo tool. These models are quite accurate in terms
of logic delay, although routing delays remain difficult to
predict [13]. The details are FPGA-specific and out of scope
of this paper. The interested reader will find them in the
source code of the tool.

3.5 BTCD with carry-save
Quite often, the critical path of BTCD goes through the
adders (chained together). Although all quotients to be
summed could be input to a traditional compression tree,
we do a 3:2 compression at every level as quotients “arrive”
one by one. Chain of regular adders are replaced by 3:2
Carry-Save Adders (CSAs), hence the new cBLK design in
Fig. 7. It is still a linear chain but each stage is a CSA with
one logic level of parallel full-adder cells instead of a log(n)
complexity adder. There is still a regular final adder. CSAs
are placed into cBLKs with the exception of the first level of
cBLKs (after the iLUTs). Second level of cBLKs inherit two
sums from above and produce a new quotient to make it 3

quotients. Then, every level cBLKs reduces 3 quotients to 2
quotients.

Replacing cBLK’s adder with a CSA can be applied to all
three kinds of BTCDs, namely, BTCD naive (BTCD becomes
BTCDc), BTCD area-driven partitioner (BTCDa becomes
BTCDca), and BTCD timing-driven partitioner (BTCDt be-
comes BTCDct).

Fig. 7. Block cBLK with the 2-input Adder replaced by a 3:2 Carry-Save
Adder

Thanks to the availability of fast-carry logic on virtually
all FPGAs, carry-save BTCD is irrelevant for them.

4 COMPARISON OF BTCD WITH LINARCH AND
RECIP METHOD

In order to identify the relevance domains of LinArch,
BTCD, and Recip method, this section shows a generous
amount of synthesis results of these three families of archi-
tectures, first for an ASIC standard-cell library as a target,
then for Xilinx Kintex-7 FPGA.

4.1 ASIC synthesis results
For BTCD*, the HDL generation process is a two-phase
approach. A tree description is computed by the naive
method or a partitioning method, then input to the HDL
generator. The tree can even be described manually.

We have generated 6 different BTCDs (hence the BTCD*
in Table 3), LinArch, and Recip designs for divisors (D) of 3,
5, 11, and 23. For each divisor, we have generated different
versions of the design with a dividend bitwidth (n) of 8, 16,
32, 64, and 128. We also tried 3 chunk sizes (k = 3, 4, 5) for
BTCD, BTCDc and 6 chunk sizes for LinArch (k = 1 to 6).
The other variants (BTCDt, BTCDtc, BTCDa, BTCDac, and
Recip) do not have k as a parameter.

Our synthesis script does a binary search for the smallest
latency in 4 synthesis runs for a given circuit. That is, we set
a latency constraint and see if it is met; if not, we raise it, if
yes, we lower it.

Table 3 summarizes the delay, area, and area-timing
product (ATP) results obtained in a total of 1,360 synthesis
runs. Area results are critical in cases where pipelining and
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TABLE 3
Timing (T), Area (A), Area-Timing Product (ATP) of BTCD*, Recip, LinArch on 28-nm ASIC

TABLE 4
Comparison of LinArch, BTCD, and Recip Method on Kintex-7 FPGA (L: LUT, BR: BlockRAM)

LinArch BTCD Recip
D n T A T A T A
3 8 3.7ns 8L 3.6ns 12L 3.6ns 17L

16 3.6ns 17L 3.7ns 37L 4.5ns 52L
32 6.0ns 32L 4.8ns 95L 6.1ns 139L
64 13.5ns 63L 6.2ns 225L 8.5ns 346L
128 26.3ns 128L 8.4ns 517L 12.4ns 825L

5 8 3.6ns 9L 3.6ns 18L 3.6ns 20L
16 4.4ns 21L 3.8ns 44L 4.9ns 54L
32 9.3ns 45L 4.7ns 109L 7.0ns 140L
64 20.1ns 93L 6.7ns 270L 8.6ns 346L
128 38.3ns 189L 9.0ns 612L 12.0ns 824L

11 8 3.7ns 15L 3.6ns 20L 4.7ns 29L
16 8.0ns 39L 3.8ns 79L 4.8ns 104L
32 17.9ns 87L 6.1ns 212L 6.6ns 219L
64 39.0ns 183L 8.8ns 526L 8.4ns 503L
128 76.3ns 375L 8.8ns 1.5BR + 1100L 12.2ns 1082L

23 8 3.8ns 21L 3.7ns 36L 4.0ns 26L
16 7.4ns 69L 5.6ns 197L 5.1ns 83L
32 18.5ns 165L 6.8ns 1BR + 436L 7.3ns 169L
64 36.6ns 357L 6.5ns 2.5BR + 959L 9.0ns 401L
128 72.5ns 741L 6.6ns 6BR + 2028L 13.4ns 931L
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Fig. 8. Plot versions of the results presented in Table 3.

hence multiple-cycle latency is allowed. ATP results have
significance as they correlate with energy consumption (be-
cause power correlates with area). However, they can also
be considered as a more universal area metric for the cases
when the circuit is synthesized under more relaxed timing
constraints. ATP is also an indicator of power consumption
per unit performance.

Table 3 is actually three tables in one. The LinArch,
BTCD*, and Recip column on the left form a “Timing (T) ta-
ble”. The Recip, second BTCD*, and second LinArch column
in the middle form a “Area (A) table”. The third LinArch,
third BTCD*, and second Recip column on the right are part
of “ATP table”.

In Table 3, there are up to 3 different BTCD* designs
reported in one row out of the total of 10 possible BTCD*
designs, where * can be one of {t, a, 3, 4, 5, ct, ca, c3, c4,
c5}3 (reported on the left of each of the 3 BTCD sections of
the table). The BTCD* with the Best A may be a different
permutation than the one that yields the Best T or the Best
ATP. We report both T and A for the BTCD* with Best T,
same applies to the BTCD* with Best A. That is because
even when T is the optimization criterion, prohibitive A is
undesired. While A is optimized, too large T values should
be noted. On the other hand, we only report ATP in the Best
ATP column as ATP is already a way of reporting both A
and T (though in a single number). LinArch has 6 different
versions (with k of 1 to 6), and everything discussed for
BTCD* above also applies to LinArch. As for Recip, there is

3. t: timing-driven, a: area-driven, 3-5: naive, c: carry-save adder

only one version, and its T and A are reported in the middle
of the table, while its ATP is reported on the very right.

In Table 3, the best (smallest) value in every category is
marked in bold. Table 3 also displays the complexity trend
of every type of result for every divisor value in terms of
n. These are experimental formulas, and they more or less
agree with the theory, which estimates that the T of LinArch,
BTCD*, Recip grow proportional to n, log(n), log(n), respec-
tively, while their A in proportion to n, n log(n), and n2,
respectively.

The results in Table 3 are shown as plots in Fig. 8. The
vertical axes show “normalized” T, A, ATP values such that
the smallest value is taken as 1.0. The trend is that LinArch’s
T and Recip’s A blow up for large n. For small n and small
D, LinArch wins in all metrics (A, T, ATP). For small n and
large D, Recip usually wins in all metrics. BTCD* usually
offers a compromise between T and A.

4.2 FPGA synthesis results
Table 4 shows some synthesis results on Xilinx Kintex-
7 obtained thanks to the FloPoCo implementation of the
LinARch, naive BTCD and reciprocal methods. In the re-
ciprocal method, instead of choosing the smallest constant
size as in [4], this implementation chooses the constant that
leads to the smallest architecture (smallest number of full-
adders). The constant multipliers of FloPoCo are used [14].
They are behind the state-of-the-art [15], but good enough
for a fair comparison of the trends.

For large n and large D, the Vivado tool begins using
BlockRAM resources (reported as BR) for BTCD, because of
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TABLE 6
The overhead of computing the remainder in Recip method. Recip/R

denotes the architecture of [4] that computes quotient only.

Recip/R Recip
D n T A T A
3 8 3.6ns 17L 3.5ns 16L

16 4.5ns 52L 4.2ns 51L
32 6.1ns 139L 6.0ns 138L
64 8.5ns 346L 7.9ns 345L
128 12.4ns 825L 13.3ns 824L

23 8 4.0ns 26L 3.7ns 20L
16 5.1ns 83L 3.8ns 71L
32 7.3ns 169L 5.8ns 158L
64 9.0ns 401L 7.9ns 390L
128 13.4ns 931L 14.0ns 920L

the large output width of the tables. This yields an apple-to-
orange comparison of the area.

Here, LinArch is consistently the best option in terms of
area, and BTCD offers a better delay for larger n. Recip is a
balanced alternative for large n and large d.

5 REMAINDER-ONLY OR QUOTIENT-ONLY

This section discusses some variants of the previous ar-
chitectures that are more efficient by only outputting the
remainder or only outputting the quotient.

5.1 Reciprocal method outputting only the quotient

The reciprocal method as published in [4] only computes the
quotient. The previous tables report results for architectures
that are slightly more complex, as they also compute the
remainder as R = X −DQ. However, the overhead of this
computation is very small, as Table 6 shows. Indeed, this
computation has to be only performed on the number of
bits of R, which is small with respect to the number of bits
of X .

5.2 Remainder-only variant of LinArch and BTCD

In LinArch, if one only needs the remainder, the quotient
bits need not be stored at all. This entails savings in terms of
area that are easy to predict (roughly a factor r/(r + k),
as illustrated by Table 5). However, there is almost no
improvement in delay, as the critical path is unchanged (see
Fig. 3).

In BTCD, computing only the remainder improves both
area and delay: if the quotient is not needed, there is no need
for the corresponding part of the table nor the addition tree.
All that remains is a binary tree of tables that have 2r inputs
and r outputs. Note that there is a binary tree in [7] for this
case, but it still involves additions.

Besides, as the critical path was in the quotient addition
tree, the delay of a remainder-only architecture is signifi-
cantly smaller than the delay of the complete architecture.

As Table 5 shows, BTCD therefore offers a much better
area-time trade-off than LinArch if only the remainder is
needed. For instance, for k = 5, the area is nearly identical
(both architectures build the same number of LUTs with 6
inputs and 3 outputs) while the delay of BTCD is logarith-
mic instead of linear for LinArch.
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Fig. 9. Composite divider of a 16-bit value by 15 = 3×5, with the critical
path highlighted

6 COMPOSITE DIVISION

The table-based methods scale poorly with the size (in bits)
of the constant. For a large constant that is the product of
two smaller ones, it is however possible to divide succes-
sively by the two smaller constants. This will often lead to a
smaller architecture than a monolithic division by the large
constant. The following first formalizes this intuition, then
discusses the choice of an optimal factorization.

6.1 Algorithm
Let us first assume that D is the product of two smaller
constants:

D = Da ×Db (26)

The Euclidean division of X by Da can be written

X = DaQa +Ra with Ra ≤ Da − 1. (27)

Then we can divide Qa by Db:

Qa = DbQ+Rb with Rb ≤ Db − 1. (28)

Putting all together, we obtain

X = DaDbQ+DaRb +Ra
= D ×Q+R where R = DaRb +Ra.

(29)

Since R = DaRb+Ra ≤ Da(Db− 1)+Da− 1 = D− 1,
R is indeed the remainder of the division of X by D, and
Qb is indeed the proper quotient.

Now, if the divisor D is the product of more than two
factors (i.e. if Da or Db can themselves be factored), the
previous decomposition can be applied recursively.

6.2 Architecture
In terms of architecture, we need two of the previous di-
viders to compute the Euclidean divisions by Da and Db,
plus a multiply-and-add to compute r = DaRb +Ra.

This additional multiply-and-add is typically small for
two reasons. First, the remainders are small. Secondly, this
is a constant multiplication, for which a range of techniques
exist, some table-based [16], [17], some based on shift-and-
add [14], [15], [18].

As can be seen in Fig. 9, the critical path is that of the
divider with the largest m, plus one LUT for the quotient
output, and a small constant multiplication and addition for
the remainder output.
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TABLE 5
Comparison of remainder-only architectures (R) to Euclidean divider architectures (Q+R)

LinArch BTCD
D n Q+R R Q+R R

T A T A T A T A
3 8 3.7ns 8L 3.6ns 3L 3.6ns 12L 3.6ns 2L

16 3.8ns 15L 3.5ns 5L 3.7ns 37L 3.7ns 5L
32 6.0ns 32L 6.5ns 11L 4.8ns 95L 3.8ns 12L
64 13.5ns 63L 14.2ns 21L 6.2ns 225L 4.8ns 25L

128 26.3ns 128L 27.2ns 43L 8.4ns 517L 5.3ns 50L
5 8 3.6ns 9L 3.6ns 6L 3.6ns 18L 3.5ns 7L

16 4.4ns 21L 4.4ns 14L 3.8ns 44L 3.6ns 14L
32 9.3ns 45L 9.8ns 30L 4.7ns 109L 3.7ns 29L
64 20.1ns 93L 21.2ns 62L 6.7ns 270L 4.5ns 62L

128 38.3ns 189L 37.7ns 126L 9.0ns 612L 5.2ns 129L

6.3 Results and discussions

Table 7 provides synthesis results on FPGA for three con-
stants that are of practical significance: 9 appears in some
2D stencils, 15 is (up to a power of two) 60 and occurs in
timing conversions, and 45 is (up to a power of two) 360
which appears in degree/radian conversions. Interestingly,
the two latter constants were probably chosen in ancient
times because they can be divided by 2, 3, 4, and 5.

Table 7 shows that composite dividers are not only
smaller, they are also consistently faster than the atomic
LinArch on FPGAs. This is easily explained on the exam-
ple of division by 9. The atomic LinArch divider by 9 is
predicted to require about the same area as the composite
divider. However, its optimal value of k is 2, and the 32-bit
input X is therefore decomposed in m = 16 radix-22 digits:
the architecture has 16 LUTs on the critical path. When we
compose two dividers by 3, optimal value of k is 4 for each,
so the architecture of each sub-divider has only m = 8 LUTs
on the critical path. As Fig. 9 shows, the critical path of the
composite architecture is therefore 8+1 LUTs only (plus the
remainder reconstruction) instead of 16 LUTs.

Table 8 shows how composite dividers may improve
both area and delay in the case of a 28-nm ASIC standard-
cell library.

7 FLOATING-POINT DIVISION BY A SMALL INTEGER
CONSTANT

When accelerating floating-point computations on FPGAs, it
makes sense to use operators that are tailored to the context.
This section shows how to build a divider of a floating-point
input X by a small integer constant that ensures bit-for-bit
compatibility with a IEEE 754-compliant divider. A compiler
of floating-point code to FPGA can use this operator as a
drop-in replacement for a classical divider, at a fraction of
the cost.

The proposed floating-point divider requires a Euclidean
divider and can use for this any of the variants of the ar-
chitectures previously presented (linear, composite, and/or
parallel). For simplicity, the results are presented with
LinArch.

A floating-point input X is given by its mantissa M and
exponent E:

X = 2EXf with Xf ∈ [1, 2) . (30)

Similarly, the floating-point representation of our integer
divisor D is:

D = 2SDf with Df ∈ [1, 2) . (31)

One may remark that S = r − 1 if D is not a power of two.
The main issues to address are the normalization and

rounding of the floating-point division of X by D according
to the IEEE 754 standard [19].

7.1 Normalization
Let us write the division

X

D
=
Xf .2

E

D
=

2SXf

D
2E−S =

Xf

Df
2E−S . (32)

As Xf

Df
∈ [0.5, 2), this is almost the normalized mantissa of

the floating-point representation of the result:

• if Xf ≥ Df , then Xf

Df
∈ [1, 2), the mantissa is

correctly normalized and the floating-point number
to be returned is

Y = ◦
(
2SXf

D

)
2E−S (33)

where ◦(z) denotes the IEEE-standard rounding to
nearest even of a real z.

• if Xf < Df , then Xf

Df
∈ [0.5, 1), the mantissa has

to be shifted left by one. Thus, the floating-point
number to be returned is

Y = ◦
(
2S+1Xf

D

)
2E−S−1 . (34)

The comparison between Xf and Df is extremely cheap
as long as D is a small integer, because in this case Df has
only r non-zero bits. Thus, the comparison is reduced to the
comparison of these r bits to the leading r bits of Xf . As
both Xf and Df have a leading one, we need a comparator
on r − 1 bits. On FPGAs, this is a very small delay using
fast-carry propagation.

7.2 Rounding
Let us now address the issue of correctly rounding the
mantissa fraction. If we ignore the remainder, the obtained
result is the rounding towards zero of the floating-point
division.
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To obtain correct rounding to the nearest, a first idea is
to consider the final remainder. If it is larger than D/2, we
should round up, i.e. increment the mantissa. The compari-
son toD/2 would cost nothing (actually the last table would
hold the result of this comparison instead of the remainder
value), but this would mean an addition of the full mantissa
size, which would consume some logic and have a latency
comparable to the division itself, due to carry propagation.

A better idea is to use the identity ◦(z) = bz+ 1
2c, which

in our case becomes

◦
(
2S+εXf

D

)
=

⌊
2S+εXf +D/2

D

⌋
(35)

with ε being 0 if Xf ≥ Df , and 1 otherwise. In the
floating-point context we may assume that D is odd, since
powers of two are managed as exponents. Let us write
D = 2H + 1. We obtain

◦
(
2S+εXf

D

)
=

⌊
2S+εXf +H

D
+

1

2D

⌋
=

⌊
2S+εXf +H

D

⌋ (36)

so instead of adding a round bit to the result, we may add
H to the dividend before its input into the integer divisor.
It seems we haven’t won much, but this pre-addition is
actually for free: the addend H = D−1

2 is an S-bit number,
and we have to add it to the mantissa of X that is shifted
left by S+ε bits, so it is a mere concatenation. Thus, we save
the adder area and the carry propagation latency.

To sum up, the management of a floating-point input
adds to the area and latency of the mantissa divider those
of one (small) exponent adder, and of one (large) mantissa
multiplexer, as illustrated by Figure 10. On this figure, ξ is
a 2-bit exception vector used to represent 0, ±∞ and NaN
(Not a Number).

The implementation in FloPoCo manages such divisions
by small integer constants and all their powers of two. The
only additional issues are in the overflow/underflow logic

TABLE 7
Examples of composite 32-bit dividers on Kintex7. Estimates ignore the

cost of the remainder reconstruction, which is accounted for in the
measured area and delay. In all cases the optimal value of k is used.

D decomposition predict. meas. meas.
A A T

9 atomic Recip – 184L 6.2ns
atomic BTCD – 218L 6.1ns

atomic LinArch 96 87L 17.9ns
3 × 3 48+48=96 65L 7.0ns

15 atomic Recip – 97L 6.2ns
atomic BTCD – 199L 5.8ns

atomic LinArch 96 87L 17.9ns
5 × 3 66+48=114 80L 9.6ns
3 × 5 68+46=114 75L 9.4ns

45

atomic Recip – 207L 8.0ns
atomic LinArch 448 371L 24.3ns

9 × 5 96+60=156 134L 18.4ns
5 × 9 66+90=156 134L 18.3ns

5 × 3 × 3 66+48+48=162 108L 10.0ns
3 × 3 × 5 48+48+60=156 113L 9.8ns

15 × 3 96+48=144 120L 18.5ns
3 × 15 48+96=144 125L 17.6ns

TABLE 8
Examples of composite 32-bit dividers by 9 on 28-nm ASIC

D decomp. A T

9
atomic (LinArch, k=1) 1966 1.87 ns

atomic (BTCDca) 2528 1.42 ns
3 × 3 (LinArch, k=1) 1400 1.50 ns

3 × 3 (BTCDc3) 3243 1.06 ns

TABLE 9
Floating-point division by a constant on Kintex-7

single precision double precision
D method T A T A

LinArch 5.2ns 38L 12.0ns 88L
(mantissa only) (4.8ns) (26L) (11.8ns) (54L)

3 BTCD 6.0ns 87L 7.7ns 223L
Recip 6.1ns 142L 8.9ns 364L

[3] 7.8ns 127L 10.5ns 325L
LinArch 8.0ns 56L 16.6ns 116L

(mantissa only) (7.3ns) (38L) (16.5ns) (81L)
5 BTCD 5.8ns 110L 8.0ns 264L

Recip 6.6ns 142L 8.3ns 358L
[3] 7.3ns 125L 10.7ns 322L

(the Exn box on Figure 10), but they are too straightforward
to be detailed here.

7.3 Results
Here, we only report FPGA results, because FPGA accel-
eration of floating-point code is probably the only context
where floating-point constant dividers are useful. In Table 9,
the lines (mantissa only) illustrate the overhead of floating-
point management. As expected, the area overhead is large
but the timing overhead is very small, and both are almost
independent of D.

This table also compares with the state-of-the-art, and
there is another work to mention here: [3] is essentially a
method that multiplies by the reciprocal using a shift-and-
add tree that exploits the periodic binary representation
of 1/D. It computes the required number of periods to
ensure correct rounding of the multiplication by the exact
rational 1/D, and is therefore bit-for-bit compatible with
correctly rounded division by D. However, the architectures
proposed in the present article offer better performance.

01

Xf < Df

+1 H

div by D

1

XfXe

−S − 1
ovftz

Exn

Qe Qf

� S � S + 1

ξ

ξ′

Fig. 10. Floating-point division by a small constant.
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8 CONCLUSION

This article adds division by a small integer constant (such
as 3 or 10) to the bestiary of arithmetic operators avail-
able to C-to-hardware compilers. This operation can be
implemented very efficiently, be it for integer inputs or for
floating-point inputs.

The article studies qualitatively the performance (area
and delay) of three families of techniques (linear, binary
tree and multiplicative). On ASIC, each method has its rel-
evance domain. On FPGAs, the simplest table-based meth-
ods behave comparatively better, thanks to the LUT-based
hardware structure of FPGAs. Due to increasing routing
pressure as technology progresses, the number of inputs to
these FPGA LUTs keeps increasing. This should make this
technique increasingly relevant in the future.
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Handbook of Floating-Point Arithmetic. Birkhauser Boston, 2009.

H. Fatih Ugurdag received the BS degrees in EE and
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