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ABSTRACT
Many argue that to evolve arti�cial intelligence that rivals
that of natural animals, we need to evolve neural networks
that are structurally organized in that they exhibit modu-
larity, regularity, and hierarchy. It was recently shown that
a cost for network connections, which encourages the evolu-
tion of modularity, can be combined with an indirect encod-
ing, which encourages the evolution of regularity, to evolve
networks that are both modular and regular. However, the
bias towards regularity from indirect encodings may prevent
evolution from independently optimizing di�erent modules
to perform di�erent functions, unless modularity in the phe-
notype is aligned with modularity in the genotype. We
test this hypothesis on two multi-modal problems|a pat-
tern recognition task and a robotics task|that each require
di�erent phenotypic modules. In general, we �nd that per-
formance is improved only when genotypic and phenotypic
modularity are encouraged simultaneously, though the role
of alignment remains unclear. In addition, intuitive manual
decompositions fail to provide the performance bene�ts of
automatic methods on the more challenging robotics prob-
lem, emphasizing the importance of automatic, rather than
manual, decomposition methods. These results suggest en-
couraging modularity in both the genotype and phenotype
as an important step towards solving large-scale multi-modal
problems, but also indicate that more research is required
before we can evolve structurally organized networks to solve
tasks that require multiple, di�erent neural modules.
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1. INTRODUCTION
A long term goal in evolutionary robotics is to evolve ar-

ti�cial neural networks with the intelligence, exibility, and
robustness of natural brains. To increase behavioral com-
plexity, it is widely believed that these networks need to be
structurally organized in that they should exhibit modular-
ity, regularity, and hierarchy [20, 32].

In networks, a module refers to a community of nodes that
are strongly connected to each other, while only sparsely
connected to nodes in other communities [7, 16, 20]. Fur-
thermore, those modules are considered functional if they
perform a speci�c task or function [20]. Modularity provides
evolutionary robustness and increased evolvability, as it al-

lows mutations to locally a�ect one module, while leaving
other modules mostly unchanged [5, 7, 16, 17, 29]. Modular-
ity does not naturally evolve in arti�cial neural networks,
but has been shown to emerge in a variety of domains and
types of neural networks when a cost for connections is
added [7,13,15,21].

Regularity refers to the compressibility of the description
of a structure [20]. That is, if a structure exhibits some form
of regularity, such as repetition, symmetry, or self-similarity,
it is su�cient to describe only part of the structure and how
that part is reused. Reuse of information can increase both
performance and evolvability on a variety of tasks by allow-
ing for coordinated changes to the phenotype [6, 8, 14], but
this reuse of information is only possible when the evolved
structures are indirectly encoded.

Previous work has shown how to evolve neural networks
that are both modular and regular by combining a con-
nection cost with an indirect encoding [15]. However, this
work focused on problems with repeated or symmetric sub-
problems. That raises the question of whether evolution,
while optimizing a modular yet indirectly encoded structure,
can optimize the evolved modules separately. Optimization
of separate phenotypic modules may be facilitated by aligned
genotypic modularity; which implies not only that the geno-
type is modular, but also that changes to genotypic modules
only a�ect corresponding modules in the phenotype.

Modularity, both phenotypic and genotypic, has received
considerable attention in recent publications [1,5,7,9,16,17,
22, 29]. Analyses of biological brain networks reveal modu-
lar structures that would not be expected if these networks
were randomly connected [4, 29]. Similarly, studies of gene
regulatory networks �nd modular dynamics as well, where
groups of genes are consistently coexpressed [9].

It has been suggested that, when studying the evolution
of modularity in indirectly encoded networks, it is impor-
tant to not only examine the structures of the phenotype
and genotype, but also their alignment [1,22]. If the pheno-
type is modular, but the genotype is not, it is unlikely that
the phenotypic modules can be optimized separately, be-
cause changes to the genotype will a�ect the phenotype as a
whole. Conversely, when the genotype is modular, but the
phenotype is not, even if the modular genotype leads to local
changes, there is a high probability that these changes still
a�ect the performance of the individual as a whole. Even
if both the genotype and the phenotype are modular, sin-
gle mutations may still a�ect performance holistically if the
genotypic modules do not align with the phenotypic mod-



ules, such that changes to a single genotypic module a�ect
several or all phenotypic modules.

We investigate these issues by examining what happens
when we encourage modularity in both the phenotype and
the genotype on two multi-modal problems|a pattern recog-
nition task and a robotics task|where the sub-problems
are di�erent. We examine whether evolution can not only
form di�erent modules, but also if it structures the geno-
type such that phenotypic modules can be optimized sepa-
rately. We encourage modularity in two di�erent ways: by
adding a cost for network connections and by directly se-
lecting for increased modularity. We compare these results
with hand-crafted network architectures and �nd that per-
formance generally increases when both the genotype and
phenotype are modular, though the role of alignment re-
mains unclear.

2. METHODS

2.1 HyperNEAT
HyperNEAT is an evolutionary algorithm for evolving

arti�cial neural networks (ANNs) with an indirect encod-
ing [31]. In HyperNEAT, the ANN is encoded by a Com-
positional Pattern Producing Network (CPPN), which is
e�ectively a feed-forward neural network where nodes can
have a range of di�erent activation functions [30]. In the
phenotype, every neuron has a geometric coordinate (Figs. 3
and 4). To determine the strength of a connection, the coor-
dinates of its source and target neurons are provided to the
CPPN, and the output of the CPPN determines the strength
of the connection. While HyperNEAT was developed as a
complete evolutionary algorithm, in this paper, it only refers
to the encoding; our EA is described in section 2.3.

CPPNs were originally presented as having a single output
node, the weight output, but our experiments also require a
number of additional CPPN outputs: a bias output, a Link
Expression Output (LEO) [33], and a time-constant output.
The bias output determines the biases of the neurons in the
ANN. When determining the bias of a neuron, we only have
the coordinate for a single neuron, but our CPPN requires
two sets of coordinate inputs. In these cases we set the
coordinates for the second neuron to be all zeros. LEO de-
termines whether a connection should be expressed or not,
and has been shown to assist HyperNEAT in solving mod-
ular problems [33]. It is queried for every possible connec-
tion, and a connection is only expressed if LEO produces a
value > 0. The time-constant output is only required in the
robotics experiment, and it determines the time-constants
of the neurons in the ANN (see section 2.2). CPPN outputs
can only generate values in [�1; 1], but their output is scaled
to match the range of the parameter they describe.

To improve HyperNEAT’s performance on robotics tasks,
it is customary to have the geometric coordinates of the
input and output neurons in the ANN reect the physical
coordinates of the sensors and actuators they are associated
with. However, doing so can be problematic when sensors
or actuators inhabit the exact same position on the robot.
In those cases it can be helpful to represent these neurons as
residing in a separate ‘space’; an idea that was implemented
with the multi-spatial substrate (MSS) [28]. With MSS,
every neuron in the ANN is assigned to a ‘space’, and a
CPPN output is added for every pair of ‘spaces’ that can
be connected (including when a space can be connected to

(a) �����������������������	��

�
��������
�������������

����������
�������������

������������ ������������

������������

(b) �������������������	���
 ��������������������	���


�� �� ���� ��

�� ���� �� ��

�� �� �� ����

���� �� �� ��

�� �� ���� ����

���� ���� �� ��

�� ���� �� ����

���� �� ���� ��

�� �� ���� ��

�� ���� �� ��

�� �� �� ����

���� �� �� ��

�� ���� ���� ����

���� �� ���� ����

���� ���� �� ����

���� ���� ���� ��

Figure 1: Multi-modal retina problem. (a) The left
sub-task is independent from the right sub-task. (b) Half of
the left objects are di�erent from the right objects.

itself). To query the weight of a connection, its value has to
be read from the CPPN output that is associated with the
pair of spaces de�ned by the source and target neurons.

We have extended MSS to support CPPNs with more than
one output by adding a complete set of outputs for every
space (Figs. 3f and 4e, f). In addition, to better align or dis-
align phenotypic and genotypic decompositions, we do not
add CPPN outputs for every pair of spaces, but only for
every individual space. We then assign both ANN connec-
tions and ANN neurons to a space, giving us full control
over which CPPN output governs which ANN element.

Our ANNs do not actually have nodes residing at the same
coordinates, meaning that MSS is not necessary (Fig. 4a).
However, preliminary experiments without MSS resulted in
poor performance for all treatments, thus we did not explore
this direction any further (data not shown).

2.2 Test Problems
We tested our hypothesis on two di�erent problems: a

pattern recognition problem and a robotics problem. The
pattern recognition task is a variant of the retina prob-
lem [16]. In this variant, the ANN has 8 inputs and 2 outputs
(Fig. 1a), but it is otherwise the same as described in [15].
The task of the ANN is to produce a value > 0 on the left
output if the input-pattern for the �rst 4 inputs is a left
object (Fig. 1b), and a value < 0 otherwise. Similarly, the
right output should produce a value > 0 if the input-pattern
for the last 4 inputs is a right object (Fig. 1b), and a value
< 0 otherwise. An output value of 0 is always incorrect. If
e is the number of errors produced by the network per out-
put on all 256 input patterns, performance is calculated as
p = 1 � e=512. In contrast to previous incarnations of the
retina problem [15, 16, 33], in this paper the left and right
objects are not mirror images of each other.

In the robotics task, the ANN evolves to control a 6-
legged, radially symmetrical robot (Fig. 2a) simulated in
and provided by the Bullet physics engine (version 2.81, in
the Dynamic Control Demo), controlled as described in [27].
The robot has to perform 6 di�erent tasks, each associated
with one of its 6 inputs: move-forward, move-backward,
turn-left, turn-right, jump, and crouch (Fig. 2b). The ANN
is a CTRNN [3], with weights and biases in [�2; 2], and time
constants in [1; 6]. Activation functions are f(x) = tanh(5x)
for output neurons, and f(x) = (tanh(5x) + 1)=2 for hidden
neurons.

Performance is evaluated in six sessions, one for each sub-
task. At the start of each session the ANN is reset, the
relevant task input is set to 1, and the robot is moved to
[0; 1; 0]. Performance on each sub-task is de�ned as follows.
Let ~ct = [xt; yt; zt] be the center of mass of the robot at
time-step t, and let T be the total number of time-steps
of a session. Forward (pf ), backward (pb), and crouch (pc)
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Figure 2: Six-tasks robot and problem. (a) The hexa-
pod robot has 6 knee joints with one degree of freedom and 6
hip joints with 2 degrees of freedom (up-down, front-back).
(b) The six-tasks that need to be learned by the robot.

performance are calculated as:

pf =
xT

12:5

pb =
�xT
12:5

pc =
1
T

X

t

(1� jj~ct � [0; 0; 0]tjj)

Let ~xt de�ne a normal vector attached to the body of the
robot, initially aligned with the x-axis, at time t, and let
~yt be a similar normal vector, initially aligned with the y-
axis. Let \l( ~x1; ~x2) = \( ~x1; ~x2) � sign( ~x1 � ~x2) be the left
angle between ~x1 and ~x2. Let ut = 1 if \(~yt; [0; 1; 0]t) < �

3 ,
and 0 otherwise, e�ectively de�ning whether the robot is
upright at time-step t. Let m(x1; x2) = min(x1; x2). Then
the turn-left (pl) and turn-right (pr) performance values can
be calculated as:

pl =
25

T � 1

X

t=2

(\l(~xt; ~xt�1)ut) + m(1�
1
T

X

t

jj~ct � ~c0jj; 0)

pr =
25

T � 1

X

t=2

(�\l(~xt; ~xt�1)ut)+m(1�
1
T

X

t

jj~ct�~c0jj; 0)

These equations can be interpreted as summing the de-
grees turned by robot while being upright, with a penalty for
moving more than 1 unit from the starting location. Lastly,
let ymax be maxT=2

t=1(1�jj~ct� [0; 2; 0]tjj). Jump performance
can thus be de�ned as:

pj =
�

ymax : ymax � ut � 0:5
ymax + 1� jj~pT � ~c0jj : ymax � ut > 0:5

This equation rewards getting as close as possible to a
[0; 2; 0]t target coordinate (straight above the starting posi-
tion) during the �rst T=2 time-steps, and provides a landing
bonus based on how close the robot can get to the starting
location at the end of the session, provided that the robot is
upright and managed to get at least within 0:5 units of the
target coordinate. T = 400 for pf and pb, and T = 200 for
the other sub-tasks, as they could be evaluated more quickly.

We chose constants such that, when optimizing on a single
objective, performance was roughly 1 after 1000 generations.
Performance on the problem as a whole is the product of all
six sub-tasks, meaning an individual can not ignore any of
the sub-tasks completely.

2.3 Evolutionary Algorithms
The pattern recognition experiment is performed with the

NSGA-II algorithm [10]. Parameters are the same as in [15],
where evolution starts with a randomly generated popula-
tion of n (here 1000) individuals, with a random individual
being a fully connected CPPN without hidden nodes, ran-
dom weights for its connections (from [�3; 3]), and random
activation functions for its output nodes (sigmoid, Gaussian,
linear, or sine). New individuals are created by selecting par-
ents through tournament selection (tournament size 2), and
making a copy for each parent. The copies are then mu-
tated, with a 9% chance to add a connection, an 8% chance
to remove a connection, a 5% chance to add a node, a 4%
chance to remove a node, a 10% per connection chance to
change a weight, and a 10% per neuron chance to draw a
new activation function.

Every treatment has two or more objectives: a perfor-
mance objective, a behavioral diversity objective [12, 24],
and (optionally) objectives to promote modularity. Behav-
ioral diversity for an individual is calculated by recording a
‘behavior vector’ from its ANN outputs, binarizing that be-
havior vector such that values > 0 are 1, and all other values
are 0, and then calculating the average Hamming distance
to the behavior vector of all other individuals in the popu-
lation [11]. For the pattern recognition task, the behavior
vector is the value of the two ANN outputs over all pos-
sible 256 input patterns, producing a binary vector of 512
elements. For the robotics task, we �rst produce 6 sub-task
vectors by recording and binarizing the value of all 18 ANN
outputs for the �rst 5 time-steps of each sub-task, resulting
in 6 vectors with 90 elements. We then create a seventh
‘majority’ vector by taking the element-wise sum of the 6
sub-tasks, and binarizing the result such that values > 3
are 1, and others are 0. To obtain the actual behavior vec-
tor, we take the Exclusive-OR of the majority vector with
every sub-task vector, and concatenate the 6 resulting vec-
tors. This method encourages di�erent behaviors for each of
the sub-tasks, since individuals that ignore their inputs and
exhibit the same behavior for each sub-task will all have a
behavior vector consisting of zeros.

Depending on the treatment, modularity may be encour-
aged through a connection cost objective or through direct
selection. The connection cost objective is either applied
to the ANN, to encourage phenotypic modularity, or the
CPPN, to encourage genotypic modularity [7]. The con-
nection cost of an ANN is de�ned as the summed squared
length of all its connections, where the length of a connec-
tion is the Euclidean distance between its source and target
neurons (possible because every neuron has a geometric co-
ordinate). For CPPN genomes, whose nodes do not have
geometric locations, we de�ne the number of connections
in the CPPN to be its cost. Because our evolutionary al-
gorithm maximizes objectives, the negative of the cost is
added to the list of objectives. As in previous work [7, 15],
we simulate the fact that a connection cost should be less
important than performance by associating it with a proba-
bility p (here 0.75). In any comparison of dominance, there
is a p percent chance that the connection cost objective is
considered; it is otherwise ignored. For direct selection we
calculate the modularity of the relevant network, either the
CPPN or the ANN, through a quick approximation [25] of
the modularity-Q score for directed networks [18], and we
add this score as an objective.



In preliminary work we ran the robotics experiment with
NSGA-II, but runs quickly converged to a local optimum,
and individuals often focused on a single objective like jump-
ing, while gaining performance on the other sub-tasks by
falling over. To avoid these local optima we designed a new
algorithm called the Combinatorial Multi-Objective Evolu-
tionary Algorithm (Combinatorial MOEA), which adds ev-
ery combination of objectives as a separate objective. It is
inspired by the work on Innovation Engines, which showed
that having a vast number of di�erent objectives improves
the ability to perform well on any individual objective, be-
cause the path to discover a solution for any challenging
objective is unknown ahead of time [26]. For example, per-
haps the best path to mastering all six objectives is to �rst
master jumping and moving forward only, and then moving
on to jumping, moving forward, and crouching, etc.

It is known that Evolutionary Algorithms (and learning
animals, including humans) are helped by staging, in which
a curricula is developed that does not challenge an agent
to learn all tasks at once, but creates a path of challenges
that build up to the full set (e.g. crawl �rst, then walk,
etc.) [2, 19]. However, it is exceedingly di�cult to predict
the optimal order or combination of tasks, and computa-
tionally expensive to separately try all possible orderings,
so our algorithm instead simultaneously rewards all possible
combinations of tasks.

With the Combinatorial MOEA, rather than having a sin-
gle population of n individuals, we instead have s (here 63)
sub-populations of nb (here 100) individuals, referred to as
bins. Each of these bins has a set of sub-tasks associated
with it, and there exists one bin for every combination of
sub-tasks. When an individual is added to one of these
bins, its ‘performance objective’ is set to be the product
of its performance on all sub-tasks associated with that bin.
A publication on this novel algorithm is in preparation.

To accommodate this design, the following changes were
made with respect to NSGA-II. When selecting a parent,
we randomly select an individual from the entire popula-
tion, without tournament selection. We then add a copy
of the mutated child to all bins. When performing sur-
vivor selection, we apply Pareto dominance sorting to every
bin separately. Lastly, the number of o�spring created per
generation is a separate parameter (here 1000), rather than
equal to the population size. Both algorithms were imple-
mented in the Sferes 2 framework [23], and all source code is
available at http://www.evolvingai.org/ModularAlignment.

2.4 Treatments
We compare HyperNEAT (HN) alone against two treat-

ment categories: those that encourage modularity through
selective pressure, and hand-designed treatments whose phe-
notypes or genotypes have speci�c decompositions we would
expect from modular networks. We have four sources of se-
lective pressure: a connection cost on the phenotype (PCC),
a connection cost on the genotype (GCC), direct selection
for phenotypic modularity (PMOD), and direct selection
for genotypic modularity (GMOD). There are two types of
handcrafted networks: an arti�cially split phenotype (ASP)
and an arti�cially split genotype (ASG). ASP has a phe-
notypic (ANN) decomposition, such that some neurons are
not allowed to connect to other neurons. With ASG, the
ANN has a multi-spatial substrate (MSS), such that dif-
ferent parts of the ANN are governed by di�erent CPPN
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Figure 3: Pattern recognition problem spatial lay-
outs for ANNs and their corresponding CPPNs.
Neurons are placed in a 2 � 2 plane ranging from �1 to
1 in both dimensions. Colors indicate to which space a neu-
ron, connection, or CPPN output belongs in terms of the
multi-spatial substrate (MSS), and are thus only meaning-
ful in ASG and NASG treatments. (a) All connections are
allowed in the default and ASG setups. The MSS spaces
of ASG have a left-right decomposition. (b) ASP does not
allow any connections between the left and right side of the
problem, which aligns with the ASG decomposition. (c)
NASG allows all connections, but features a top-bottom
decomposition into MSS spaces. (d) In ASP+NASG, the
enforced phenotypic and genotypic decompositions are not
aligned. (e) The CPPN for this experiment has a weight W,
LEO L, and Bias B output. (f) The number of CPPN out-
puts is doubled in MSS (i.e. ASG and NASG) treatments.
The color of the output corresponds to the MSS space they
govern.

outputs. In both ASP and ASG, the decompositions are
problem oriented, such that the decomposition matches the
expected structure of the sub-tasks.

In the pattern recognition task, ASP and ASG have a left-
right split (Fig. 3a,b). For this task only, we also introduce
an ASG variant where the MSS decomposition is not aligned
with the inherent modularity of the problem (Fig. 3c), which
we call the non-aligned arti�cially split genotype (NASG).
If combined with ASP, this results in a genotypic decompo-
sition that is not aligned with the enforced phenotypic split
(Fig. 3d). In total, the treatments for the pattern recogni-
tion problem are: HN, PCC, GCC, ASP, ASG, ASP+ASG,
NASG, and ASP+NASG. PMOD and GMOD treatments
were omitted due to computational constraints.

In the robotics task, all treatments have a multi-spatial
substrate, meaning that the di�erence between treatments
with and without ASG is based solely on how the ANN is
divided into spaces. Unless otherwise noted, the ANN is
split in a way that is common for MSS, where input neu-
rons, hidden neurons and di�erent classes of output neurons
are all in a separate space (Fig. 4a). The ASP treatments
have the same space decomposition, but split the hidden
layer into modules by disallowing connections between them
such that there exists one module per sub-task (Fig. 4b). In
ASG treatments, the MSS spaces, rather than the pheno-
typic modules, are assigned such that there is one space



(a) Default (b) ASP (c) ASG (d) ASP+ASG

Figure 4: Robotics-problem spatial layouts for ANNs and their corresponding CPPNs. Neurons are placed in a
2� 2� 2 cube ranging from �1 to 1 in all dimensions, such that neurons at extreme coordinates are on the edge of this cube.
Colors indicate to which space a neuron, connection, or CPPN output belongs in terms of the multi-spatial substrate (MSS).
(a) In the default setup, input neurons, hidden neurons, and di�erent classes of actuators belong to di�erent MSS spaces, as
is customary for MSS. (b) With ASP, the hidden layer is split into six modules that can not connect. (c) With ASG, MSS
spaces are assigned problem wise (left to right). (d) ASP+ASG combines the properties of ASP and ASG.

per sub-task (Fig. 4c). When ASP and ASG are combined,
the genotypic decomposition is aligned with the phenotypic
split (Fig. 4d). In total, the treatments for the robotics prob-
lem are: HN, PCC, GCC, PMOD, GMOD, PMOD+GMOD,
ASP, ASG, ASP+ASG, ASP+GCC, ASG+PCC. We were
unable to combine PCC and GCC in a single treatment be-
cause both require a probability p < 1, which may result
in situations where A dominates B, B dominates C, and
C dominates A. Resolving these \dominance triangles" is a
topic for future work.

Our results �gures show, for each treatment, the median
of the best individuals from 30 runs. Shaded areas indicate
the 95% bootstrapped con�dence interval, and the symbols
at the bottom indicate a signi�cant di�erence (p < 0:05,
Mann-Whitney U) at that generation versus HyperNEAT.

3. RESULTS AND DISCUSSION

3.1 Pattern Recognition Problem
In the pattern recognition task, HyperNEAT alone shows

a steady increase in performance for the �rst 10000 gener-
ations, after which improvements become minor (Fig. 5a).
The addition of a connection cost, either applied to the phe-
notype or the genotype, provides no observable improve-
ment. ASP provides some bene�ts early on, though the
di�erence with HyperNEAT alone is no longer signi�cant at
the �nal generation. ASG, ASP+ASG and ASP+NASG,
on the other hand, perform signi�cantly better than Hyper-
NEAT throughout the run, and achieve perfect performance
in the majority of runs. ASG and ASP+ASG both have or
evolve aligned genotypic and phenotypic modularity (see be-
low), but ASP+NASG is purposefully misaligned, meaning
we can not attribute the success of the ASG treatments to
their alignment. We can, however, state that having modu-
lar decompositions in both the phenotype and the genotype-
phenotype map is bene�cial on this problem. In contrast to
ASG alone, NASG alone does not perform any better than
HyperNEAT, demonstrating that a problem aligned geno-
type is more bene�cial than one that is not.

To interpret the results regarding how modular the phe-
notypes became, it is useful to note that the maximum mod-
ularity score for a network with two modules is 0.5. Further-
more, analysis of ANN visualizations (not shown) revealed

that all ANNs with a modularity score of 0.5 have the same
left-right split as the one enforced by ASP (Fig. 3b).

Even though the left and right problems are completely
separate, HyperNEAT alone does not produce a split with
maximum modularity, and neither do the PCC or GCC
treatments (Fig. 5b). ASG does �nd a maximally modular
split, meaning it naturally evolved phenotypic modularity
that is aligned with its genotypic decomposition, and it is
the only treatment to do so where this split is not manu-
ally enforced. The top-bottom alignment for NASG appar-
ently makes it much harder to �nd a split with maximum
modularity and, as a result, this treatment is signi�cantly
less modular than HyperNEAT. Of course, ASP treatments,
which have manually enforced modular phenotypic splits,
have maximum modularity throughout.

Genotypic modularity rapidly increases for all treatments
during the �rst 1000 generations (Fig. 5c). This increase is
almost inevitable considering that the initial, fully-connected
ANNs have a modularity of zero, meaning that mutations
can only increase (or have no e�ect on) modularity. The ad-
dition of a connection cost is a known method for increasing
modularity in networks [7]. However, while GCC increases
genomic modularity faster than HyperNEAT alone, this in-
crease stagnates after 1000 generations (Fig. 5c), probably
because the connection cost prevents further complexi�ca-
tion, since its genomes do not grow as other treatments do
(Fig. 5d). This may not be detrimental per se, as it ensures
that CPPNs do not grow superuous structures, but in this
instance there was no bene�t either (Fig. 5a).

ASP genomes are all signi�cantly more modular than Hy-
perNEAT alone. This di�erence may emerge because the
enforced phenotypic decomposition functions as a template,
where genotypic elements that happen to align with one of
the phenotypic modules will be preserved, thus slowly de-
veloping a modular genotypic structure. This e�ect is most
prominent in treatments that also feature a genotypic split
(ASP+ASG and ASP+NASG), possibly because separate
pathways are already present in these genotypes; evolution
only needs to expand them.

The failure of PCC to perform well and �nd maximum
modularity splits is in contrast to previous results [15], prob-
ably because the two sub-problems are no longer mirrored
versions of each other. That is, even when the optimal split
is found, evolution may be unable to �nd further increases
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Figure 5: On the pattern recognition task, treatments with ASG perform signi�cantly better, and have a
signi�cantly higher phenotypic modularity, than HyperNEAT alone. (a) The ASG, ASP+ASG, and ASP+NASG,
treatments all perform signi�cantly better than HyperNEAT alone after 5000 generations. (b) ASG is the only non-ASP
treatment that achieves maximum modularity in a majority of runs. (c) Despite the addition of a connection cost, GCC
quickly stagnates in genotypic modularity. (d) In contrast to other treatments, GCC genomes do not increase in size.

in performance without introducing irregularities that break
the left-right split. This is an important hint that encour-
aging phenotypic modularity alone is not su�cient to solve
tasks that require several di�erent modules.

3.2 Robotics Problem
While PMOD and GMOD alone perform poorly on the

robotics problem, PMOD+GMOD performs signi�cantly
better than HyperNEAT alone (Fig. 6a). This result strongly
hints at the importance of encouraging both genotypic and
phenotypic modularity. Neither PCC nor GCC result in a
signi�cant performance di�erence when compared to Hyper-
NEAT, possibly because they do not encourage phenotypic
and genotypic modularity simultaneously. The observed �t-
ness values may seem low, but visual inspection of robot
behaviors indicates that sub-tasks are being solved; an indi-
vidual with a �tness of 0:008 qualitatively solves all tasks.

The PMOD and GMOD treatments have very high pheno-
typic and genotypic modularity, respectively (Fig. 6b, c), but
their low performance (Fig. 6a) suggests that this modular-
ity is non-functional; they are modular for the sake of being
modular, but they do not gain the bene�ts usually associ-
ated with modularity. When these objectives are combined
(PMOD+GMOD), the modularity in both the genotype and
the phenotype does decrease, but it remains signi�cantly
higher than HyperNEAT alone. PCC produces phenotypes
that are also signi�cantly more modular than HyperNEAT,
but this improvement is very small when compared to the
impact of PMOD+GMOD (Fig. 6b). In contrast to the pat-
tern recognition problem, genotypic modularity hardly in-
creases for any but the treatments that explicitly select for it
(Fig. 6c), probably because the genomes are initially much
larger and evolution mostly tweaks CPPN weights rather

than the CPPN architecture, as is suggested by the lack of
change in CPPN size (Fig. 6d). In this case, GCC is not the
only treatment that lacks meaningful complexi�cation.

The increased modularity of the PMOD+GMOD treat-
ment is also visually apparent, with some networks dividing
into clearly separated communities (Fig. 6e, f). These com-
munities are quite di�erent from the ones manually imposed
upon the network in the ASP treatment, and their function
is not immediately clear from observation. Videos (avail-
able at http://www.evolvingai.org/ModularAlignment) re-
veal that modules often separate a pattern-generator sec-
tion of the network from neurons with a static behavior.
Because testing for alignment is non-trivial, it is unknown
whether the observed phenotypic modularity is aligned with
the underlying genotypic modularity, but this analysis will
be included in future work.

Our hand-designed treatments perform no di�erent from
HyperNEAT alone, suggesting that we have not managed to
capture the advantages of a modular phenotype or genotype
in these treatments (Fig. 7a). It is noteworthy that ASG
treatments have a signi�cantly higher phenotypic modular-
ity than HyperNEAT, showing that structure in the geno-
type alone can a�ect phenotypic organization, though the
modularity is still much lower than what is achieved by
PMOD+GMOD (Fig. 7b). Also, genotypic modularity is
extremely low for all hand-designed treatments (Fig. 7c).

There may be several reasons for why our hand-designed
networks perform so poorly. First, it is possible that 5000
generations is simply not enough to reveal signi�cant di�er-
ences. In preliminary experiments, we extended the number
of generations to 15000 for the HN, ASG and ASG+ASP
treatments, but no signi�cant di�erences arose. Alterna-
tively, it is possible that we chose poor manual splits, but
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Figure 6: On the robotics task, direct selection for both phenotypic and genotypic modularity produces
genotypes and phenotypes that are signi�cantly more modular (b, c), and that perform signi�cantly bet-
ter (a) than HyperNEAT. (a) PMOD and GMOD alone perform signi�cantly worse than HyperNEAT. (b, c) While
PMOD+GMOD achieves lower phenotypic and genotypic modularity than PMOD and GMOD, respectively, its modularity
is still signi�cantly higher than HyperNEAT’s in both cases. (d) Genotypes do not appear to complexify on the robotics
problem, with the exception of GMOD’s, probably because larger networks can attain a higher modularity score. (e, f) The
four best performing networks for the HyperNEAT and GMOD+PMOD treatments, where nodes are colored according to the
modules discovered by Leicht and Newman’s graph partitioning algorithm for directed networks [18]. This method detects
groups of nodes that are strongly connected to each other, while being only sparsely connected to nodes in other groups.
HyperNEAT ANNs look fully connected, but some GMOD+PMOD ANNs contain clear modular decompositions.

that there exist other modular con�gurations that would
be more bene�cial. This hypothesis is supported by the
fact that the PMOD+GMOD treatment does lead to in-
creased modularity and performance, yet provides decom-
positions that are quite di�erent from the one we imposed
(Fig. 6e, f). This demonstrates the importance of techniques
that can �nd modular decompositions automatically, since
manual designs may not be optimal.

4. CONCLUSION
Our results suggest that, when di�erent functional mod-

ules are required within the same neural network, which is
the case for all challenging problems, performance bene�ts
can be gained by simultaneously encouraging modularity in
both the genotype and the phenotype. They further indi-
cate that the role of genotypic and phenotypic alignment
is still unclear. In addition, we have shown that, while a
task-oriented decomposition worked well for a simple pattern
recognition problem, such a decomposition was not bene�-
cial on a more challenging robotics problem, emphasizing
the importance of automatic, rather than manual, meth-
ods for generating modular architectures. Lastly, on the

robotics task, even the best performing treatment remains
orders of magnitude below what is achievable by optimiz-
ing the sub-tasks separately, indicating that the problem is
far from solved. Overall, our work highlights that much
more research is required before we can successfully evolve
structurally organized neural networks that solve tasks that
require multiple, di�erent neural modules.
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