Variational Image-Based Rendering with Gradient Constraints

Grégoire Nieto 1 Frédéric Devernay 1 James Crowley 2
1 IMAGINE - Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Inria Grenoble - Rhône-Alpes
Abstract : Multi-view image-based rendering consists in generating a novel view of a scene from a set of source views. In general, this works by first doing a coarse 3D reconstruction of the scene, and then using this reconstruction to establish correspondences between source and target views, followed by blending the warped views to get the final image. Unfortunately, discontinuities in the blending weights, due to scene geometry or camera placement, result in artifacts in the target view. In this paper, we show how to avoid these artifacts by imposing additional constraints on the image gradients of the novel view. We propose a variational framework in which an energy functional is derived and optimized by iteratively solving a linear system. We demonstrate this method on several structured and unstructured multi-view datasets, and show that it numerically outperforms state-of-the-art methods, and eliminates artifacts that result from visibility discontinuities.
Type de document :
Communication dans un congrès
IC3D - 2016 International Conference on 3D Imaging, Dec 2016, Liège, Belgium. <10.1109/IC3D.2016.7823449>
Liste complète des métadonnées
Contributeur : Nieto Grégoire <>
Soumis le : jeudi 24 novembre 2016 - 17:46:47
Dernière modification le : samedi 12 août 2017 - 14:26:18
Document(s) archivé(s) le : lundi 20 mars 2017 - 19:32:39


Fichiers produits par l'(les) auteur(s)




Grégoire Nieto, Frédéric Devernay, James Crowley. Variational Image-Based Rendering with Gradient Constraints. IC3D - 2016 International Conference on 3D Imaging, Dec 2016, Liège, Belgium. <10.1109/IC3D.2016.7823449>. <hal-01402528>



Consultations de
la notice


Téléchargements du document