J. R. Artalejo, Stationary analysis of the characteristics of the M/M/2 queue with constant repeated attempts, pp.83-95, 1996.

J. R. Artalejo, A. Gómez-corral, and M. F. Neuts, Analysis of multiserver queues with constant retrial rate, European Journal of Operational Research, vol.135, issue.3, pp.569-581, 2001.
DOI : 10.1016/S0377-2217(00)00330-1

S. Asmussen, Applied Probability and Queues, 2003.

K. Avrachenkov and U. Yechiali, RETRIAL NETWORKS WITH FINITE BUFFERS AND THEIR APPLICATION TO INTERNET DATA TRAFFIC, Probability in the Engineering and Informational Sciences, pp.519-536, 2008.
DOI : 10.1109/90.811451

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Avrachenkov and U. Yechiali, On tandem blocking queues with a common retrial queue, Computers and Operations Research, pp.1174-1180, 2010.
DOI : 10.1016/j.cor.2009.10.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Avrachenkov and E. Morozov, Stability analysis of GI/GI/c/K retrial queue with constant retrial rate, Mathematical Methods of Operations Research, vol.40, issue.9, pp.273-291, 2014.
DOI : 10.1007/s00186-014-0463-z

URL : https://hal.archives-ouvertes.fr/hal-01092394

K. Avrachenkov, R. S. Goricheva, and E. V. Morozov, Verification of stability region of a retrial queuing system by regenerative method Modern Probabilistic Methods for Analysis and optimization of Information and Telecommunication Networks, Proceedings of the International Conference, pp.22-28, 2011.

B. D. Choi, Y. W. Shin, and W. C. Ahn, Retrial queues with collision arising from unslotted CSMA/CD protocol, Queueing Systems, pp.335-356, 1992.
DOI : 10.1007/bf01163860

B. D. Choi, K. H. Rhee, and K. K. Park, The M/G/1 Retrial Queue With Retrial Rate Control Policy, Probability in the Engineering and Informational Sciences, pp.29-46, 1993.
DOI : 10.1007/BF01158472

G. Fayolle, A simple telephone exchange with delayed feedback, Teletraffic Analysis and Computer Performance Evaluation, pp.245-253, 1986.

C. Kim, V. Klimenok, and A. Dudin, A G/M/1 retrial queue with constant retrial rate, TOP, vol.14, issue.fasc??3, pp.509-529, 2012.
DOI : 10.1007/s11750-012-0267-3

R. E. Lillo, A G/M/1-queue with exponential retrial, Top, vol.2, issue.1, pp.99-120, 1996.
DOI : 10.1007/BF02568606

E. Morozov, Weak Regeneration in Modeling of Queueing Processes, Queueing Systems, pp.295-315, 2004.
DOI : 10.1023/B:QUES.0000027988.38058.8d

E. Morozov, A multiserver retrial queue: regenerative stability analysis, Queueing Systems, pp.157-168, 2007.
DOI : 10.1007/s11134-007-9024-y

E. Morozov and R. Nekrasova, Estimation of blocking probability in retrial queuing system with constant retrial rate, Proceedings of the Institute of Applied Mathematical research, pp.63-74, 2011.

E. Morozov and R. Nekrasova, On the estimation of the overflow probability in regenerative finite buffer queueing systems, Informatics and their applications, pp.1977-1991

M. F. Ramalhoto and A. Gómez-corral, Some decomposition formulae for M/M/r/r+d queues with constant retrial rate, Stochastic Models, pp.123-145, 1998.
DOI : 10.1007/BF01158899

K. Sigman, One-Dependent Regenerative Processes and Queues in Continuous Time, Mathematics of Operations Research, vol.15, issue.1, pp.175-189, 1990.
DOI : 10.1287/moor.15.1.175

W. L. Smith, Regenerative Stochastic Processes, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.232, issue.1188, pp.6-31, 1955.
DOI : 10.1098/rspa.1955.0198

W. Whitt, Comparing counting processes and queues, Advanced in Applied Probability, pp.207-220, 1981.
DOI : 10.2307/1426475