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We consider the identification problem of the conductivity coefficient for an elliptic operator us-
ing an incomplete over-specified measurements on the surface (Cauchy data). Data completion
problems are widely discussed in literature by several methods (see, e.g., for control and game
oriented approaches [1, 2], and references therein). The identification of conductivity and permit-
tivity parameters has also been investigated in many studies (see, e.g., [3, 4]). In this work, our
purpose is to extend the method introduced in [1], based on a game theory approach, to develop
a new algorithm for the simultaneous identification of conductivity coefficient and missing bound-
ary data. We shall say that there are three players and we define three objective functions. Each
player controls one variable and minimizes his own cost function in order to seek a Nash equilib-
rium which is expected to approximate the inverse problem solution. The first player solves the
elliptic equation (div(k.∇(u)) = 0) with the Dirichlet part of the Cauchy data prescribed over the
accessible boundary and a variable Neumann condition (which we call first player’s strategy) pre-
scribed over the inaccessible part of the boundary. The second player makes use correspondingly
of the Neumann part of the Cauchy data, with a variable Dirichlet condition prescribed over the
inaccessible part of the boundary. The first player then minimizes the gap related to the non used
Neumann part of the Cauchy data, and so does the second player with a corresponding Dirichlet
gap. The two players consider a response of the unknown conductivity of the third player. The
third player controls the conductivity coefficient, and uses the over specified Dirichlet condition as
well as the second’s player Dirichlet condition strategy prescribed over the inaccessible part of the
boundary. He minimizes then a Kohn-Vogelius type functional with respect to the conductivity
parameter. This method is quite general and has wide applications ranging from bioelectrical field
to mechanical engineering.

In this work, we are interested in solving the electrocardiography inverse problem which could
be reduced to the data completion problem for the diffusion equation. The difficulty comes from
the fact the conductivity values of the torso organs like lungs, bones, liver,...etc, are not known
and could be patient dependent. Our goal is to construct a methodology allowing to solve both
data completion and conductivity optimization problems at the same time.
We consider the following elliptic problem : ∇.(k∇u) = 0 in Ω

u = f on Γc

k∇u.ν = Φ on Γc

(1)

where Ω is a bounded open domain in Rd (d = 2, 3) with a sufficiently smooth boundary ∂Ω
composed of two connected disjoint components Γc and Γi. The functions f and Φ are the Cauchy
data and ν is the unit outward normal vector on the boundary and k is a piecewise constant
function representing the unknown conductivity.
For given η ∈ H− 1

2 (Γi), τ ∈ H
1
2 (Γi) and k ∈ L∞(Ω) , let us define u1(η, k), u2(τ, k) and u3(τ, k)
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as the unique solutions in H1(Ω) of the following elliptic boundary value problems :

(1)

 ∇.(k∇u1) = 0 in Ω
u1 = f on Γc

k∇u1.ν = η on Γi

(2)

 ∇.(k∇u2) = 0 in Ω
u2 = τ on Γi

k∇u2.ν = Φ on Γc

(3)

 ∇.(k∇u3) = 0 in Ω
u3 = τ on Γi

u3 = f on Γc

The three costs are defined as follows:

J1(η, τ, k) =
1

2
‖k∇u1.ν − Φ‖2

H− 1
2 (Γc)

+
1

2
‖u1 − u2.‖2

H
1
2 (Γi)

. (2)

J2(η, τ, k) =
1

2
‖u2 − f‖2L2(Γc) +

1

2
‖u1 − u2‖2

H
1
2 (Γi)

. (3)

J3(η, τ, k) = ‖
√
k∇(u2 − u3)‖2L2(Ω) . (4)

From the computational viewpoint, we used the Stackelberg game algorithm to compute the Nash
equilibrium. We consider an annular domain with circular boundary components Γi and Γc, both
centered at (0, 0) and with radii Ri = 0.6 and Rc = 1, respectively. However, a third cercle of
radius Rm = 0.8 is added between Γi and Γc. We consider a non-homogeneous conductivity k:
equal to 1 ( is known) in the domain between Rc and Rm, and equal to 1

2 ( is unknown) in the
domain delimited by Rm and Ri. The figure-1 presents the potentiel and the flux reconstructed
over Γi. The value of the reconstructed conductivity between Rm and Ri is equal to 0.48.

Figure 1: Reconstructed Dirchlet (left) and Neumann (right) data over Γi, where the reconstructed
conductivity is 0.48
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