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ABSTRACT
Are Online Social Network (OSN) A users more likely to
form friendships with those with similar attributes? Do
users at an OSN B score content more favorably than OSN C
users? Such questions frequently arise in the context of So-
cial Network Analysis (SNA) but often crawling an OSN net-
work via its Application Programming Interface (API) is the
only way to gather data from a third party. To date, these
partial API crawls are the majority of public datasets and
the synonym of lack of statistical guarantees in incomplete-
data comparisons, severely limiting SNA research progress.
Using regenerative properties of the random walks, we pro-
pose estimation techniques based on short crawls that have
proven statistical guarantees. Moreover, our short crawls
can be implemented in massively distributed algorithms. We
also provide an adaptive crawler that makes our method
parameter-free, significantly improving our statistical guar-
antees. We then derive the Bayesian approximation of the
posterior of the estimates, and in addition, obtain an estima-
tor for the expected value of node and edge statistics in an
equivalent configuration model or Chung-Lu random graph
model of the given network (where nodes are connected ran-
domly) and use it as a basis for testing null hypotheses.
The theoretical results are supported with simulations on a
variety of real-world networks.

Keywords
Bayesian inference, Graph sampling, Random walk on graphs,
Social network analysis

1. INTRODUCTION
What is the fraction of male-female connections against

that of female-female connections in a given Online Social
Network (OSN)? Is the OSN assortative or disassortative?
Edge, triangle, and node statistics of OSNs find applica-
tions in computational social science (see e.g. [30]), epi-
demiology [31], and computer science [5, 15]. Computing
these statistics is a key capability in large-scale social net-
work analysis and machine learning applications. But be-
cause data collection in the wild is often limited to par-
tial OSN crawls through Application Programming Inter-
face (API) requests, observational studies of OSNs – for re-
search purposes or market analysis – depend in great part
on our ability to compute network statistics with incomplete
data. Case in point, most datasets available to researchers in
widely popular public repositories are partial OSN crawls1.

1Public repositories such as SNAP [26] and KONECT [24]

Unfortunately, these incomplete datasets have unknown bi-
ases and no statistical guarantees regarding the accuracy
of their statistics. To date, the best methods for crawling
networks ([4, 14, 32]) show good real-world performance but
only provide statistical guarantees asymptotically (i.e., when
the entire OSN network is collected).

This work addresses the fundamental problem of obtain-
ing unbiased and reliable node, edge, and triangle statistics
of OSNs via partial crawling. To the best of our knowledge
our method is the first to provide a practical solution to the
problem of computing OSN statistics with strong theoretical
guarantees from a partial network crawl. More specifically,
we (a) provide a provable finite-sample unbiased estimate of
network statistics (and their spectral-gap derived variance)
and (b) provide the approximate posterior of our estimates
that performs remarkably well in all tested real-world sce-
narios.

More precisely, let G = (V,E) be an undirected labeled
network – not necessarily connected – where V is the set
of vertices and E ⊆ V × V is the set of edges. Unlike the
usual definition of E where each edge is only present once,
to simplify our notation we consider that if (u, v) ∈ E then
(v, u) ∈ E. Both edges and nodes can have labels. Network
G is unknown to us except for n > 0 arbitrary initial seed
nodes in In ⊆ V . Nodes in In must span all the different
connected components of G. From the seed nodes we crawl
the network starting from In and obtain a set of crawled
edges Dm(In), where m > 0 is a parameter that regulates
the number of website API requests. With the crawled edges
Dm(In) we seek an unbiased estimate of

µ(G) =
∑

(u,v)∈E

g(u, v) , (1)

for any function g(u, v) over the node pair (u, v). Note that
functions of the form eq. (1) are general enough to compute
node statistics

µnode(G) =
∑

(u,v)∈E

h(v)/dv ,

where du is the degree of node u ∈ V , h(v) is any function
of the node v, and statistics of triangles such as the local

contain a majority of partial website crawls, not complete
datasets or uniform samples.



clustering coefficient of G first provided by [32]

µ4(G) =
1

|V |
∑

(u,v)∈E

{1(dv > 2)

dv∑
a∈Nv

∑
b∈Nv,b6=a 1((v, a) ∈ E ∩ (v, b) ∈ E ∩ (a, b) ∈ E)(

dv
2

) }
,

where the expression inside the sum is zero when dv < 2
and Nv are the neighbors of v ∈ V in G. Our task is to find
estimates of general functions of the form µ(G) in eq. (1).

Contributions
In our work we provide a partial crawling strategy using
short dynamically adjustable random walk tours starting at
a“virtual”super-node without invoking the notion of lumpa-
bility [21]. A random walk tour is a random walk sample
path that starts and ends at the same node on the graph.
We use these tours to compute a frequentist unbiased es-
timator of µ(G) (including its variance) regardless of the
number of nodes, n > 0, in the seed set and regardless of
the value of m > 0, unlike previous asymptotically unbiased
methods [4, 14, 25, 32, 33]. We also provide a Bayesian
approximation of the posterior of µ(G) given the observed
tours P [µ(G)|Dm(In)], which is shown to be consistent. In
our experiments we note that the posterior is remarkably
accurate using a variety of networks large and small. Fur-
thermore, when the network is formed by randomly wiring
connections while preserving degrees and attributes of the
nodes in the observed network, we devise an estimation tech-
nique for the expected true value with partial knowledge of
the original graph.

Related Work
The works of Massoulié et al. [28] and Cooper et al. [10]
are the ones closest to ours. Massoulié et al. [28] estimates
the size of a network based on the return times of random
walk tours. Cooper et al. [10] estimates number of triangles,
network size, and subgraph counts from weighted random
walk tours using results of Aldous and Fill [1, Chapter 2 and
3]. The previous works on finite-sample inference of network
statistics from incomplete network crawls [16, 22, 23, 18, 19,
27, 34] need to fit the partial observed data to a probabilistic
graph model such as ERGMs (exponential family of random
graphs models). Our work advances the state-of-the-art in
estimating network statistics from partial crawls because:
(a) we estimate statistics of arbitrary edge functions with-
out assumptions about the graph model or the underlying
graph; (b) we do not need to bias the random walk with
weights as in Cooper et al.; this is particularly useful when
estimating multiple statistics reusing the same observations;
(c) we derive upper and lower bounds on the variance of es-
timator, which both show the connection with the spectral
gap; and, finally, (d) we compute a posterior over our esti-
mates to give practitioners a way to access the confidence
in the estimates without relying on unobtainable quantities
like the spectral gap and without assuming a probabilistic
graph model.

The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce key concepts and defines the notation
used throughout this manuscript. Section 3 presents the al-
gorithms to build the super-node and proves the equivalence
between them. The frequentist estimators and their proper-

ties are explained in Section 4. Section 5 contains the main
result of the posterior distribution in Bayesian framework.
Section 6 consists of experimental results over real-world
networks. Finally, in Section 7 we present our conclusions.

2. SUPER-NODE RATIONALE
In this section we present definitions and concepts using

throughout the reminder of the paper. Then we substanti-
ate an intuitive reasoning that our random walk tours are
shorter than the “regular random walk tours” because the
“node” that they start from is an amalgamation of a multi-
tude of nodes in the graph.

Preliminaries
Let G = (V,E) be an unknown undirected graph with N
number of nodes and M = |E|/2, number of edges. Our
goal is to find an unbiased estimate of µ(G) in eq. (1) and
its posterior by crawling a small fraction of G. We are given
a set of n > 0 initial arbitrary nodes denoted In ⊂ V . If G
has disconnected components In must span all the different
connected components of G.

Unless stated otherwise our network crawler is a classi-
cal random walk (RW) over the following augmented multi-
graph G′ = (V ′, E′) with N ′ nodes and M ′ edges. A multi-
graph is a graph that can have multiple edges between two
nodes. In G′(In) we aggregate all nodes of In into a single
node, denoted hereafter Sn, the super-node. Thus, V ′(In) =
{V \In} ∪ {Sn}. The edges of G′(In) are E′(In) = E\{E ∩
{In × V }} ∪ {(Sn, v) : ∀(u, v) ∈ E, s.t. u ∈ In and v ∈
V \In}, i.e., E′(In) contains all the edges in E including the
edges from the nodes in In to other nodes, and In is merged
into the super-node Sn. Note that G′(In) is necessarily con-
nected as In spans all the connected components of G. For
compactness of notation we sometimes refer to G′(In) as G′

when In is clear from the context. We also use Sn and In
interchangeably to denote both the super-node at G′(In) and
each individual nodes of In at G.

A random walk on G′(In) has transition probability from
node u to an adjacent node v, puv := αu,v/du, where du
is the degree of u and αu,v is the number of edges between
u ∈ V ′ and v ∈ V ′. Let P = {puv}. We note that the
theory presented in the paper can be extended to more so-
phisticated random walks as well. Let πi be the stationary
distribution at node i in the random walk on G′(In).

A random walk tour is defined as the sequence of nodes

X
(k)
1 , . . . , X

(k)
ξk

visited by the random walk during succes-
sive k-th and k + 1-st visits to the super-node Sn. Here
{ξk}k≥1 denote the successive return times to Sn. Tours
have a key property: from the renewal theorem tours are in-
dependent since the returning times act as renewal epochs.
Moreover, let Y1, Y2, . . . , Yn be a random walk on G′(In) in
steady state.

Note that the random walk on G′(In) is equivalent to a
random walk on G where all the nodes in In are treated as
one single node. Figure 1 shows an example of the formation
of G′(In).

Why a Super-node
The introduction of super-node is primary motivated by the
following closely-related reasons:

• Tackling disconnected or low-conductance graphs: When
the graph is not well connected or has many connected



(a) The original graph G
with I4 = {c, g, j, q}.

(b) The modified graph
G′(In) with super-node S4.

Figure 1: Graph modification with the super-node

components, forming a super-node with representatives
from each of the components make the modified graph
connected and suitable for applying random walk theory.
Even when the graph is connected, it might not be well-
knit, i.e., it has low conductance. Since the conductance
is closely related to mixing time of Markov chains, such
graph will prolong the mixing of random walks. But with
proper choice of super-node, we can reduce the mixing
time and, as we show, improve the estimation accuracy.

If we consider self loops from Sn to itself while forming
the modified graph G′, i.e. all the connections between
In (E ∩ {In × In}), then G′ becomes a contracted graph
[9]. Then [9, Lemma 1.15] says that if Sn is formed from
n = 2 vertices, the spectral gaps of the two graphs δG′

and δG are related as follows: δG′ ≥ δG. The spectral gap
δG′ = 1 − λ2, where λ2 is the second largest eigenvalue
of P, and δG can be defined accordingly on the random
walk on the original graph. The above argument with
spectral gaps can be extended to n > 2 by induction and
hence δG′ ≥ δG follows. The improvement in the spectral
gap proves that the modified graph will become well-knit
(low conductance). Note that G′ in our case does not
involve self loops around Sn, but this is for the ease of
computation as the function values over the self loops are
known (from the knowledge of In and further API queries
with them), and hence allowing self loops will only slower
down the estimation of µ(G) outside the super-node.

• No lumpability for random walks: The theory of lumpabil-
ity [21, Section 6.3] provides ways to exactly partition a
Markov chain. Unfortunately, lumping states in a classi-
cal random walk will not give an accurate representation
of the random walk Markov chain and, thus, we consider
a super-node Sn where all the nodes inside the super-
node are merged into one node rather than partitioning
the states. The edges from Sn are the collection of all
the edges from the nodes inside the super-node which are
connected to nodes outside super-node, and Markov chain
property still holds on this formation. The graph modifi-
cation with Sn is illustrated with an example in Figure 1.

• Faster estimate with shorter tours: The expected value
of the k-th tour length E[ξk] = 1/πSn is inversely pro-
portional to the degree of the super-node dSn . Hence,

by forming a massive-degree super-node we can signifi-
cantly shorten the average tour length. This property is
of great practical importance as it reduces the number of
API queries required per tour.

3. STATIC AND DYNAMIC SUPER-NODES
In what follows we describe the algorithms to build super-

nodes. The static super-node technique selects the nodes In
before starting the experiment, while the dynamic super-
node recruits the nodes on the fly.

3.1 Static Super-node Algorithm
The static super-node is selected by n nodes from G with-

out replacement to form In. If the graph is disconnected,
In must contain at least one node of each component of in-
terest. To construct In we can crawl each component of the
graph G. For instance, one can make In be the n largest
degree nodes seen in a set of random walks with a total of
k > n steps (as in Avrachenkov et al. [3]). Because random
walks are biased towards large-degree nodes the resulting
super-node Sn tends to have large degrees.

Once In is chosen we form the virtual graph G′(In) and
start m random walk tours from the virtual super-node Sn.
We stop each tour when the walk comes back to Sn. One
practical issue in building In is knowing how many nodes
we need to recruit to keep the random walk tours short.
To ameliorate the situation in what follows we consider a
dynamic algorithm to select the super-node.

3.2 Dynamic Super-node Algorithm
In a dynamic super-node, nodes are added into the super-

node on-demand using a different random walk called the
super-node recruiting walk. The super-node Sj starts with
j ≥ 1 nodes. Sj must span nodes in all graph components.
The algorithm is as follows:

1. Run a super-node recruiting walk independent of all
previous tours starting from Sn, n ≥ j. Once a node
of interest i, or set of nodes, are reached, stop the
super-node recruiting walk.

2. Add a newly recruited node i to the super-node Sn,
n ≥ j, Sn+1 = Sn ∪ {i}. If node i appears in any of
the previous tours, break these tour into multiple tours
where i either ends or starts a new tour.

3. Generate a random number kredo from the negative
binomial distribution with number of successes as the
number of previous tours (not counting the broken
tours) and probability of success dSn/dSn+1 , where
dSn+1 is the degree of the new super-node that includes
i and dSn is the degree of the super-node without i.

4. Perform kredo − kbroken > 0 tours, where kbroken is the
number of broken tours that start with node i and have
length greater than two. These tours start at node i in
G′(Si) with a first step into nodes in N(i)\Si+1, where
N(i) are the neighbors of i in G′(Si). The tour ends
at either Sn or i. Note that in G′(Si+1) these tours
start at Si+1 and end at Si+1 with length greater than
two. If kredo−kbroken < 0 then randomly remove tours
starting at i until only kredo tours remain.

5. Redo steps 2–4 until all recruited nodes are added to
the super-node.



6. We can now proceed normally with new super-node
tours (or recruit more nodes if necessary by redoing
steps 1–4).

The step 4 calculates the number of tours that might have
happened in the past when the new node i was part of Sn.
This retrospective event can be recreated by sampling from a
negative binomial distribution with appropriate parameters.

3.3 Equivalence Between Dynamic and Static
Super-node Sample Paths

In what follows we show that the tours of a dynamic super-
node Sdyn

n and the tours of the same super-node as a static
super-node have the same probability distribution.

Theorem 1. Let D(dyn)
m denote the set of m tours according

to the super-node dynamic algorithm over n ≥ 1 steps, re-

sulting in super-node Sn and D(st)
m denote the set of m tours

according to the static super-node algorithm using super-
node Sn. The dynamic super-node sample paths and the
static super-node sample paths are equivalent in distribu-

tion, that is, P [D(dyn)
m (Sn) = Q] = P [D(st)

m (Sn) = Q], n ≥
1, ∀Sn ⊂ V, ∀Q, where m > 1 is the number of tours.

Proof. We prove by induction. Let σ(ω, S, E) be a deter-
ministic function that is given an infinite random vector ω,
where ω(1), ω(2), . . . ∼ Uniform(0, 1) are i.i.d. random vari-
ables, and a vector of starting nodes S and terminal nodes
E as inputs and outputs a sample path of a random walk
on the original graph G that starts at a node u ∈ S with
probability proportional to du and ends when it reaches any
node in E .

In what follows Ii denotes a set of i nodes as well as a
vector of i nodes, i ≥ 1. We add an arbitrary node outside Ii,
v ∈ V \Ii, into the first position Ii+1 = (v, Ii) and consider
the deterministic sample path function:

σ(dyn)(ω, Ii, v) =

{
(v, σ′) , if ω(1) ≤ dv/vol(Ii+1)

σ(ω′, Ii, Ii+1) , otherwise,

where vol(S) =
∑
t∈S dt, σ

′ = σ((ω(2), . . .), {v}, Ii+1), ω′ =
((ω(1)−pv)/(1−pv), ω(2), . . .), with pv = dv/vol(Ii+1). Note
that by construction

D(st)
m (Ii) = {σ(ωk, Ii, Ii) : k = 1, . . . ,m, |σ(ωk, Ii, Ii)| > 2}

and if we aggregate the nodes Ii into a single super-node
Si these are independent sample paths of a random walk on
the super-node graph G′(Ii) starting from super-node Si.
Similarly, if the choice of nodes in Ii are independent of the
random vectors {ωk}mk=1 then

D(dyn)
m (Ii)

= {r : r := σdyn(ωk, Ii−1, u), k = 1, . . . ,m, |r| > 2},

where u ∈ Ii\Ii−1, and D(dyn)
m (Ii) are the sample paths of

the random walk described by the dynamic super-node al-
gorithm with node addition sequence Ii.

Our proof is by induction on i. For S1 = {v}, v ∈ V
it is clear that σdyn(ω, ∅, v) = σ(ω, I1, I1), ∀ω. By induc-
tion assume that σdyn(ω, Ii−1, u) = σ(ω, Ii, Ii), ∀ω, i ≥ 2
and u ∈ Ii\Ii−1. By construction the only possible differ-
ence between the sample paths of σ and σdyn is how they
select the sample paths starting with u, the first node in
the vector Ii. But by our induction assumption these two

deterministic functions are equivalent and u is selected with
probability du/vol(Ii). Thus, using the same deterministic
rule σ selects v, the first element of vector Ii+1, with prob-
ability dv/vol(Ii+1) making σdyn(ω, Ii, v) = σ(ω, Ii+1, Ii+1)
and yielding

P [D(dyn)
m (In) = Q] = P [D(st)

m (In) = Q], ∀n, In, Q.

To finish the proof note that for v ∈ Ii+1\Ii, the the de-
terministic rule σ guarantees that we are selecting tours
starting from v with probability dv/vol(Ii+1). This rule is
equivalent to the dynamic super-node algorithm that starts
kredo tours from v once v is added to the super-node, where
kredo is a negative binomial random variable with success
probability vol(Ii)/vol(Ii+1). The success probability in the
algorithm is dIi/dIi+1 because by definition the algorithm,

like our definition of D(dyn)
m (Ii+1), disregards tours of size

two which only contain nodes in Ii+1.

4. FREQUENTIST APPROACH
In what follows we present our main results for the esti-

mators.

4.1 Estimator of µ(G)

Theorem 2 proposes an unbiased estimator of µ(G) in
equation (1) via random walk tours. Later in Section 5 we
present the approximate posterior distribution of this unbi-
ased estimator.

To compute an estimate of µ(G) using super-node tours
we define a function f and a set H over the modified graph
G′(In) as follows.

(a) If ∀(u, v) ∈ E, s.t. u ∈ In, v ∈ V \In the function
g(u, v) can be obtained with little overhead (using ex-
tra API queries to find all the neighbors of u ∈ In and
further querying them to find the function g(u, v)),
then we define f as

f(u, v) =

{
g(u, v) , if u 6= Sn, v 6= Sn

0 , if u or v = Sn .
(2)

Define H = {(u, v) : (u, v) ∈ E s.t. u ∈ In or v ∈ In}.

(b) Otherwise we define f as

f(u, v) =

{
g(u, v) if u 6= Sn, v 6= Sn
1
kxS

∑
w∈In g(u,w) if u or v = Sn,

(3)
where x = u if u 6= Sn, x = v if v 6= Sn and kyS is the
number of neighbors of node y ∈ V \In that are in In.
Define H = {(u, v) : (u, v) ∈ E s.t. u, v ∈ In}.

Let µ(G′) be contribution from G′ to the true value µ(G)
and µ(G′) =

∑
(u,v)∈E′ f(u, v).

Theorem 2. Let G be an unknown undirected graph where
n > 0 initial arbitrary set of nodes is known In ⊆ V which
span all the different connected components of G. Consider
a random walk on the augmented multigraph G′ described in

Section 2 starting at super-node Sn. Let (X
(k)
t )

ξk
t=1 be the

k-th random walk tour until the walk first returns to Sn and
let Dm(Sn) denote the collection of all nodes in m ≥ 1 such



tours, Dm(Sn) =
(
(X

(k)
t )

ξk
t=1

)m
k=1

. Then,

µ̂(Dm(Sn)) =

Estimate from crawls︷ ︸︸ ︷
dSn
2m

m∑
k=1

ξk∑
t=2

f(X
(k)
t−1, X

(k)
t ) +

Given knowledge
from nodes in In︷ ︸︸ ︷∑
(u,v)∈H

g(u, v),

(4)

is an unbiased estimate of µ(G), i.e., E[µ̂(Dm(Sn))] = µ(G).
Moreover the estimator is strongly consistent, i.e., µ̂(Dm(Sn))
→ µ(G) a.s. for m→∞.

The proof of Theorem 2 is in Appendix A. Theorem 2 pro-
vides an unbiased estimate of network statistics from ran-
dom walk tours. The length of tour k is short if it starts at a
massive super-node as the expected tour length is inversely
proportional to the degree of the super-node, E[ξk] ∝ 1/dSn .
This provides a practical way to compute unbiased esti-
mates of node, edge, and triangle statistics using µ̂(Dm(Sn))
(eq. (4)) while observing only a small fraction of the origi-
nal graph. Because random walk tours can have arbitrary
lengths, we show in Lemma 2, Section 4.4, that there are
upper and lower bounds on the variance of µ̂(Dm(Sn)). For
a bounded function f , the upper bounds are shown to be
always finite.

4.2 Confidence interval of the estimator
In what follows we give confidence intervals for the esti-

mator presented in Theorem 2. Let

f̄m = m−1
m∑
k=1

(
dSn
2

ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )

)
,

σ̂2
m = m−1

m∑
k=1

(
dSn
2

ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )− f̄m

)2

.

If Φ(x) is the CDF of the standard Gaussian distribution,
then for a known constant c > 0 [6]:

sup
x

∣∣∣∣P {√m( f̄m − µ(G′)

σ̂m

)
< x

}
− Φ(x)

∣∣∣∣ ≤ cβ

σ3
√
m
, (5)

where

β = E

[∣∣∣∣∣dSn2
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )− µ(G′)

∣∣∣∣∣
3]
,

σ2 = Var

[
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )

]
.

Moreover, σ2 < ∞ for a bounded function f as we will
prove in Lemma 2(i) in Section 4.4 and β <∞ through the
Cr inequality [17, Chapter 3, Theorem 2.2].

Therefore, with ε > 0 and large m (number of tours)
within the confidence interval [µ̂(Dm(Sn))−ε, µ̂(Dm(Sn))+ε]
yields

P (|µ(G)− µ̂(Dm(Sn))| ≤ ε) ≈ 1− 2Φ

(
ε
√
m

σ̂m

)
.

with the rate of convergence given by equation (5).

4.3 Estimation and hypothesis testing in ran-
dom graph models

Here we study µ(G) when the connections in graph G
are made randomly while keeping the node attributes and
node degrees the same as the observed graph. Two types
of random graph generation are considered here: configura-
tion model and Chung-Lu model. These models can be re-
garded as null hypotheses in graph hypothesis testing prob-
lem. First we estimate the expected value E[µ(G)] in these
random graph models. Then we seek, with how much cer-
tainty the value µ(G) of the observed graph could possibly
belong to a random network with the same node attributes
and degrees as that of the observed graph, all this with par-
tial knowledge of the original graph.

4.3.1 Estimators for Configuration model
and Chung-Lu random graphs

Configuration model is an important class of random graph
model. For a given degree sequence over the nodes, the con-
figuration model creates random edge connections by uni-
formly selecting pairs of half edges. We assume that the
number of nodes N and number of edges M are known (The
estimation of N and M can be done explicitly, for instance
using the techniques in [28] and [10]). The probability that
the nodes u and v are connected in the configuration model
is dudv/(2M − 1) if u 6= v and the probability of a self-edge
from node u to itself is

(
du
2

)
/(2M − 1).

Another important model, Chung-Lu random graph [8] is
a generalized version of Erdős-Renyi graphs and is closely
related to configuration model. Chung-Lu model takes the
positive weights w1, . . . , wN corresponding to nodes 1, . . . , N
as input and generates a graph with average degrees as
these weights. The edges are created between any two ver-
tices u and v independently of all others with probability
wuwv/

∑N
k=1 wk, when u 6= v, and for the self loops at node

u, with a probability
(
wu
2

)
/
∑n
k=1 wk.

In the case of Chung-Lu random graphs, from [2], it is
known that the weights w1, . . . , wN in fact becomes the
actual degrees d1, . . . , dN asymptotically and the following
concentration bound exists: for c > 0,

P
(

max
1≤i≤N

∣∣∣ di
wi
− 1
∣∣∣ ≥ β) ≤ 2

Nc/4 − 1
, if β ≥ c logN

wmin
= o(1).

Thus we take the sequence {wk} as {dk} of the observed
graph. One main advantage in using Chung-Lu model com-
pared to configuration model is that the edges are indepen-
dent to each other.

For brevity we will use Gobs for the observed graph, Gconf

for an instance of the configuration model with the same de-
gree sequence {dk} as that of G and GC-L for the Chung-Lu
graph sample with weights as {dk}. Note that µ(Gconf) and
µ(GC-L) are random variables. Thus we look for E[µ(Gconf)]
and E[µ(GC-L)], where the expectation is with respect to
the probability distribution of the configuration model and
Chung-Lu model respectively. The values of E[µ(GC-L)] and
E[µ(Gconf)] are nearly the same, but for higher moments
the values are different since configuration model introduces
correlation between edges.

Now the expected value in the Chung-Lu model is

E[µ(GC-L)] =
∑

(u,v)∈E∪Ec
u6=v

g(u, v)
dudv
2M

+
∑

(u,v)∈E∪Ec
u=v

g(u, v)

(
du
2

)
2M

. (6)



In order to calculate E[µ(GC-L)], we need to know the miss-
ing edge set Ec. The set Ec is revealed once the entire graph
is crawled, which is not possible in the context of this pa-
per. The idea is to estimate E[µ(GC-L)] from the tours of
a random walk. Since the classical random walk which we
have used so far, could sample only from E, we resort to a
new random walk that could make samples from Ec as well.

We use random walk with uniform restarts (RWuR) [4] in
which if the crawler is at a node i, with a probability di/(di+
α) the crawler chooses one of the neighbors uniformly (RW
strategy) and with a probability α/(di + α), the crawler
chooses the next node by uniformly sampling all the nodes.
The parameter α > 0 controls the rate of uniform sampling
(which has higher cost in many OSNs).

Define a new function f ′ whose value depends on the
crawling strategy as follows: let u, v be the nodes chosen
by the crawling technique (RWuR or RW) in order,

f ′(u, v) =



g(u, v) dudv
2M−1

if u, v 6= Sn∑
w∈In g(u,w) dudw

2M−1
if u 6= Sn, v = Sn

(u, v) selected

by unif. sampling
1
kuS

∑
w∈In g(u,w) dudw

2M−1
if u 6= Sn, v = Sn

(u, v) selected by RW

(7)
where kuS is defined in (3). In the new graph G′ there
will be kuS multiple edges between u and Sn and kuS is
introduced in the last term is to take into account this. In
case of classical random walk, the second criteria does not
exist.

We denote W ′k =
∑ξk
t=2 f

′(X
(k)
t−1, X

(k)
t ) when RWuR is em-

ployed as the random walk technique for crawling the graph

and W ′′k =
∑ξk
t=2 f

′(X
(k)
t−1, X

(k)
t ), when the classical random

walk is used for crawling. Let

R =
1

2

∑
(u,v)∈In×In

u6=v

g(u, v)
dudv

(2M − 1)
+

1

2

∑
(u,v)∈In×In

u=v

g(u, v)

(
du
2

)
(2M − 1)

.

The value R can be calculated a priori from the knowledge
of In. In the lemma below we propose an estimator for
E[µ(GC-L)] and proves that it is unbiased.

Lemma 1. The estimator

µ̂C(Dm(Sn)) =
1

m

m∑
k=1

[N ′(dSn + α)

2α
W ′k −

N ′dSn
2α

W ′′k +R
]
,

is an unbiased estimator of E[µ(GC-L)] of the Chung-Lu model.

Proof. See Appendix A

4.3.2 A hypothesis testing problem for the Chung-Lu
model

The Chung-Lu model or configuration model can be re-
garded as a null hypothesis model and comparing µ(Gobs)
to E[µ(GC-L)] or E[µ(Gconf)] answers many questions like
whether the connections are formed based on degrees alone
with no other influence or whether the edges are formed
purely at random?

Let GC-L(VC-L, EC-L) be a sample of the Chung-Lu model
with weights {dk}. Like the estimator of E[µ(GC-L)], the

estimator of Var(GC-L), V̂arC-L(Dm(Sn)) can be constructed
as follows: modify g(u, v) dudv

2M
to g2(u, v) dudv

2M
(1− dudv

2M
) in

the function f ′ in (7).

By invoking Lindeberg central limit theorem [17, Chap-
ter 7, Section 2], for independent non-identically distributed
Bernoulli random variables2, we get∑

(u,v)∈EC-L

f(u, v) ∼ Normal (E[µ(GC-L)],Var(GC-L)) .

Hence a natural check is whether µ(Gobs) is a sample from
the above distribution. Since we have only one sample µ(Gobs),
a simple test is to check whether

|µ̂(D(Sn))− µ̂C(D(Sn))| ≤ a
√

V̂arC-L(Dm(Sn)),

holds for any a = 1, 2, 3 and for a large value of m . This
condition is satisfied by a Gaussian sample with probabilities
0.6827, 0.9545, or 0.9973 respectively. On the other hand,
the lower a is, the more certain that the sample belongs to
this particular Gaussian distribution.

4.4 Impact of spectral gap on variance
In this section we derive results on higher moments of the

estimator µ̂(D(Sn)). Lemma 2, which follows, introduces
upper and lower bounds on the variance of the i.i.d. the

tour sum
∑ξk
t=2 f(X

(k)
t−1, X

(k)
t ), and also shows that all the

moments exist. Moreover, the results in the lemma estab-
lish a connection between the estimator variance and the
spectral gap.

Let S = D1/2PD−1/2, where P = {puv} is the random
walk transition probability matrix as defined in Section 2
and D = diag(d1, d2, . . . , d|V ′|) is a diagonal matrix with
the node degrees of G′. The eigenvalues {λi} of P and S
are same and 1 = λ1 > λ2 ≥ . . . ≥ λ|V ′| ≥ −1. Let jth
eigenvector of S be (wji), 1 ≤ i ≤ |V |. Let δ be the spectral
gap, δ := 1 − λ2. Let the left and right eigenvectors of
P be vj and uj respectively. dtot :=

∑
v∈V ′ dv. Define

〈r, s〉π̂ =
∑

(u,v)∈E′ π̂uvr(u, v)s(u, v), with π̂uv = πupuv, and

matrix P∗ with (j, i)th element as p∗ji = pjif(j, i). Also let

f̂ be the vector with f̂(j) =
∑
i∈V ′ p

∗
ji.

Lemma 2. The following holds

(i). Assuming the function f is bounded, max
(i,j)∈E′

f(i, j) ≤

B <∞, B > 0 and for tour k ≥ 1,

Var

[
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )

]

≤ 1

d2Sn

(
2d2totB

2
∑
i≥2

w2
Sni

(1− λi)
− 4µ2(GSn)

)

− 1

dSn
B2dtot +B2

< B2

(
2d2tot
d2Snδ

+ 1

)
.

Moreover,

E

[(
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )

)l ]
<∞ ∀l ≥ 0.

2The necessary condition to hold this central limit theorem,
the Lindeberg condition is satisfied by the sequence of in-
dependent Bernoulli random variables with different success
probabilities {pk}, if 0 < pk < 1. This is always true in our
case when we assume dk > 0 for all k.



(ii).

Var

[
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t ))

]

≥ 2
dtot
dSn

r∑
i=2

λi
1− λi

〈f, vi〉π̂ (u|
i f̂) +

1

dSn

∑
(u,v)∈E′

f(u, v)2

+
1

dtotdSn

{ ∑
(u,v)∈E′

f(u, v)2
}2

+
1

dtotdSn

∑
u∈V ′

du
{∑
u∼v

f(u, v)
}2

− 4

d2Sn

{ ∑
(u,v)∈E′

f(u, v)

}2

− 8

dtot

{ ∑
(u,v)∈E′

f(u, v)

}2∑
i≥2

w2
Sni

(1− λi)

− 4

dtotdSn

{ ∑
(u,v)∈E′

f(u, v)

}2

. (8)

Proof. See Appendix B.

5. BAYESIAN APPROACH
In this section we consider Bayesian formulation of our

problem and derive the posterior of µ(G) given the tours
and provide a consistent maximum a posteriori estimator
(MAP).

Approximate posterior
For the same scenario of Theorem 2 for m ≥ 2 tours let

F̂h =
dSn

2b
√
mc

hb
√
mc∑

k=((h−1)b
√
mc+1)

ξh∑
t=2

f(X
(k)
t−1, X

(k)
t )+

∑
(u,v)∈H

g(u, v) ,

which is similar to equation (4) but first sums a range of
b
√
mc tours rather than all m tours. Let σ2

F be the variance

of F̂h. Assuming priors

µ(G)|σ2
F ∼ Normal(µ0, σ

2
F /m0)

σ2
F ∼ Inverse-gamma(ν0/2, ν0σ

2
0/2),

then for large values of m, the marginal posterior density
of µ(G) can be approximated by a non-standardized t -
distribution

φ(x|ν, µ̃, σ̃) =
Γ ( ν+1

2
)

Γ ( ν
2
) σ̃
√
πν

(
1 +

(x− µ̃)2

σ̃2ν

)− ν+1
2

, (9)

with degrees of freedom parameter

ν = ν0 + b
√
mc,

location parameter

µ̃ =
m0µ0 + b

√
mcµ̂(Dm(Sn))

m0 + b
√
mc

,

and scale parameter

σ̃2 =

ν0σ
2
0 +

∑b√mc
k=1 (F̂k − µ̂(Dm(Sn)))2

+ m0b
√
mc(µ̂(Dm(Sn))−µ0)

2

m0+b
√
mc

(ν0 + b
√
mc)(m0 + b

√
mc)

.

The derivation is detailed in Section 5.1 later.

Remark 1. Note that the approximation (9) is Bayesian
and Theorem 2 is its frequentist counterpart. In fact, the
motivation of our Bayesian approach comes from the fre-
quentist estimator. From the approximate posterior in (9),
the Bayesian MAP estimator is

µ̂MAP = arg max
x

φ(x|v, µ̃, σ̃) = µ̃.

Thus for large values of m, the Bayesian estimator µ̂MAP

is essentially the frequentist estimator µ̂(Dm(Sn)), which is
unbiased, and hence the MAP estimator is consistent.

The above remark shows that the approximate posterior in
(9) provides a way to access the confidence in the estimate
µ̂(Dm(Sn)). The Normal prior for the average gives the
largest variance given a given mean. The inverse-gamma
is a non-informative conjugate prior if the variance of the
estimator is not too small [13], which is generally the case
in our application. Other choices of prior, such as uniform,
are also possible yielding different posteriors without closed-
form solutions [13].

Remark 2. Another asymptotic result in Bayesian analysis,
the classic Bernstein-von Mosses Theorem [36, Chapter 10] is
not useful in our scenario. The Bernstein-von Mosses Theo-
rem states that irrespective of the prior distribution, when µ
is the random parameter of likelihood, then posterior distri-
bution of

√
m(µ − µ̂MLE

m ) converges to Normal(0, I(µ0)−1),
where µ̂MLE

m is the maximum likelihood estimator (MLE)
and I(µ0) is the Fisher information at the true value µ0.
But note that in cases like ours, where the distribution of

Wk =
∑ξk
t=2 f(X

(k)
t−1, X

(k)
t ) is unknown, k ≥ 1, the Fisher

information is also unknown. In contrast, our approximate
posterior of µ(G) uses only the available information and
does not need to guess the distribution of Wk.

5.1 Derivation of approximate posterior
In this section we derive the approximation (9) of the

posterior. The approximation relies first on showing that
µ̂(Dm(Sn)) has finite second moment. By Lemma 2 the

variance of

ξk∑
t=2

f(X
(k)
t−1, X

(k)
t ), k ≥ 1, is also finite.

We are now ready to give the approximation in equation
(9). Let m′ = b

√
mc,

F̂h =
dSn
2m′

hm′∑
k=((h−1)m′+1)

ξh∑
t=2

f(X
(k)
t−1, X

(k)
t ) +

∑
(u,v)∈H

g(u, v) .

and {F̂h}m
′

h=1 and because the tours are i.i.d. the marginal
posterior density of µ is

P [µ|{F̂h}m
′

h=1] =

∫ ∞
0

P [µ|σ2
F , {F̂h}m

′
h=1]P [σ2

F |{F̂h}m
′

h=1]dσ2
F .

For now assume that {F̂h}m
′

h=1 are i.i.d. normally distributed
random variables, and let

σ̂m′ =

m′∑
h=1

(F̂h − µ̂(Dm(Sn)))2,

then [20, Proposition C.4]

µ|σ2
F , {F̂h}m

′
h=1 ∼ Normal

(
m0µ0 +

∑m′

h=1 F̂h

m0 +m′
,

σ2
F

m0 +m′

)
,



σ2
F |{F̂h}m

′
h=1 ∼ Inverse-Gamma

(
ν0 +m′

2
,

ν0σ
2
0 + σ̂m′ + m0m

′

m0+m′ (µ0 − µ̂(Dm(Sn)))2

2

)
,

are the posteriors of parameters µ and σ2
F , respectively. The

non-standardized t-distribution can be seen as a mixture of
normal distributions with equal mean and random variance
inverse-gamma distributed [20, Proposition C.6]. Thus, if

{F̂h}m
′

h=1 are i.i.d. normally distributed then the posterior
of µ(G) given Dm′(Sn) is a non-standardized t-distributed
with parameters

µ̃ =
m0µ0 +

∑m′

h=1 F̂h

m0 +m′
,

σ̃2 =

ν0σ
2
0 +

∑m′

k=1(F̂k − µ̂(Dm(Sn)))2

+ m0m
′(µ̂(Dm(Sn))−µ0)

2

m0+m′

(ν0 +m′)(m0 +m′)
, ν = ν0 +m′

where µ̃, σ̃2 and ν are location, scale and degree of freedom
parameters of the student-t distribution. Left to show is

that {F̂h}m
′

h=1 converge in distribution to i.i.d. normal ran-
dom variables as m → ∞. As the spectral gap of G′(In) is
greater than zero, |λ1 − λ2| > 0, Lemma 2 shows that for

Wk =

ξk∑
t=2

f(X
(k)
t−1, X

(k)
t ), σ2

W = Var(Wk) < ∞, ∀k. From

the renewal theorem we know that {Wk}mk=1 are i.i.d. ran-
dom variables and thus any subset of these variables is also
i.i.d.. By construction F̂1, . . . , F̂m′ are also i.i.d. with mean
µ(G) and finite variance. Applying the Lindeberg-Lévy cen-
tral limit theorem [11, Section 17.4] yields

√
m′(F̂h − µ(G))

d→ Normal(0, σ2
W ), ∀h .

Thus, for large values ofm (recall thatm′ = b
√
mc), {F̂h}m

′
h=1

are approximately i.i.d. normally distributed

F̂h ∼ Normal(µ(G), σ2
W /m

′) , ∀h .

This completes the derivation of the approximation (9). In
what follows we present our results over real-world networks.

6. EXPERIMENTS ON REAL-WORLD NET-
WORKS

In this section we demonstrate the effectiveness of the the-
ory developed above with the experiments on real data sets
of various social networks. We have chosen to work with the
datasets where the value µ(G) is available. This way it is
possible to check the correctness of the results obtained via
experiments. We assume the contribution from super-node
to the true value is known a priori and hence we look for
µ(G′) in the experiments. In the case that the edges of the
super-node are unknown, the estimation problem is easier
and can be taken care separately. One option is to start
multiple random walks in the graph and form connected
subgraphs. Later, in order to estimate the bias created by
this subgraph, do some random walk tours from the largest
degree node in each of these sub graph and use the idea in
Theorem 3.

In the figures we display both the approximate posterior
generated from F̂h with one only run of the experiment and
empirical posterior created from multiple runs. For the ap-
proximate posterior, we have used the following parameters
m0 =, ν0 = 0, µ0 = 0.1, σ0 = 1 (see (9)). The green line in
the plots shows the actual value µ(G′).

We have used the dynamic super-node algorithm explained
in Section 3.2. From the experiments, it is observed that the
static super-node and dynamic super-node produces similar
results which is in corroboration with Theorem 1. In the
following experiments, we opt a simple strategy to decide
when to run super-node recruiting walk: run the super-node
recruiting walk when the number of original tours reaches
multiples of a fixed integer and it stops when a node of de-
gree exceeding a specific threshold is reached.

6.1 Friendster
First we study a network of moderate size, a connected

subgraph of Friendster network with 64,600 nodes and 1,246,
479 edges (data publicly available at the SNAP repository
[26]). Friendster is an online social networking website where
nodes are individuals and edges indicate friendship. Here,
we consider two types of functions:

1. f1 = dXt .dXt+1 2. f2 =

{
1 if dXt + dXt+1 > 50

0 otherwise

These functions reflect assortative nature of the network.
The final super-node size is 10,000. Figures 2 and 3 dis-
play the results for functions f1 and f2, respectively. A
good match between the approximate and empirical poste-
riors can be observed from the figures. Moreover the true
value µ(G′) is also fitting well with the plots. The percent-
age of graph crawled is 7.43% in terms of edges and is 24.44%
in case of static super-node with uniform sampling.
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Figure 2: Friendster subgraph, function f1

6.2 Dogster network
The aim of this example is to check whether there is any

affinity for making connections between the owners of same
breed dogs [12]. The network data is based on the social
networking website Dogster. Each user (node) indicates the
dog breed; the friendships between dogs’ owners form the
edges. Number of nodes is 415,431 and number of edges is
8,265,511.

In Figure 4, two cases are plotted. Function f1 counts
the number of connections with different breeds as pals and
function f2 counts connections between same breeds. The
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Figure 3: Friendster subgraph, function f2

final super-node size is 10,000. The percentage of the graph
crawled in terms of edges is 2.72% and in terms of nodes is
14.86%. While using the static super-node technique with
uniform sampling, the graph crawled is 5.02% 2.72% (in
terms of edges) and 37.17% (in terms of nodes) with the
same super-node size. These values can be reduced much
further if we allow a bit less precision in the match between
approximate distribution and histogram.
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Figure 4: Dog pals network

In order to better understand the correlation in forming
edges, we now consider the configuration model. We use the
estimator µ̂C(D(Sn)) proposed in Section 4.3.1 (note that
the estimator is same for Chung-Lu model and configura-
tion model). It is important to recollect that this estimator
does not require the knowledge of the complete network (in
fact the Figures 5 and 6 are based on estimates from RWuR
crawls which covered 8.9% of the graph). This is shown
in blue line in Figure 5 and red line in Figure 6, and the
true value is the net expected value given by (6). Moreover
we run our original estimator µ̂(D(Sn)) and calculated the
approximate posterior on one random instance of the con-
figuration model with same degree sequence of the original
graph. Figure 5 compare function f2 for the configuration
model and original graph. The figure shows that in the cor-
related case (original graph), the affinity to form connection
between same breed owners is around 7.5 times more than
that in the uncorrelated case. Figure 6 shows similar figure
in case of f1.

6.3 ADD Health data
Though our main result in the approximation (9) holds
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Figure 5: Dog pals network: Comparison between configura-
tion model and original graph for f2, number of connection
between same breeds
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Figure 6: Dog pals network: Comparison between configura-
tion model and original graph for f1, number of connection
between different breeds

when the number of tours is large, in this section we check
with a small dataset. We consider ADD network project3, a
friendship network among high school students in US. The
graph has 1545 nodes and 4003 edges.

We take two types of functions. Figure 7 shows the affinity
in same gender or different gender friendships and Figure 8
displays the inclination towards same race or different race
in friendships. The random walk tours covered around 10%
of the graph. We find that the theory works reasonably
well for this network data, for instance, the true values in
both the cases in Figure 7 are nearly the same, and this
is evident from the approximate posterior calculated from
only one run. We have not added the empirical posterior in
the figures since for such small sample sizes, the empirical
distribution does not lead to a meaningful histogram.

6.4 Check for Chung-Lu random graph model
in Dogester

We use the same dataset and functions as in Section 6.2.
Consider the function f1, which is one when the owners of
different breed dogs form connection, zero otherwise. For the
Chung-Lu model, µ̂C(D(Sn)), the estimator of E[µ(GC-L)] is

8.066×106 and V̂arC(D(Sn)), the estimator of VarC [µ(GC-L)]
is 6.3938× 1011. For the original graph, the estimated value

3http://www.cpc.unc.edu/projects/addhealth
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Figure 7: ADD network: effect of gender in relationships
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Figure 8: ADD network: effect of race in friendships

µ(D(Sn)) = 6.432× 106. Now

|µ̂C(D(Sn))− µ(D(Sn))| ≤ a
√

V̂arC(D(Sn)),

is satisfied for a = 3, but not for a = 1, 2. This implies
there is a slight probability (0.0428) that µ(G) belongs to
the values from different configurations of Chung-Lu model.

For function f2, which is one when the owners of same
breed dogs form connection, zero otherwise, µ̂C(D(Sn)) =

1.995×105, V̂arC(D(Sn)) = 2.9919×104 and for the original
graph µ(D(Sn)) = 1.831× 106. We find that

|µ̂C(D(Sn))− µ(D(Sn))| � a

√
V̂arC(D(Sn)) for a = 1, 2, 3.

Hence the probability that µ(G) belongs to the values gen-
erated by the random network made from Chung-Lu model
is less than 0.0027, which is negligible. These two inferences
can also be observed in Figures 6 and 5.

7. CONCLUSIONS
In this work we have introduced a method that by crawl-

ing a fraction of a large network can produce, to the best of
our knowledge, the first non-asymptotic unbiased estimates
of network node and edge characteristics. Our method is
based on random walk tours and a dynamic super-node al-
gorithm. We derive variance lower and upper bounds of this
estimator and show its connection to the spectral gap of a
random walk on the graph. One of our contributions is in-
troducing an approximate Bayesian posterior of the network
metric of interest using crawled data (random walk tours).
We also derived a technique to study how a network looks
“random” to a metric by estimating the same metric if the

network was drawn from a Chung-Lu network or a configu-
ration model with the same node labels and node degrees,
all using random walk crawls without ever knowing the full
original network. Our simulations over real-world networks
show great accuracy of our estimators and approximations.
In particular, the simulations clearly show that the derived
posterior distribution fits very well with the data even when
as few as 2.7% of the edges and less than 15% of the nodes
in the network are observed by the crawl.
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APPENDIX
A. PROOF OF THEOREM 2

First, in Lemma 3 we show that the estimate of µ(G′)
from each tour is unbiased.

Lemma 3. Let X
(k)
1 , . . . , X

(k)
ξk

be the nodes traversed by the

k-th random walk tour on G′, k ≥ 1 starting at super-node
Sn. Then the following holds, ∀k,

E
[ ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )

]
=

2

dSn
µ(G′). (10)

Proof. The random walk starts from the super-node Sn,
thus

E
[ ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )

]
=

∑
(u,v)∈E′

E
[(

No. of times Markov chain

crosses (u, v) in the tour
)
f(u, v)

]
. (11)

Consider a renewal reward process with inter-renewal time
distributed as ξk, k ≥ 1 and reward as the number of times
Markov chain crosses (u, v). From renewal reward theorem,

{Asymptotic frequency of transitions from u to v}

= E[ξk]−1E
[(

No. of times Markov chain

crosses (u, v) in the tour
)
f(u, v)

]
.

The left-hand side is essentially 2πupuv. Now (11) becomes

E
[ ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )

]
=

∑
(u,v)∈E′

f(u, v) 2πu puv E[ξk]

=
2

dSn

∑
(u,v)∈E′

f(u, v),

which concludes our proof.

In what follows we prove Theorem 2 using Lemma 3.

Proof Theorem 2. By Lemma 3 the estimator Wk =
ξk−1∑
t=2

f(X
(k)
t−1, X

(k)
t ) is an unbiased estimate of (2/dSn)µ(G′).

By the linearity of expectation the average estimator W̄ (m) =
m−1∑m

k=1Wk is also unbiased.



We now consider two cases depending on f is defined as
(2) or (3). When f is as in (2), it is trivial. For the function
described in (3), E[Wk] can be rewritten as,

2

dSn
E[Wk] =

∑
(u,v)∈E′

u6=Sn,v 6=Sn

g(u, v) +
∑

(u,v)∈E′

u6=Sn,v=Sn

1

kuS

∑
w∈In

g(u,w).

Note that in the graph G′ there are kuS multiple edges be-
tween u and Sn, when u and Sn are connected, and each
contributes

∑
w∈In g(u,w) to the net expectation. More-

over the multiplying factor of two in the left-hand side of
the above expression takes into account edges in both the
directions since the random walk is reversible and graph is
undirected. Hence

2

dSn
E[Wk] =

∑
(u,v)∈E

u/∈In,v/∈In

g(u, v) +
∑

(u,v)∈E
u/∈In,v∈In

g(u, v).

Finally for the estimator

µ̂(Dm(Sn)) =
dSn
2m

W̄ (m) +
∑

(u,v)∈E
s.t. u,v∈In

f(u, v).

has average

E[µ̂(Dm(Sn))] =
∑

(u,v)∈E
s.t. u 6∈In or v 6∈In

g(u, v) +
∑

(u,v)∈E
s.t. u,v∈In

g(u, v) = µ(G).

Furthermore, by strong law of large numbers with E[Wk] <
∞, µ̂(Dm(Sn))→ µ(G) a.s. as m→∞. This completes our
proof.

sectionProof of Lemma 1

Proof. For RWuR, stationary distribution of node u,
π̂u = di+α

2M′+N′α and transition probability from node u to

v, p̂uv = α/N′+1
du+α

if u and v are connected, α/N′

du+α
otherwise

[4].
Let f ′′(u, v) = g(u, v) dudw

2m−1
and f ′ as defined in (7). Let

V ′′ = V − In. We have

V × V = {V ′′ ∪ In} × {V ′′ ∪ In}
= {V ′′ × V ′′} ∪ {V ′′ × In} ∪ {In × V ′′} ∪ {In × In}.

Now the value in the set {V ′′×In} can be expresses in terms
of V ′ × V ′ as,∑

(u,v)∈V ′′×In

f ′′(u, v) =
∑
u∈V ′′

∑
w∈In

f ′′(u,w)

=
∑

u 6=Sn,v=Sn
(u,v)∈V ′×V ′

∑
w∈In

f ′′(u,w).

E[W ′k]

=
∑

(u,v)∈E′

f ′(u, v)2π̂up̂uvE[ξk] +
∑

(u,v)∈(E′)c

f ′(u, v)2π̂up̂uvE[ξk]

=
2α/N ′

dSn + α

∑
(u,v)∈E′∪(E′)c

f ′(u, v) +
2

dSn + α

∑
(u,v)∈E′

f ′(u, v)

= 2
∑

(u,v)∈E′

u6=Sn,v 6=Sn

f ′′(u, v)
α/N ′ + 1

dSn + α
+ 2

∑
(u,v)∈E′

u6=Sn,v=Sn

α/N ′ + kuS
dSn + α

∑
w∈In

f ′′(u,w)

+ 2
∑

(u,v)∈(E′)c

u6=Sn,v 6=Sn

α/N ′

dSn + α
f ′′(u, v) + 2

∑
(u,v)∈(E′)c

u6=Sn,v=Sn

α/N ′

dSn + α

∑
w∈In

f ′′(u,w)

=
α/N ′

dSn + α

[ ∑
(u,v)∈V ′′×V ′′

f ′′(u, v) +
∑

(u,v)∈V ′′×In

f ′′(u, v)

]

+
1

dSn + α

 ∑
(u,v)∈E′

u6=Sn,v=Sn

kuS

(
1

kuS

∑
w∈In

f ′′(u,w)

) .
A multiplying factor 2 will be added to the first term in the

above expression since RWuR is reversible and the graph
under consideration is undirected. The last term can be
removed by using classical random walk tours {W ′′k } with
appropriate bias. The unbiasedness of the estimator then
follows from the linearity of expectation.

B. PROOF OF LEMMA 2
(i). The variance of the estimator at tour k ≥ 1 starting

from node Sn is

VarSn

[
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t ))

]

≤ B2E[(ξk − 1)2]−

(
E

[
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t ))

])2

. (12)

It is known from [1, Chapter 2 and 3] that

E[ξ2k] =
2
∑
i≥2 w

2
Sni(1− λi)

−1 + 1

π2
Sn

.

Using Theorem 3 eq. (12) can be written as

Var

[
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t ))

]

≤ 1

d2Sn

(
2d2totB

2(
∑
i≥2

w2
Snm(1− λi)−1)− 4µ2(G′)

)

− 1

dSn
B2dtot +B2.

The latter can be upper-bounded by B2(2d2tot/(d
2
i δ) + 1).

For the second part, we have

E

[(
ξk∑
t=2

f(X
(k)
t−1, X

(k)
t )

)l ]
≤ BlE[(ξk − 1)l)]

≤ C(E[(ξk)l] + 1),

for a constant C > 0 using Cr inequality [17, Chapter 3,
Theorem 2.2]. From [29], it is known that there exists an
a > 0, such that E[exp(a ξk)] < ∞, and this implies that
E[(ξk)l] <∞ for all l ≥ 0. This proves the theorem.

(ii). We denote Eπf for Eπ[f(Y1, Y2)] and Normal(a, b)
indicates Gaussian distribution with mean a and variance
b. With the trivial extension of the central limit theorem of
Markov chains [29] of node functions to edge functions, we
have for the ergodic estimator f̄n = n−1∑n

t=2 f(Yt−1, Yt),

√
n(f̄n − Eπf)

d−→ Normal(0, σ2
a), (13)



where

σ2
a = Var(f(Y1, Y2))

+ 2

n−1∑
l=2

(n− 1)− l
n

Cov(f(Y0, Y1), f(Yl−1, Yl)) <∞.

We derive σ2
a in Lemma 4. Note that σ2

a is also the asymp-
totic variance of the ergodic estimator of edge functions.

Consider a renewal reward process at its k-th renewal,
k ≥ 1, with inter-renewal time ξk and reward as Wk =∑ξk
t=2 f(X

(k)
t−1, X

(k)
t ). Let W̄ (n) be the average cumulative

reward gained up tom-th renewal, i.e., W̄ (m) = m−1∑m
k=1Wk.

From the central limit theorem for the renewal reward pro-
cess [35, Theorem 2.2.5], with ln = argmaxk

∑k
j=1 1(ξj ≤ n),

after n total number of steps yields

√
n(W̄ (ln)− Eπf)

d−→ Normal(0, σ2
b ), (14)

with σ2
b =

ν2

E[ξk]
and

ν2 = E[(Wk − ξkEπf)2] = Ei
[(
Wk − ξk

E[Wk]

E[ξk]

)2]
= VarSn(Wk) + (E[Wk])2 +

(E[Wk]

E[ξk]

)2
E[(ξk)2]

−2
E[Wk]

E[ξk]
E[Wkξk].

In fact it can be shown that (see [29, Proof of Theorem
17.2.2])

|
√
n(f̄n − Eπf)−

√
n(W̄ (ln)− Eπf)| → 0 a.s. .

Therefore σ2
a = σ2

b . Combining this result with Lemma 4
shown below we get (8).

Lemma 4.

lim
n→∞

1

n
Varπ

( n∑
k=2

f(Yk−1, Yk)

)

= 2

r∑
i=2

λi
1− λi

〈f, vi〉π̂ (u|
i f̂) +

1

dtot

∑
(i,j)∈E

f(i, j)2

+
1

d2tot
(
∑

(i.j)∈E

f(i, j)2)2 +
1

d2tot

∑
i∈V

di
(∑
i∼j

f(i, j)
)2

Proof. We extend the arguments in the proof of [7, The-
orem 6.5] to the edge functions. We have,

lim
n→∞

1

n
Varπ

( n∑
k=2

f(Yk−1, Yk)

)

=
1

n

( n∑
k=2

Varπ(f(Yk−1, Yk))

+ 2
∑
k,j=2
k<j

Covπ(f(Yk−1, Yk), f(Yj−1, Yj))
)

= Varπ(f(Yk−1, Yk))

+ 2

n−1∑
l=2

(n− 1)− l
n

Covπ(f(Y0, Y1), f(Yl−1, Yl)). (15)

Now the first term in (15) is

Varπ(f(Yk−1, Yk)) = 〈f, f〉π̂ − 〈f,Πf̂〉π̂, (16)

where Π = 1π|.
For the second term in (15),

Covπ(f(Y0, Y1), f(Yl−1, Yl))

= Eπ(f(Y0, Y1), f(Yl−1, Yl))− (Eπ[f(Y0, Y1)])2.

Eπ(f(Y0, Y1), f(Yl−1, Yl))

=
∑
i

∑
j

∑
k

∑
m

πi pij p
(l−2)
jk pkmf(i, j)f(k,m)

= 〈f, P (l−2)f̂〉π̂. (17)

Therefore,

Covπ(f(Y0, Y1), f(Yl−1, Yl)) = 〈f, (P(l−2) −Π)f̂〉π̂.

Taking limits, we get

lim
n→∞

n−1∑
l=2

n− l − 1

n
(P(l−2) −Π)

(a)
= lim

n→∞

n−1∑
k=1

n− k
n

(Pk −Π) + (I−Π)− lim
n→∞

3

n

n−3∑
k=1

(Pk −Π)

= (Z− I) + (I−Π) = Z−Π, (18)

where the first term in (a) follows from the proof of [7, The-
orem 6.5] and since limn→∞(Pn − Π) = 0, the last term is
zero using Cesaro’s lemma [7, Theorem 1.5 of Appendix].

We have,

Z = I +

r∑
i=2

λi
1− λi

viu
|
i ,

Thus

lim
n→∞

1

n
Varπ

( n∑
k=2

f(Yk−1, Yk)

)

= 〈f, f〉π̂ − 〈f,Πf̂〉π̂ + 2〈f,
(
I +

r∑
i=2

λi
1− λi

viu
|
i −Π

)
f̂〉π̂

=
1

dtot

∑
(i,j)∈E

f(i, j)2 +
1

d2tot
(
∑

(i.j)∈E

f(i, j)2)2

+
1

d2tot

∑
i∈V

di
(∑
i∼j

f(i, j)
)2

+ 2

r∑
i=2

λi
1− λi

〈f, vi〉π̂ (u|
i f̂)


