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EXPONENTIAL INTEGRATORS FOR NONLINEAR SCHRÖDINGER
EQUATIONS WITH WHITE NOISE DISPERSION

DAVID COHEN∗ AND GUILLAUME DUJARDIN†

Abstract. This article deals with the numerical integration in time of the nonlinear Schrödinger equation with
power law nonlinearity and random dispersion. We introduce a new explicit exponential integrator for this purpose
that integrates the noisy part of the equation exactly. We prove that this scheme is of mean-square order 1 and we
draw consequences of this fact. We compare our exponential integrator with several other numerical methods from
the literature. We finally propose a second exponential integrator, which is implicit and symmetric and, in contrast
to the first one, preserves the L2-norm of the solution.
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Numerical methods; Geometric Numerical Integration; Exponential integrators; Mean-square convergence
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1. Introduction. We consider the time discretisation of the following nonlinear Schrödinger
equation with white noise dispersion

idu+ c∆u◦dβ + |u|2σ udt = 0
u(0) = u0, (1.1)

where the unknown u = u(x, t), with t ≥ 0 and x ∈ Rd , is a complex valued random process,

∆u =
d

∑
j=1

∂ 2u
∂x2

j
denotes the Laplacian in Rd , c is a real number, σ is a positive integer, and β =

β (t) is a real valued standard Brownian motion. This stochastic partial differential equation
is understood in the Stratonovich sense, using the ◦ symbol for the Stratonovich product.

The existence of a unique global square integrable solution to (1.1) was shown in [13]
for σ < 2/d and in [14] for d = 1 and σ = 2, see also [3]. The existence and uniqueness
of solutions to the one-dimensional cubic case of the above problem was also studied in
[25]. Furthermore, as for the deterministic Schrödinger equation, the L2-norm, or mass, of
the solution to (1.1) is a conserved quantity. This is not the case for the total energy of the
problem.

We now review the literature on the numerical analysis of the nonlinear Schrödinger
equation with white noise dispersion (1.1). The early work [17] studies the stability with re-
spect to random dispersive fluctuations of the cubic Schrödinger equation. Furthermore, nu-
merical experiments using a split step Fourier method are presented. The paper [25] presents a
Lie-Trotter splitting integrator for the above problem (1.1). The mean-square order of conver-
gence of this explicit numerical method is proven to be at least 1/2 for a truncated Lipschitz
nonlinearity [25, Sect. 5 and 6]. Furthermore, [25] conjectures that this splitting scheme
should have order one, and supports this conjecture numerically. An analysis of asymptotic
preserving properties of the Lie-Trotter splitting is carried out in [15] for a more general
nonlinear dispersive equation. Very recently, the authors of [3] studied an implicit Crank-
Nicolson scheme for the time integration of (1.1). They show that this scheme preserves the
L2-norm and has mean-square order one of convergence in probability.
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In the present publication, we will consider exponential integrators for an efficient time
discretisation of the nonlinear stochastic Schrödinger equation (1.1). Exponential integrators
for the time integration of deterministic semi-linear problems of the form ẏ = Ly+N(y), are
nowadays widely used and studied, as witnessed by the recent review [21]. Applications of
such numerical schemes to the deterministic (nonlinear) Schrödinger equation can be found
in, for example, [20, 5, 4, 9, 16, 10, 7, 8, 6] and references therein. Furthermore, these
numerical methods were investigated for stochastic parabolic partial differential equations in,
for example, [23, 22, 24], more recently for the stochastic wave equations in [11, 26, 12, 2],
where they are termed stochastic trigonometric methods, and lately to stochastic Schrödinger
equations driven by Ito noise in [1].

The main result of this paper is a mean-square convergence result for an explicit and easy
to implement exponential integrator for the time discretisation of (1.1). Indeed, we will show
in Section 3 convergence of mean-square order one for this scheme as well as convergence
in probability. Note that the proofs of the results presented here use similar techniques as the
one used in [3].

In order to show the above convergence result, we begin the exposition by introducing
some notations and recalling useful results in Section 2. After that, we present our explicit
exponential integrator for the numerical approximation of the above stochastic Schrödinger
equation and analyse its convergence in Section 3. Various numerical experiments illustrating
the main properties of our numerical scheme will be presented in Section 4. In the last section,
we discuss the preservation of the mass, or L2-norm, by symmetric exponential integrators.

2. Notation and useful results. We denote the classical Lebesgue space of complex
functions by L2 := L2(Rd ,C), endowed with its real vector space structure, and with the
scalar product

(u,v) := Re
∫
Rd

uv̄dx.

For s ∈ N, we further denote by Hs := Hs(Rd ,C) the Sobolev space of functions in L2 such
that their s first derivatives are in L2. The Fourier transform of a tempered distribution v is
denoted by F (v) or v̂. With this, Hs is the Sobolev space of tempered distributions v such
that (1+ |ζ |2)s/2v̂ ∈ L2.

Next, we consider a filtered probability space (Ω,F ,P,{Ft}t≥0) generated by a one-
dimensional standard Brownian motion β = β (t).

With the above definitions in hand, we can write the mild formulation of the stochastic
nonlinear Schrödinger equation (1.1) (with the constant c = 1 for ease of presentation) [25,
13, 3]

u(t) = S(t,0)u0 + i
∫ t

0
S(t,r)(|u(r)|2σ u(r))dr, (2.1)

with the random propagator S(t,r) expressed in the Fourier variables as

F (S(t,r)v(r))(ζ ) = exp
(
−i |ζ |2 (β (t)−β (r))

)
v̂(r)(ζ )

for t ≥ r ≥ 0, ζ ∈ Rd and v a tempered distribution.
We finally collect some results that we will use in the error analysis presented in Sec-

tion 3:
• The random propagator S(t,r) is an isometry in Hs for any s, see for example [3].
• There is a constant C such that, for t ≥ 0, h ∈ (0,1) and r ∈ (t, t + h) and for any Ft -
measurable function v ∈ L2(Ω,Hs+4), one has the bounds (see [3, Lemma 2.10 and equation
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(2.46)])

E[∥S(r, t)v− v∥2
Hs ]≤ChE[∥v∥2

Hs+2 ] (2.2)

∥E[(S(r, t)− I)v]∥2
Hs ≤Ch2E[∥v∥2

Hs+4 ]. (2.3)

• Without much loss of generality, we will truncate the nonlinearity in (1.1) in Section 3.
Therefore, we recall the following estimates. Let f be a function from Hs to Hs, which sends
Hs+2 to itself and Hs+4 to itself, with f (0) = 0, twice continuously differentiable on those
spaces, with bounded derivatives of order 1 and 2. Consider u a solution on [0,T ] of

u(r)−u(t) = S(r, t)u(t)−u(t)+ i
∫ r

t
S(r,σ) f (u(σ))dσ .

Then, there exists a constant C, which depends on f , such that (see [3, Equations (2.30) and
(2.44)])

E[∥u(r)−u(t)∥2
Hs ]≤Ch sup

σ∈[0,T ]
E[∥u(σ)∥2

Hs+2 ] (2.4)

E[∥u(r)−u(t)∥4
Hs ]≤Ch2 sup

σ∈[0,T ]
E[∥u(σ)∥4

Hs+2 ], (2.5)

with h,r, t as in the above point (provided that the right-hand side is finite).

3. Exponential integrator and mean-square error analysis. This section presents an
explicit time integrator for (1.1), and further states and proves a mean-square convergence
result for this numerical method. As a by-product result, we also obtain convergence in
probability of the exponential integrator.

3.1. Presentation of the exponential integrator. Let T > 0 be a fixed time horizon and
an integer N ≥ 1. We define the step size of the numerical method by h = T/N and denote the
discrete times by tn = nh, for n = 0, . . . ,N. Looking at the mild solution (2.1) of the problem
(1.1) on the interval [tn, tn+1], and discretising the integral (by freezing the integrand at the
left-end point of this interval), one can iteratively define the following explicit exponential
integrator

u0 = u(0)

un+1 = S(tn+1, tn)un + ihS(tn+1, tn)(|un|2σ un). (3.1)

We thus obtain a finite sequence of numerical approximations un ≈ u(tn) of the exact solution
to the problem (1.1) at the discrete times tn = nh.

3.2. Truncated Schrödinger equation. As in [3], we introduce a cut-off function in
order to cope with the nonlinear part of the stochastic partial differential equation (1.1): Let
θ ∈ C ∞(R+) with θ ≥ 0, supp(θ)⊂ [0,2] and θ ≡ 1 on [0,1]. For k ∈ N∗ and x ≥ 0, we set
θk(x) = θ( x

k ). Finally, one defines fk(u) = θk(∥u∥2
Hs+4) |u|2σ u.

Observe that, for s > d/2 and σ ∈N⋆, for a fixed k ∈N∗, fk is a bounded Lipschitz func-
tion from Hs to Hs which sends Hs+2 to Hs+2 and Hs+4 to Hs+4. It is twice differentiable
on these spaces, with bounded and continuous derivatives of order 1 and 2. Thus one has a
unique global adapted solution uk to the truncated problem in L∞(Ω,C ([0,T ],Hs)) if the ini-
tial value u0 ∈ Hs, see [3]. Note that, with the assumptions above, uk ∈ L∞(Ω,C ([0,T ],Hs))
as soon as u0 ∈ Hs+2, and uk ∈ L∞(Ω,C ([0,T ],Hs+4)) as soon as u0 ∈ Hs+4.

The global solution uk ∈ L∞(Ω,C ([0,T ],Hs)) to the truncated problem solves

uk(t) = S(t,0)u0 + i
∫ t

0
S(t,r) fk(uk(r))dr, (3.2)
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and the exponential integrator takes the form

uk
0 = u(0)

uk
n+1 = S(tn+1, tn)uk

n + ihS(tn+1, tn) fk(uk
n). (3.3)

Note that this method looks like the composition of two methods : The first is the explicit
Euler equation applied to the differential equation u′ = fk(u), the second is the exact solution
of the linear stochastic Schrödinger equation.

3.3. Main result and convergence analysis. This subsection states and proves the main
result of this paper on the mean-square convergence of the exponential integrator applied to
the nonlinear Schrödinger equation with white noise dispersion (1.1).

THEOREM 3.1. Let us fix s > d/2, the initial value u0 ∈ Hs+4(Rd) and an integer k ≥
1. Consider the unique adapted truncated solution of the random nonlinear Schrödinger
equation uk(t) given by (3.2) with path a.s. in C ([0,T ],Hs+4(Rd)). Further, consider the
numerical solutions {uk

n}, n = 0,1, . . . ,N, given by the explicit exponential integrator (3.3)
with step size h. One then has the following error estimate

∀h ∈ (0,1), sup
n |nh≤T

E[∥uk
n −uk(tn)∥2

Hs ]≤Ch2

for the discrete times tn = nh. Here, the constant C does not depend on n,h with nh ≤ T but
may depend on k,T,supt∈[0,T ]E[∥uk(t)∥4

s+2],supt∈[0,T ]E[∥uk(t)∥2
s+4].

Proof. For ease of presentation, we will ignore the index k refereeing to the cut-off in
the notations of the numerical and exact solutions as well as in the nonlinear function fk. But
we keep in mind that the constants below may depend on this index. We denote by C such a
constant, providing it does not depend on n ∈ N nor on h ∈ (0,1) such that nh ≤ T .

In order to later apply a discrete Gronwall-type argument, we first look at the error be-
tween the exact and numerical solutions

en+1 := u(tn+1)−un+1 = S(tn+1, tn)en + ihS(tn+1, tn)
(

f (u(tn))− f (un)
)

− i
∫ tn+1

tn

(
S(tn+1, tn) f (u(tn))−S(tn+1,r) f (u(r)

)
dr

= S(tn+1, tn)en + ihS(tn+1, tn)
(

f (u(tn))− f (un)
)

− i
∫ tn+1

tn

(
S(tn+1, tn)−S(tn+1,r)

)
f (u(tn))dr− i

∫ tn+1

tn
S(tn+1,r)

(
f (u(tn)− f (u(r)

)
dr

=: I1 + I2 + I3 + I4.

The so-called mean-square error thus reads

E[∥en+1∥2
s ] =

4

∑
j=1

E[∥I j∥2
s ]+2

4

∑
j=1

4

∑
k= j+1

E[Re(I j, Ik)s], (3.4)

with the Hs norm ∥·∥2
s = Re(·, ·)s = ∥·∥2

Hs .
We now proceed with the estimations of the above quantities. Before estimating the

mixed terms in (3.4), we start with the first four terms. By isometry of the random propagator
S(t,r), one gets

E[∥I1∥2
s ] = E[∥S(tn+1, tn)en∥2

s ] = E[∥en∥2
s ].
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For the second term, we again use the isometry property of the free random propagator and
further the fact that the function f is Lipschitz. This gives us

E[∥I2∥2
s ] = E[∥hS(tn+1, tn)

(
f (u(tn))− f (un)

)
∥2

s ] = h2E[∥ f (u(tn))− f (un)∥2
s ]≤Ch2E[∥en∥2

s ].

Using the isometry property of S(t,r), Cauchy-Schwarz’s inequality, the estimate (2.2) from
Section 2, and the fact that the exact solution is bounded, we can bound the third term by

E[∥I3∥2
s ] = E[∥

∫ tn+1

tn
S(tn+1, tn)(I −S(tn,r)) f (u(tn))dr∥2

s ]

≤ E[
(∫ tn+1

tn
1 · ∥S(tn+1, tn)(I −S(tn,r)) f (u(tn))∥s dr

)2
]

≤ h
∫ tn+1

tn
E[∥(I −S(tn,r)) f (u(tn))∥2

s ]dr

= h
∫ tn+1

tn
E[∥S(tn,r)(S(r, tn)− I) f (u(tn))∥2

s ]dr

≤Ch2
∫ tn+1

tn
E[∥ f (u(tn))∥2

s+2]dr ≤Ch3 sup
t∈[0,T ]

E[∥u(t)∥2
s+2]≤Ch3.

In order to estimate the fourth term, we use the isometry property of the free random prop-
agator, Cauchy-Schwarz’s inequality, the fact that f is Lipschitz, the estimate (2.4) on the
time-variations of the exact solution, and the fact that the exact solution is bounded which is
recalled in Section 2. We then obtain

E[∥I4∥2
s ] = E[∥

∫ tn+1

tn
S(tn+1,r)

(
f (u(tn))− f (u(r))

)
dr∥2

s ]

≤Ch
∫ tn+1

tn
E[∥ f (u(tn))− f (u(r))∥2

s ]dr ≤Ch
∫ tn+1

tn
E[∥u(tn)−u(r)∥2

s ]dr

≤Ch3 sup
t∈[0,T ]

E[∥u(t)∥2
s+2]≤Ch3.

Next, we go on with deriving bounds for the mixed terms present in (3.4). Using Cauchy-
Schwarz’s inequality, the above bounds for the moments of I2 and I3, and the fact that for all
real numbers a,b, we have ab ≤ 1

2 (a
2 +b2), we obtain the bound

|E[(I2, I3)s]| ≤
(
E[∥I2∥2

s ]
)1/2(E[∥I3∥2

s ]
)1/2 ≤Ch

(
E[∥en∥2

s ]
)1/2h3/2 ≤C(hE[∥en∥2

s ]+h4).

Similarly, one has

|E[(I2, I4)s]| ≤C(hE[∥en∥2
s ]+h4)

and

|E[(I3, I4)s]| ≤Ch3.

The term containing I1 and I2 can be estimated using Cauchy-Schwarz’s inequality and the
fact that the function f is Lipschitz:

|E[(I1, I2)s]|=
∣∣E[(S(tn+1, tn)en, ihS(tn+1, tn)

(
f (u(tn))− f (un)

)
)s]

∣∣
≤
(
E[∥en∥2

s ]
)1/2h

(
E[∥ f (u(tn))− f (un)∥2

s ]
)1/2 ≤ChE[∥en∥2

s ].
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The last two terms |E[(I1, I3)s]| and |E[(I1, I4)s]| demand more work. For the first one, we use
the isometry of the random propagator S(t,r) and Cauchy-Schwarz’s inequality to get:∣∣E[(I1, I3)s]

∣∣= ∣∣E[(S(tn+1, tn)en,
∫ tn+1

tn
S(tn+1, tn)(I −S(tn,r)) f (u(tn))dr)s

∣∣
=
∣∣E[(en,

∫ tn+1

tn
(I −S(tn,r)) f (u(tn))dr)s

∣∣
≤ h1/2

(∫ tn+1

tn
|E[(en,(I −S(tn,r)) f (u(tn)))s]|2 dr

)1/2
.

We next apply the law of total expectation and again Cauchy-Schwarz’s inequality in order to
get ∣∣E[(I1, I3)s]

∣∣≤ h1/2
(∫ tn+1

tn
|E[(en,E{(I −S(tn,r)) f (u(tn))|Ftn})s]|2 dr

)1/2

≤ h1/2
(∫ tn+1

tn
E[∥en∥2

s ] ·E[∥E{(I −S(tn,r)) f (u(tn))|Ftn}∥2
s ]dr

)1/2
.

Finally, using (2.3) and the fact that the exact solution is bounded, one obtains the bound∣∣E[(I1, I3)s]
∣∣≤Ch1/2(E[∥en∥2

s ]
)1/2h

(∫ tn+1

tn
E[∥ f (u(tn))∥2

s+4]dr
)1/2

≤Ch2(E[∥en∥2
s ]
)1/2( sup

t∈[0,T ]
E[∥ f (u(t))∥2

s+4]
)1/2 ≤Ch2(E[∥en∥2

s ]
)1/2

≤C(h3 +hE[∥en∥2
s ]).

In order to estimate the last term |E[(I1, I4)s]|, we use the mild formulation

u(r)−u(tn) = S(tn,r)u(tn)−u(tn)+ i
∫ r

tn
S(tn,θ) f (u(θ))dθ

= (S(tn,r)− I)u(tn)+ i
∫ r

tn
S(tn,θ) f (u(θ))dθ ,

and then Cauchy-Schwarz’s inequality and a Taylor expansions of f ∈ C 2
b (H

s,Hs) to arrive
at

|E[(I1, I4)s]|=
∣∣∣∣E[(S(tn+1, tn)en,

∫ tn+1

tn
S(tn+1,r)( f (u(tn))− f (u(r)))dr)s]

∣∣∣∣
=

∣∣∣∣∫ tn+1

tn
1 ·E[(en,S(tn,r)( f (u(tn))− f (u(r))))s]dr

∣∣∣∣
≤Ch1/2

(∫ tn+1

tn
|E[(en,S(tn,r)( f (u(tn))− f (u(r))))s]|2 dr

)1/2

≤Ch1/2
(∫ tn+1

tn

∣∣E[(en,S(tn,r)
{

D f (u(tn))(u(r)−u(tn))
}
)s]

∣∣2 dr
)1/2

+Ch1/2
(∫ tn+1

tn
|E[(en,S(tn,r)

{∫ 1

0
D2 f (θu(r)+(1−θ)u(tn))dθ

× (u(r)−u(tn),u(r)−u(tn))
}
)s]|2 dr

)1/2

≤Ch1/2
(∫ tn+1

tn
|E[J1]|2 dr

)1/2
+Ch1/2

(∫ tn+1

tn
|E[J2]|2 dr

)1/2
.
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It thus remains to bound the above two terms. In order to start to estimate the first term, we
insert the mild solution and obtain

h1/2
(∫ tn+1

tn
|E[J1]|2 dr

)1/2
≤ h1/2

(∫ tn+1

tn
|E[(en,S(tn,r)D f (u(tn))

{
(S(tn,r)− I)u(tn)

+ i
∫ r

tn
S(tn,θ) f (u(θ))dθ

}
)s]|2 dr

)1/2

≤ h1/2
(∫ tn+1

tn

∣∣E[(en,S(tn,r)D f (u(tn))
{
(S(tn,r)− I)u(tn)

}
)s]

∣∣2 dr
)1/2

+h1/2
(∫ tn+1

tn

∣∣∣∣E[(en,S(tn,r)D f (u(tn))
{∫ r

tn
S(tn,θ) f (u(θ))dθ

}
)s]

∣∣∣∣2 dr
)1/2

.

We can now apply Cauchy-Schwarz’s inequality, the fact that S, f ,D f are bounded and the
regularity estimate (2.3) from Section 2 to arrive at

h1/2
(∫ tn+1

tn
|E[J1]|2 dr

)1/2
≤Ch1/2

(∫ tn+1

tn
E[∥en∥2

s ]E[∥(S(tn,r)− I)u(tn)∥2
s ]dr

)1/2

+Ch1/2
(∫ tn+1

tn
E[∥en∥2

s ]E[∥
∫ r

tn
S(tn,θ) f (u(θ))dθ∥2

s ]dr
)1/2

≤Ch1/2(E[∥en∥2
s ])

1/2h1/2h sup
t∈[0,T ]

(E[∥u(t)∥2
s+4])

1/2

+Ch1/2(E[∥en∥2
s ])

1/2
(∫ tn+1

tn
(r− tn)2 dr

)1/2

≤Ch2(E[∥en∥2
s ])

1/2(1+ sup
t∈[0,T ]

(E[∥u(t)∥2
s+4])

1/2)
≤C(h3 +hE[∥en∥2

s ])
(
1+ sup

t∈[0,T ]
(E[∥u(t)∥2

s+4])
1/2).

For the second term, we again use Cauchy-Schwarz’s inequality with the fact that S,D f and
D2 f are bounded and the bound (2.5):

h1/2
(∫ tn+1

tn
|E[J2]|2 dr

)1/2
≤Ch1/2

(∫ tn+1

tn
E[∥en∥2

s ]E[∥u(r)−u(tn)∥4
s ]dr

)1/2

≤Ch1/2(E[∥en∥2
s ])

1/2h1/2h sup
t∈[0,T ]

(E[∥u(t)∥4
s+2])

1/2

≤Ch2(E[∥en∥2
s ])

1/2 sup
t∈[0,T ]

(E[∥u(t)∥4
s+2])

1/2

≤C(h3 +hE[∥en∥2
s ]) sup

t∈[0,T ]
(E[∥u(t)∥4

s+2])
1/2.

Altogether, we arrive at∣∣E[(I1, I4)s]
∣∣≤C(h3 +hE[∥en∥2

s ])
(

1+ sup
t∈[0,T ]

(E[∥u(t)∥4
s+2])

1/2 + sup
t∈[0,T ]

(E[∥u(t)∥2
s+4])

1/2
)
.

Collecting all the above bounds, the mean-square error (3.4) can thus be estimated by

E[∥en+1∥2
s ]≤ (1+K1h+K2h2)E[∥en∥2

s ]+K3h3 +K4h4

and an application of a discrete Gronwall lemma gives the final bound

E[∥en∥2
s ] = E[∥uk

n −uk(tn)∥2
s ]≤Ch2
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which concludes the proof of the theorem.
Using the above mean-square convergence result and similar arguments as in [25, 18]

or [3], one can also show that the exponential method (3.1) has order of convergence one in
probability.

PROPOSITION 3.2. Let T > 0 and assume that u0 ∈ Hs+4(Rd) with s > d/2 is such
that the nonlinear Schrödinger equation with white noise dispersion (1.1) possesses a unique
adapted solution u with paths a.s. in C ([0,T ],Hs+4(Rd)). Let us apply the stochastic expo-
nential integrator (3.1) to compute un with step size h = T/N. Then, one has

lim
C→+∞

P
(

max
n=0,...,N

∥u(tn)−un∥s ≥Ch
)
= 0

uniformly in h, where we recall that tn = nh.

4. Numerical experiments. This section presents various numerical experiments for
the nonlinear Schrödinger equation with white noise dispersion (1.1). We will use the follow-
ing numerical schemes:

1. The explicit exponential integrator (3.1);
2. The Lie-Trotter splitting

u∗ = S(tn+1, tn)un

un+1 = Y (h)u∗ (4.1)

from [25]. Here, Y (h)u∗ denotes the value at time h of flow associated to the problem
i ∂u

∂ t + |u|2σ u = 0 with initial datum u∗;
3. The Strang splitting

u∗ = S(tn +h/2, tn)un

û = Y (h)u∗
un+1 = S(tn+1, tn +h/2)û, (4.2)

where again Y (h) is defined as above;
4. The implicit Crank-Nicolson scheme

i
un+1 −un

h
+

χn√
h

∆un+1/2 +g(un,un+1) = 0 (4.3)

from [3]. Here, we have set un+1/2 =
1
2 (un +un+1), χn =

β (tn+1)−β (tn)√
h

and g(u,v) =
1

σ+1

(
|u|2σ+2−|v|2σ+2

|u|2−|v|2

)(
u+v

2

)
.

We will consider the stochastic partial differential equation (1.1) on the one and two di-
mensional torus with periodic boundary conditions. The spatial discretisation is done by a
pseudospectral method with M Fourier modes in 1d, and M2 Fourier modes in 2d.

4.1. Numerical experiments in 1d. This subsection presents convergence plots for
the above mentioned numerical methods applied to the nonlinear Schrödinger equation with
white noise dispersion (1.1); space-time evolution plots; experiments illustrating the influence
of the power nonlinearity σ supporting a conjecture proposed in [3]; and finally illustrations
of the preservation of the L2-norm along numerical solutions.
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Figure 4.1: Mean-square errors for c = 1: Exponential integrator (□), Lie-Trotter (♢), Crank-
Nicolson (∗), Strang (◦). The dotted lines have slopes 1 and 2.

4.1.1. Convergence plots. In order to illustrate the mean-square convergence of the
exponential integrator (3.3), we consider problem (1.1) on the interval [0,2π] with parameters
c = σ = 1. The initial datum is u0(x) = e−(x−π)2

for x ∈ [0,2π]. Furthermore, M = 28

Fourier modes are used for the spatial discretisation. The mean-square errors E[∥u(x,Tend)−
uN(x)∥2

L2 ] at time Tend = 0.5 are displayed in Figure 4.1 for various values of the time step
h = 2−ℓ for ℓ = 6, . . . ,17. Here, we simulate the exact solution u(x, t) with the exponential
method, with a small time step hexact = 2−17. The expected values are approximated by
computing averages over Ms = 5000 samples. We computed the estimate for the largest
standard errors to be 5.78 · 10−4 for the Crank-Nicolson scheme and around 10−6 for the
other numerical schemes. These estimates are far from optimal but we observed that using
a larger number of samples (Ms = 10000) does not improve significantly the behaviour of
the convergence plots. This is also the case for the other convergence plots presented below.
In Figure 4.1, we observe convergence of order 1 for the exponential integrator. This is in
agreement with Theorem 3.1. The orders of convergence for the splitting schemes and for the
Crank-Nicolson scheme are also seen to be 1.

Note that the explicit exponential method (3.3), as well as the Lie and Strang splitting
methods (4.1)-(4.2) take full advantage of the exact integration of the stochastic linear part of
the Schrödinger equation when one uses periodic boundary conditions and hence the spectral
properties of the Laplace operator are exactly known. In contrast, the Crank-Nicolson scheme
(4.3) does not integrate the stochastic part of the equation exactly. One can even argue that
the error in the identity

1+ iX
1− iX

= e2iX +O(X3),

which is the cornerstone of the error analysis of the linear part of the Crank-Nicolson scheme
applied to a Schrödinger equation, is fully under control in the deterministic case (when
X =− h

2 ξ 2, and ξ is the Fourier variable), while it can be much higher in the stochastic case
(when X = −c ∆Wn

2 ξ 2) even for small time steps. Once again, such an error corresponding
directly to the stochastic part of the PDE is not present in the three other schemes (3.1), (4.1)
and (4.2). This explains, in 1d as well as in higher dimension (see next section for numerical
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Figure 4.2: Mean-square errors for c = 0.25: Exponential integrator (□), Lie-Trotter (♢),
Crank-Nicolson (∗), Strang (◦). The dotted lines have slopes 1 and 2.

examples in dimension 2), the relatively poor behaviour of the Crank-Nicolson scheme in
this situation (see Fig 4.1) even if c is of order 1. On the other, as observed in Figure 4.2,
the good convergence behaviour of the Crank-Nicolson is recovered for c = 0.25 (smaller
noise intensity parameter). The other parameters are the same as in the previous numerical
experiments.

4.1.2. Evolution plots. Figure 4.3 shows the evolution of |un|2 along one sample of the
numerical solution obtained by the exponential integrator (3.1) for the above problem with
the discretisation parameters h = 2−14 and M = 28. This illustrates, in the case σ = 1, the
interplay and the balance between the random dispersion and the nonlinearity. In contrast,
the qualitative behaviour is different for higher values of σ .

The article [3] conjectures that the power nonlinearity σ = 4 is the critical case for (1.1)
in dimension one. We now present numerical experiments supporting this conjecture. Prob-
lem (1.1) with the initial value u0(x) = 2.3 · e−14(x−π)2

is integrated over the time interval
[0,0.05] with discretisation parameters h = 2−12 and M = 214. Figure 4.4 shows the space-
time evolution for the power nonlinearity σ = 3.9 and σ = 4. Blow-up of the solution can be
observed in the critical case σ = 4 thus numerically confirming the conjecture from [3]. Of
course, this is only a rough result and one can think of more sophisticated techniques such as
adaptive mesh refinement techniques to have a better understanding of the behaviour of the
solution close to the blow-up.

4.1.3. Preservation of the L2-norm. It is known that the L2-norm of the solution to
the SPDE (1.1) remains constant for all times [3]. Figure 4.5 illustrates the corresponding
preservation properties of the above numerical integrators along one sample path. For this
numerical experiment, we consider the parameters c = 1,σ = 1,h = 2−5,M = 28 and the
initial value u0(x) = e−10(x−π)2

for x ∈ [0,2π]. Exact preservation of the L2-norm for the
splitting schemes and for the Crank-Nicolson scheme is observed, whereas a small drift is
observed for the exponential integrator (3.1). In Section 5, we will propose a symmetric
exponential integrator that preserves exactly the L2-norm.
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Figure 4.3: Space-time evolution (up) and contour plot (bottom) for the exponential integrator
(3.3).

4.2. Numerical experiments in 2d. This subsection presents convergence plots for
(1.1) in two dimensions as well as experiments illustrating the influence of the power nonlin-
earity σ supporting a conjecture proposed in [3].

4.2.1. Convergence plots. We illustrate the mean-square convergence of the exponen-
tial integrator (3.1) in 2d. To do so, we consider the problem (1.1) on [0,2π]× [0,2π]
with parameters σ = 1 and c = 1 or c = 0.1. The initial value is set to be u0(x,y) =
e−((x−π/2)2+(y−π/2)2)ei10x + e−0.5((x−3π/2)2+(y−3π/2)2)e−i10y for (x,y) ∈ [0,2π]× [0,2π]. Fur-
thermore, M = 26 Fourier modes are used in each directions for the spatial discretisation.
The temporal errors at time Tend = 0.5 are displayed in Figure 4.6 for various values of the
time step h = 2−ℓ for ℓ = 15, . . . ,23. Here, we simulate the exact solution u(x,y, t) with a
small time step hexact = 2−23. The expected values are approximated by computing averages
over Ms = 25 samples (for these computationally expensive simulations). In this figure, we
observe convergence of order 1 for the exponential integrator. This is in agreement with
Theorem 3.1.
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Figure 4.4: Space-time evolution for the exponential integrator: σ = 3.9 (up) and σ = 4
(bottom).

4.2.2. Evolution plots. Let us now consider the following parameters c= 1,h= 2−11,M =

27 and the initial value 5 ·e−14((x−π/2)2+(y−π/2)2) ·ei10x for (x,y)∈ [0,2π]× [0,2π]. Figure 4.7
displays snapshots of the numerical solutions for the Schrödinger equation with power non-
linearity σ = 1.9 and σ = 2. Blow-up of the solution can be observed numerically in the
conjectured critical case σ = 4/d = 2 from [3].

5. L2-preserving exponential integrators. As seen above, the proposed explicit expo-
nential integrator unfortunately does not preserve the L2-norm. This can be fixed by consid-
ering symmetric exponential integrators using ideas from [9]. We thus propose the follow-
ing symmetric exponential method for the numerical discretisation of nonlinear Schrödinger
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equation with white noise dispersion (1.1)

u0 = u(0)

N∗ = N(S(tn +
h
2
, tn)un +

h
2

N∗)

un+1 = S(tn+1, tn)un +hS(tn +h, tn +
h
2
)N∗, (5.1)

where N(u) = i|u|2σ u is the nonlinearity.
This numerical method preserves the L2-norm as seen in the following proposition.
PROPOSITION 5.1. The exponential integrator (5.1) preserves the L2-norm, as does the

exact solution of the nonlinear Schrödinger equation with white noise dispersion (1.1).
Proof. This proof is an adaptation of the proof stating conditions for a Runge-Kutta

methods to preserve quadratic invariants, see [19, Section IV.2.1] and further [9].
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Figure 4.7: Snapshots of the evolution of the exponential integrator in 2d: σ = 1.9 (up) and
σ = 2 (bottom). Discretisation parameters: h = 2−11 and M = 27. Note the scale on the z-axis
on Figure 4.7f.

Let us compute the L2-norm of u1:

∥u1∥2 = ∥S(t1, t0)u0 +hS(t0 +h, t0 +
h
2
)N∗∥2 = ∥u0∥2 +h2∥N∗∥2

+h
(

S(t1, t0)u0,S(t0 +h, t0 +
h
2
)N∗

)
+h

(
S(t0 +h, t0 +

h
2
)N∗,S(t1, t0)u0

)
using the isometry of the random propagator S(t,r). We next define Y := S(t0+ h

2 , t0)u0+
h
2 N∗

so that u0 = S(t0, t0 + h
2 )(Y − h

2 N∗). Inserting this quantity in the above equation and using
the definition of S(t,r) yields

∥u1∥2 = ∥u0∥2 +h2∥N∗∥2 − h2

2
∥N∗∥2 − h2

2
∥N∗∥2 +h

(
(Y,N∗)+(N∗,Y )

)
= ∥u0∥2

since the last term in brackets is zero (this follows from the fact that N∗ = N(Y ) and the fact
that the L2-norm is a first integral).

5.1. Numerical experiments for the symmetric exponential integrator. Figure 5.1
illustrates the preservation of the L2-norm by the exponential methods (3.1) and (5.1) as well
as strong convergence plots. The parameter values are the same as in the above numerical
experiments. Exact preservation of the L2-norm, as stated in Proposition 5.1, is observed for
the symmetric version. The convergence plot indicates the same order of convergence for the
symmetric version of the scheme as for the original exponential integrator (3.1).

6. Conclusion. We introduced a new, explicit, exponential integrator (3.1) for the time
integration of the nonlinear Schrödinger equation with power-law nonlinearity and random
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Figure 5.1: Preservation of the L2-norm (top) and mean-square errors (bottom) for the sym-
metric exponential integrator (5.1) (+) and for the exponential integrator (3.1) (□). The
dotted lines have slopes 1 and 2.

dispersion (1.1). We showed that this integrator has mean-square order one (Theorem 3.1).
We compared it with other methods from the literature. In contrast to methods such as the
Lie-Trotter splitting or the Crank-Nicolson method, it does not preserve the L2-norm exactly
(Figure 4.5). However, it shares the same order and our numerical experiments show that
it outperforms methods that do not integrate exactly the linear part of the equation, such as
the Crank-Nicolson method, in terms of size of constant errors, for reasonably large noise
intensity (Figure 4.1). Furthermore, we used this new scheme in Section 4.2 to support a
conjecture on the critical power to get blow-up in finite time in the nonlinear Schrödinger
equation (1.1). Finally, we proposed another exponential integrator (5.1) which is symmetric
and has the same numerical order as the one proposed initially. It however is implicit and
hence has higher numerical cost.
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