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Abstract. Cloud storage providers build a distributed storage system
by utilizing cloud resources located in data centers. The interactions
among servers in a DHT (Distributed Hash Table)-based cloud storage
system depend on the routing process, and its execution logic is more
complicated. Hence, how to allocate resources to not only guarantee ser-
vice performance (e.g., data availability, response delay), but also help
service providers to reduce cost became a challenge. To address this chal-
lenge, this paper presents a novel resource provisioning model for cloud
storage systems. The model utilizes queuing network for analysis of both
service performance level and cost calculation. Then the problem is de-
fined as a cost optimization with performance constrains, and a novel
algorithm is proposed. Furthermore, we implemented a DHT-based stor-
age system on top of an infrastructure platform built with OpenStack.
Based on real-world traces collected from our system, we show that our
model could effectively guarantee the target data availability and re-
sponse delay with lower cost.

1 Introduction

Cloud storage utilizes cloud technologies to build storage systems based on IT
resources located in datacenters, and provides customers with data storage, data
sharing, data access and management, and so on. Recently cloud storage services
have attracted more and more attention from both academia and industry [1][2].
One of the most attractive features of cloud storage is the ability to provide
customers with convenient data access services without worrying about data loss.
When customers use services they are mainly concern about data availability
and response delay. The former represents the probability that customers can
successfully access the target data, and the latter refers to the time required
for the system to respond to requests. Both of them directly affect the service
level that customers experienced, and become the preferred performance metrics
discussed in this paper.

High amount of concurrent access requests is another feature of cloud stor-
age, which makes storage providers choose to build distributed storage systems
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based on P2P structure (e.g., Dynamo [1], Cassandra [2]). It is a type of shared
nothing architecture (SNA) [3], in which each server has its own disk for storage.
DHT mechanism is responsible for both storing data to all servers and requests
routing. It can provide an ”always-on” experience as the continuous growth of
system scale. Due to the distributed nature of systems, customers’ requests need
to be matched and forwarded among many servers after they arrive at systems.
There are many interactions among servers during requests being processed.
Different from multi-tier web applications, servers interact sequentially layer by
layer according to the hierarchy, while the interactions occurred in cloud storage
systems depend on the routing process and are more complicated. Hence how
to model the relationship between service performance and resource provision-
ing becomes a challenge. In addition, cloud storage systems are based on the
infrastructure services offered by IaaS providers, for example, Dropbox chooses
IT resources that come from Amazon as its servers to store data and deal with
requests [4]. Storage providers only pay for resources that are needed according
to the current amount of access requests, which will reduce cost.

We explore the problem from the cloud storage provider’s point of view. The
overall cost paid by a storage provider mainly includes server cost, storage cost
and traffic cost. As mentioned above, this paper mainly concerns access perfor-
mance, so we make assumptions that all data have been stored in the system, and
then the storage cost has been fixed. Most traffic is generated by both retrieving
data from datacenter and geo-replication across multi-datacenter. Traffic cost
caused by retrieving data can be reduced by data compression techniques, while
traffic cost caused by geo-replication depends on the specific replication scheme.
Both of them are outside the scope of this paper. Therefore, the cost discussed
here mainly refers to server cost, and the final objective of resource provisioning
is to generate the server level resource demands to minimize cost while satisfying
performance requirements. In this paper we propose a novel model to achieve
server level resource provisioning with optimal cost-performance trade-off. Our
proposed model strives to rent just enough resources for systems to minimize
resource waste, while avoiding performance degradation.

2 Related Work

Jing et al. [5] proposes a novel resource auto-scaling scheme that try to find
the optimal number of VMs by modeling system as a M/M/m queue so as to
achieve cost-latency trade off. However, It assume a simple scenario that VMs run
independently, and the interactions among VMs are not considered completely.
Ferretti et al. [6] designs a middleware architecture for resource management
that aims to satisfying quality of service (QoS) requirements as well as optimizing
resource utilization. It only provides a common framework for analysis, and does
not optimize for addressing a specific execution logic.

For multi-tier applications, Jing et al. [7] focuses on how to minimize cost
while satisfying response delay constraint. It employs a flexible hybrid queuing
model that consists of one M/M/c queue and multiple M/M/1 queues to de-
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termine the number of VMs at each tier. Different from layer-by-layer research
ideas, Lama et al. [8] suggests employing fuzzy theory to guide server provision-
ing and designs a model-independent fuzzy controller, so as to minimize VMs
while guarantee end-to-end response delay. The works in [7][8] are based on the
assumption that VMs are identical, but usually IaaS providers provide various
types of VMs. Furthermore, the assumption of single VM type results in coarse-
grained resource provisioning and limited cost optimization.

Zhu et al. [9] creates a resource provisioning model by employing M/G/1
queuing system, and develop meta-heuristic solutions based on the mixed tabu-
search optimization algorithm to solve the provisioning problem. It only take re-
sponse delay into consideration, and focus on the maximization of IaaS provider’s
profit which is different from the goal of this paper. By considering budget con-
straint as well as response delay, Zhu et al. [10] presents a feedback control based
dynamic resource provisioning algorithm for maximizing application QoS.

For cloud storage services, customers’ requests usually should be matched
and forwarded among many servers after they arrive at systems. The interac-
tions among servers depend on the routing process, and do not be executed in
accordance with the fixed order. Hence the interactions occurred in cloud storage
systems are complicated and lack of an effective resource provisioning model for
characterization. Zhang et al. [11] presents a resource management algorithm for
cloud storage systems. The proposed algorithm aims to achieve load balancing by
using two types of operation, i.e., merge operation and split operation. However,
such an algorithm does not consider server interactions during the execution of
services, and only consider load balancing as performance metrics. This paper
explores the resource provisioning model based on the execution logic of cloud
storage services. We consider two performance metrics in the model, i.e., data
availability and response delay, and strive to optimize cost as well as guarantee
performance.

3 Resource Provisioning Model

3.1 System Model

Cloud storage systems run on the infrastructure of datacenter, and the system
overview is described by Figure 1. Cloud storage providers rent servers from IaaS
providers and build the system by organizing servers into a distributed network,
so that the system can store massive data in a distributed manner. When cus-
tomers’ requests arrive at the system, they are dispatched to servers and will
be processed according to DHT mechanism. It is assumed that the data have
been stored in the system, and then the primary performance metrics concerned
by customers should be data availability, denoted by Psuc which represents the
probability that customers can successfully access the target data, and response
delay, denoted by R which represents the time required for the system to re-
spond to requests. This paper strives to research on resource provisioning from
the cloud storage provider’s point of view. Our problem is how to generate a re-
source provisioning demand according to the current customers’ requests, so that
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Fig. 1. Cloud storage system overview

it can meet performance metrics while optimize economic metrics. The resource
provisioning demand consists of three parameters, i.e., the number of servers,
the processing capacity of each server, and cost.

3.2 Resource Provisioning Problem

To tackle the above problem, we need to establish a resource provisioning model.
As we know, cloud storage system is distributed, when it receives requests it will
dispatch them to servers randomly. The server matches the received requests
with the data stored upon it. If match success, server will return results directly,
otherwise server will forward requests to the next one according to DHT rules
till finding the target data. Servers interact with each other through forwarding
requests. For better describing this kind of interactions, we propose a resource
provisioning model based on queuing network. As shown in Figure 2, the system
consists of N servers, and each one is modeled as an M/G/1/k queue with
independent general execution time distribution. The request arrivals are poisson
with rate λ1. Servers are classified and charged by processing capacity, e.g.,
the processing capacity of server i is represented by µi (µmin ≤ µi ≤ µmax),
where µmax, µmin are the upper bound and lower bound respectively. The cost
of server is represented by the function of processing capacity f(µi). Due to the
limit of processing capacity, server cannot simultaneously receive and process an
unlimited number of requests. As requests increase, the length of queue becomes
larger, which results in a higher response delay. To avoid high response delay,
we set up a size limit k for each queue. When the length of queue reaches k,
the workload of server will be saturated, and then the new arrived requests will
be denied. Once a request is denied, the customer’s access will fail, and as a
consequence the data availability will decrease. The formal definition of resource
provisioning problem is described as follows:

Given that the thresholds of performance metrics (i.e., data availability and
response delay) are P ∗

suc and R∗, and the threshold of server rejection rate is
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Fig. 2. Queuing network model for resource provisioning

P ∗

rej . The server cost is f(µi) that is a non-decreasing function of µi, and the
request arrival rate is λ1. We need to generate the optimal resource provisioning
demand (N , µ, Cost(µ)) that meets performance metrics while optimize server
cost. In the demand, N represents the number of servers, µ represents the vector
of server’s processing capacities, and Cost(µ) is the sum of server cost. i.e.,

Min Cost(µ) =
N
∑

i=1

f(µi)

s.t. (1) Psuc ≥ P ∗

suc

(2) R ≤ R∗

(3) Prej ≤ P ∗

rej

(4) µmin ≤ µi ≤ µmax

(1)

In cloud storage systems, customers’ requests can be satisfied within O(log N)
hops forwarding according to DHT rules, so that the mean match rate at each
hop is at least 1/(logN + 1). Assume that the mean rejection rate of server is
Prej , then

Psuc =

log N
∑

j=0

A(j)B(j)
j + 1

log N + 1
(2)

where A(j) = (1 − Prej)
j+1 represents the probability that the request arrives

at the j + 1th server after it finish j hops forwarding without being denied,

while B(j) =
j
∏

m=0
(1 − m

log N+1 ) represents the probability that the request has

Fig. 3. An example of request forwarding

not been matched at previous j servers. The probability of being matched suc-
cessfully at the j + 1th server is j+1

log N+1 . Assume that the request stops at the
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j + 1th server, and then there exists three cases, as shown in Figure 3: (i) The
request is not matched at the j + 1th server. Then the request is forwarded to
the j + 2th server, and is denied by the server. The probability of such case
should be B(j + 1)Prej . (ii) The request is matched successfully at the j + 1th
server. The probability of such case should be B(j) j+1

log N+1 . (iii) The request has
arrived at the last hop, i.e., j = log N . The probability of such case should be
A( log N)B(log N). Combining the above cases, we conclude that the mean hop
counts of request can be represented by

H =
log N−1

∑

j=0

(

A(j) · B(j)((1 − j+1
log N+1 )Prej + j+1

log N+1 )j
)

+ A(log N)B( log N) · log N

(3)

We can deduce the mean number of forwarded messages in the same way:

M =
log N−1

∑

j=0

(

A(j) · B(j)
(

(1 − j+1
log N+1 )Prej · (j+1) + j+1

log N+1 · j
))

+ A( log N)B( log N) · log N

(4)

As described by Figure 2, the arrival rate of servers consists of both the
requests λ1 issued from customers and the forwarded requests λ2, and λ2 =
λ1M . So the mean arrival rate can be calculated by λ1/N . It is noted that the
probability of receiving requests depends on the access frequency of data stored
on server. Qi(0 < Qi < 1) is used to represent the access frequency of server i,
and then the arrival rate of forwarded requests at server i should be λ2,i = Qiλ2.
For server i, the arrival rate can be represented by

λ(i) = λ1,i + λ2,i (5)

Response delay consists of two parts, i.e., the mean time required to forward
the request, denoted by T , and the mean sojourn time at a server, denoted by
W . Thus the mean response delay should be

R = T · H + W · (H + 1) (6)

We should deduce the sojourn time by analyzing M/G/1/k queuing system.
This paper chooses to use two-moment approximation approach [13] that is based
on diffusion theory [14]. The key idea of approach is concluded that the discrete
queuing process is approximated to a continuous diffusion process. The rejection
rate of server i equals the probability of having k requests in the queue, i.e.,

Pk,i =
ρ
(Φi+2k)/(2+Φi)
i

(ρi−1)

ρ
2(Φi+k+1)/(2+Φi)
i

−1

where Φi =

√

ρie
−s

2

i s
2

i −

√

ρie
−s

2

i

(7)

ρi = λ(i)/µi represents the service intensity of server i, and si represents the co-
efficient of variation of the service process. The mean rejection rate is calculated
by
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Prej =
1

N

N
∑

i=1

Pk,i (8)

Because server may deny the incoming requests, the effective arrival rate at
server i should be less than λ(i), and can be represented by λe(i) = λ(i)(1−Pk,i).
Thus the probability of empty workload at server i is given by

P0,i = 1 −
λe(i)

µi

=
(ρi − 1)

ρ
2(Φi+k+1)/(2+Φi)
i − 1

(9)

The probability that there are j requests waiting in the queue of server i is
ρj

iP0,i, and then the mean number of requests waiting in the queue of server i

should be

Li =

k−1
∑

j=0

jρj
i
P0,i + kPk,i (10)

Based on Little’s Formula [12], the sojourn time at server i is represented by
Wi = Li/λe(i). Therefore, the mean sojourn time is given by

W =
1

N

N
∑

i=1

Wi (11)

3.3 Solution

Recall that the cloud storage provider’s greatest concern is to maximize profit
(e.g., by minimizing cost) while providing high quality service (e.g., by guaran-
teeing data availability and response delay). The resource provisioning is defined
as a non-linear cost optimization problem with performance constraints from the
cloud storage provider’s point of view. By solving the problem, we can achieve
the optimal resource demands for system resource provisioning. The previous
works only focus on the optimization of number of servers. However, in practice
the minimal number of servers does not reflect the lowest cost. In our solution,
we are not only trying to answer how many servers need to rent, but also answer
what the capacities vector of these servers is. µ is used to represent the vector
of server capacities, while N is the number of rented servers, and is also the
dimension of capacities vector. We should determine the feasible range of N at
the first step.

Substitute P ∗

suc and P ∗

rej in constraints (1) and (3) into equation (2), then
we can obtain the value of N that satisfies constraints (1) and (3), denoted
by N ′. In the same way we can obtain the value of N , denoted by N ′′ that
satisfies constraints (2) and (3) by substituting R∗ and P ∗

rej in constraints (2)
and (3) into equation (6). It is noted that the server rejection rate Pk,i is the
non-increasing function of µi, then substitute µmax(µmin) in constraint (4) and
Pk,i = P ∗

rej into equation (7), we can deduce the maximal (minimal) arrival rate
λmax(λmin). Combine equations (4) and (5) together, we find that λ(i) is related
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to total customers’ requests arrival rate λ1, rejection rate Prej and the number
of servers N . By substituting λ1, P ∗

rej and λmax(λmin) into equation (5), we can
achieve the feasible range of N , denoted by [N1, N2] that satisfies the threshold
of rejection rate. In order to satisfy all constraints, the feasible range should be
trimmed by N ′ and N ′′. Proposition 1 shows us the proof of feasible range of N .

Algorithm Resource provisioning

Input

λ1: the total customers’ requests arrival rate
µmax: the upper bound of processing capacity
µmin: the lower bound of processing capacity
Qi: the access frequency of server i

T : the mean time required to forward the request
Output

Opt solution(N, µ, Cost (µ)): the optimal resource demands
1. Calculate N ′ by subjecting P ∗

suc and P ∗

rej to equation (2);
2. Calculate N ′′ by subjecting R∗ and P ∗

rej to equation (6);
3. Calculate λmax(λmin) by subjecting µmax (µmin) and Pk,i = P ∗

rej to equation (7)
4. Calculate N1 (N2) by subjecting µmax (µmin), P ∗

rej and λ1 to equation (5)
5. Nmin = max (N ′, N1, N

′′), Nmax = max (N ′, N2);
6. Opt solution (N, µ, Cost (µ)) = NLP OPT (Nmin);
7. if Nmin 6= Nmax

8. for N = Nmin + 1toNmax

9. solution (N, µ, Cost (µ)) = NLP OPT (N);
10. if solution(N, µ, Cost (µ)) is better than Opt solution(N, µ, Cost (µ))
11. Opt solution (N, µ, Cost (µ)) = solution (N, µ, Cost (µ));
12. end if

13. end for

14. end if

15. return Opt solution (N, µ, Cost (µ));

Proportion 1 In the server provisioning problem, the feasible range of num-

ber of servers that satisfies all constraints is [max (N ′, N1, N
′′), max (N ′, N2)].

Proof: Prej is a non-increasing function of N by analyzing equations (7) and
(8). If N ′ ≤ N1, the lower bound of N , denoted by Nmin, takes the value of N1

for satisfying constraint (3). Otherwise, Nmin takes the value of N ′ for satisfying
constraint (1). In addition, R is a non-increasing function of N by analyzing
equation (6) (T is much smaller when compared with W ). In order to satisfying
constraints (2), Nmin takes the value of N ′′, i.e., Nmin = max (N ′, N1, N

′′). As-
sume the optimal value N∗ < Nmin, and then it will result in that one constraint
or all of constraints cannot be satisfied. Therefore, N1 should take the value of
max (N ′, N1, N

′′).
In the same way, if N ′ ≤ N2, the upper bound of N , denoted by Nmax,

takes the value of N2 for satisfying constraint (3). Otherwise, Nmax takes the
value of N ′ for satisfying constraint (1), i.e., Nmax = max (N ′, N2). Assume
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the optimal value N∗ > Nmax, and the corresponding optimal cost is Cost∗ =
N∗

∑

i=1

f(µi), (µmin ≤ µi ≤ µmax). Then all constraints can be satisfied, and N2 is

located in the feasible range. The corresponding cost Cost N2 = N2f(µmin), but
Cost N2 < Cost∗, which conflicts with the assumption. Therefore, Nmax should
take the value of max (N ′, N2).

To solve the optimization problem, an novel algorithm is proposed, called
Resource provisioning. In the algorithm, lines 1-5 are used to compute the
feasible range of N , and then for each N in the feasible range, lines 6-15 use
NLP OPT(N) to solve the sub-optimization problem with the fixed value of
N .

There are non-linear functions in constraints, so that the sub-optimization
problem is a non-linear programming problem which can be formalized as follows:

Min Cost(µ) =
N
∑

i=1

f(µi)

s.t. (1) g1(µ) =P ∗

suc − Psuc ≤ 0
(2) g2(µ) =R − R∗ ≤ 0
(3) g3(µ) =Prej − P ∗

rej ≤ 0
(4) g4(µ) =µmin − µi ≤ 0
(5) g5(µ) =µi − µmax ≤ 0

(12)

In this paper we use augmented lagrangian approach to solve the problem.
By introducing slack variable zj , the inequality constraints become equality con-
straints, i.e., gj(µ)−z2

j = 0, j = 1, 2, 3, 4, 5. We design the augmented lagrangian
function, as follows:

F (µ, γ, c) = Cost(µ) +
1

2c

5
∑

j=1

{

[max{0, γj + cgj(µ)}]2 − γ2
j

}

(13)

where γ is multiplier vector, c is penalty factor, and z2
j = 1

c
max {0, γj + cgj(µ)}.

Thus the problem is transformed into a simple unconstrained optimization prob-
lem, i.e., Min F (µ, γ, c). The solution of non-linear programming can be obtained
by iteratively solving unconstrained optimization problem.

4 Experimental Evaluation

4.1 Experiment setup

We implemented a DHT-based cloud storage system on top of project Volde-
mort which is an open source implementation of Dynamo. The infrastructure
platform is constructed on top of a cluster of 14 IBM HS22 blade servers which
are connected in a 1Gbps LAN. These underlying resources are managed by
an infrastructure platform built with OpenStack. Servers in our system can be
classified as control servers and storage servers. The former is in charge of dis-
patching requests to storage servers, recording run-time log, and performance
statistics. The latter is in charge of processing the incoming requests.
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7 1 4 2 1 2 81 0 02 0 03 0 04 0 0
D a t eM eannumb erof request s persecond 2 5 / 1 1 0 1 / 1 2 0 8 / 1 2 1 5 / 1 2 2 2 / 1 2( a ) 0 1 4 4 0 2 8 8 0 4 3 2 0 5 7 6 0 7 2 0 0 8 6 4 0 1 0 0 8 05 01 0 01 5 02 0 02 5 03 0 03 5 0

D a t eN umb erof request s persecond ( b )2 5 / 1 1 2 6 / 1 1 2 7 / 1 1 2 8 / 1 1 2 9 / 1 1 3 0 / 1 1 0 1 / 1 2
Fig. 4. Distribution of service performance levels

4.2 Trace-driven evaluation

We collected real-world traces from November 25, 2013 to December 22, 2013.
Figure 4(a) reports the requests received by the system during the period. The
mean number of requests per second became larger as the growth of customers
scale from 337 to 512. It reflects a weekly pattern that the amount of concurrent
visits is lower on weekends. A daily pattern is reflected by Figure 4(b). There
are two peaks appeared in the morning and afternoon separately, and the trough
appears at noon and midnight. Note that request for files larger than 4MB will
be split into several requests, so the actual arrival rate of requests will be higher.

The amount of concurrent visits was too low to evaluate our provisioning
scheme. We reprocessed the traces by adding the last three weeks dataset to the
first week. Then we used LoadRunner [15] to test our system. The most common
resource provisioning approach is based on Utilization-oriented Principle (UoP)
[16]. The UoP approach tries to reduce cost by improving resource utilization
(i.e., equals ρ) to a predetermined range. We choose UoP approach to compare
with our scheme, and the ranges are set as [60%, 70%] and [80%, 90%]. The
thresholds of P ∗

suc, R∗ and P ∗

rej are set as 99%, 200ms and 0.3%. The process-
ing capacity depends on the type of VM. We measured the capacities through
deploying each type of VM in our system, and the values are 224, 535 and 1372.

Figure 5 shows separately the CDF of Psuc/P ∗

suc, R/R∗ and Prej/P ∗

rej . It
is concluded from equations (7) and (8) that the rejection rate has a positive
correlation with utilization rate. For UoP [60%, 70%] approach concerned, the
mean utilization rate are restricted in a low level without large variations, which
results in a low level of rejection rate without large variations. When the rejec-
tion rate is low, the data availability is so high that we can neglect the influence
of other factors on data availability. For UoP [80%, 90%] approach concerned,
if the arrival rate is low, system could maintain a high level of both utilization
rate and rejection rate. As the arrival rate increases, in order to satisfy perfor-
mance constraints, both utilization rate and rejection intend to decrease. Note
that compared with the threshold, our scheme can achieve much closer data
availability and response delay.

Figure 6 describes the comparison of hourly server cost by using different pro-
visioning approaches. UoP approach is sensitive to ρ∗. It appears to be relatively
conservative when ρ∗ is in the interval [60%, 70%]. Then excessive provisioning
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of resources results in a much higher performance level than the threshold level.
Furthermore, UoP approach pays 72.9% higher cost than our scheme, i.e., the
higher cost in exchange of the higher performance level. When ρ∗ is in the inter-
val [80%, 90%], it pays 31.8% higher cost than our scheme. Hence the cost can be
reduced by increasing ρ∗, however, excessive increase in ρ∗ will greatly increase
rejection rate. As a consequence, the data availability decreases and becomes
lower than the threshold.

The fixed number of types of VMs indicates the number of processing ca-
pacities available for selection is small. Therefore, the practical efficiency of our
algorithm became high, and the mean execution time was 2.37 seconds.

1 1 . 0 0 5 1 . 0 1 1 . 0 1 500 . 20 . 40 . 60 . 8 1 C D F o f P s u c / P * s u c
P s u c / P * s u cCDF O u r s h e m eU o P [ 6 0 % , 7 0 % ]U o P [ 8 0 % , 9 0 % ] 0 . 4 0 . 6 0 . 8 100 . 20 . 40 . 60 . 8 1 C D F o f R / R *

R / R * 0 0 . 5 1 1 . 500 . 20 . 40 . 60 . 81 C D F o f P r e j / P * r e j
P r e j / P * r e j

Fig. 5. Comparison of distribution of service performance levels

0 2 4 4 8 7 2 9 6 1 2 0 1 4 4 1 6 800 . 5 11 . 5
D a t eS ervercost O u r s c h e m eU o P [ 6 0 % , 7 0 % ]U o P [ 8 0 % , 9 0 % ]2 5 / 1 1 2 6 / 1 1 2 7 / 1 1 2 8 / 1 1 2 9 / 1 1 3 0 / 1 1 0 1 / 1 2

Fig. 6. Comparison of server cost

5 Conclusions

In this paper, we explore the resource provisioning from cloud storage provider’s
point of view, and propose a novel resource provisioning model. The model con-
siders the complex interactions among servers during system running by using
queuing network, and captures the relationship between performance metrics
and the allocated resources. Then based on the model, the resource provisioning
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problem is defined as a cost optimization with performance constraints. We put
forward solution algorithms for solving the optimization problem. We have built
a DHT-based storage system in our campus network. Based on real-world traces
collected from system, the experimental results demonstrate that the proposed
scheme can reduce cost while guaranteeing both data availability and response
delay.

References

1. DeCandiaG ., Hastorun D., Jampani M., Kakulapati G., Lakshman A., Pilchin A.,
et al.:Dynamo: Amazon’s Highly Available Key-value Store. ACM Symp. Operating
Systems Principles (SOSP 07), ACM Press (2007) 205-220.

2. Lakshman A., Malik P.:Cassandra: a decentralized structured storage system. ACM
SIGOPS Operating Systems Review, vol. 44 (2010) 35-40.

3. Stonebraker M.: The Case for Shared Nothing. IEEE Database Engineering Bulletin,
vol. 9 (1986) 4-9.

4. Idilio D., Marco M., Maurizio M-M., Anna S., Ramin S., Aiko P. :Inside Dropbox:
Understanding Personal Cloud Storage Services. ACM Conf. Internet Measurement
Conference (IMC 12), ACM Press (2012) 481-494.

5. Jing J., Jie L., Quan Z-G., Dong L-G.:Optimal Cloud Resource Auto-Scaling for Web
Applications. IEEE/ACM Symp. Cluster, Cloud and Grid Computing (CCGrid 13),
IEEE CS Press (2013) 58-65.

6. Ferretti S., Ghini V., Panzieri F., Pellegrini M., Turrini E.: QoS-Aware Clouds.
IEEE Conf. Cloud Computing (CLOUD 10), IEEE CS Press (2010) 321-328.

7. Jing B., Liang Z-Z., Xiong T-R., Bo W-Q.:Dynamic Provisioning Modeling for Vir-
tualized Multi-tier Applications in Cloud Data Center. IEEE Conf. Cloud Comput-
ing (CLOUD 10), IEEE CS Press (2010) 370-377.

8. Lama P., Xiao B-Z.:Efficient Server Provisioning with Control for End-to-End Re-
sponse Time Guarantee on Multitier Clusters. IEEE Trans. Parallel and Distributed
Systems, vol. 23 (2012) 78-86.

9. Zhu Z., Bi J., Yuan H., Chen Y.:SLA Based Dynamic Virtualized Resources Pro-
visioning for Shared Cloud Data Centers. IEEE Conf. Cloud Computing (CLOUD
11), IEEE CS Press (2011) 630-637.

10. Zhu Q., Agrawal G.:Resource Provisioning with Budget Constraints for Adaptive
Applications in Cloud Environments. ACM Symp. High Performance Distributed
Computing (HPDC 10), ACM Press (2010) 304-307.

11. Zhang C., Chen H-P., Gao S-T.:ALARM: Autonomic Load-Aware Resource Man-
agement for P2P Key-Value Stores in Cloud. IEEE Conf. Dependable, Autonomic
and Secure Computing, IEEE CS Press. (2011) 404-410.

12. Gross D., Shortle J-F., Thompson J-M., Harris C-M.:Fundamentals of queueing
theory. 4th ed., John Wiley & Sons (2008)

13. MacGregor S-J.:Properties and performance modelling of finite buffer M/G/1/K
networks. Computers & Operations Research, vol. 38 (2011) 740-754.

14. TijmsH.:Heuristics for finite-buffer queues. Probability in the Engineering and In-
formational Sciences, vol. 6 (1992) 277-285.

15. HP LoadRunner Tutorial (2010)
16. AWS Elastic Beanstalk. http://aws.amazon.com/elasticbeanstalk/.


