An Ensemble Multivariate Model for Resource Performance Prediction in the Cloud

Abstract : In cloud environment, multiple resources performance prediction is the task of predicting different resources by considering the differences from multiple task inferences based on the historical values to make effective and certainty judgmental decisions for the future values. One resource performance prediction can conclude the performance of another, which implies dependency (i.e., multi-resources) or independency (i.e., one resource), but that cannot be directly confirmed accurately. We use time series algorithms to investigate possible approaches, which can greatly assist us to analyze and predict the future values based on previously observed values. The goal of this paper is to review the theory of the common several models of multivariate time series, and to emphasize the practical steps to take in order to fit those models to real data and evaluate the outcome. Moreover, ensemble-learning algorithms are applied to the best-fit models to improve performance. Finally, we will discuss the results.
Type de document :
Communication dans un congrès
Ching-Hsien Hsu; Xuanhua Shi; Valentina Salapura. 11th IFIP International Conference on Network and Parallel Computing (NPC), Sep 2014, Ilan, Taiwan. Springer, Lecture Notes in Computer Science, LNCS-8707, pp.333-346, 2014, Network and Parallel Computing. 〈10.1007/978-3-662-44917-2_28〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01403101
Contributeur : Hal Ifip <>
Soumis le : vendredi 25 novembre 2016 - 14:33:38
Dernière modification le : vendredi 1 décembre 2017 - 01:10:07
Document(s) archivé(s) le : lundi 20 mars 2017 - 17:05:13

Fichier

978-3-662-44917-2_28_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jean Hirwa, Jian Cao. An Ensemble Multivariate Model for Resource Performance Prediction in the Cloud. Ching-Hsien Hsu; Xuanhua Shi; Valentina Salapura. 11th IFIP International Conference on Network and Parallel Computing (NPC), Sep 2014, Ilan, Taiwan. Springer, Lecture Notes in Computer Science, LNCS-8707, pp.333-346, 2014, Network and Parallel Computing. 〈10.1007/978-3-662-44917-2_28〉. 〈hal-01403101〉

Partager

Métriques

Consultations de la notice

45

Téléchargements de fichiers

45