A Compilation and Run-Time Framework for Maximizing Performance of Self-scheduling Algorithms

Abstract : Ordinary programs contain many parallel loops which account for a significant portion of these programs’ completion time. The parallel executions of such loops can significantly speedup performance of modern multi-core systems. We propose a new framework - Locality Aware Self-scheduling (LASS) - for scheduling parallel loops to multi-core systems and boost up performance of known self-scheduling algorithms in diverse execution conditions. LASS enforces data locality, by forcing the execution of consecutive chunks of iterations to the same core, and favours load balancing with the introduction of a work-stealing mechanism. LASS is evaluated on a set of kernels on a multi-core system with 16 cores. Two execution scenarios are considered. In the first scenario our application runs alone on top of the operating system. In the second scenario our application runs in conjunction with an interfering parallel job. The average speedup achieved by LASS for first execution scenario is 11% and for the second one is 31%.
Type de document :
Communication dans un congrès
Ching-Hsien Hsu; Xuanhua Shi; Valentina Salapura. 11th IFIP International Conference on Network and Parallel Computing (NPC), Sep 2014, Ilan, Taiwan. Springer, Lecture Notes in Computer Science, LNCS-8707, pp.459-470, 2014, Network and Parallel Computing. 〈10.1007/978-3-662-44917-2_38〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01403116
Contributeur : Hal Ifip <>
Soumis le : vendredi 25 novembre 2016 - 14:38:16
Dernière modification le : vendredi 1 décembre 2017 - 01:10:08

Fichier

978-3-662-44917-2_38_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yizhuo Wang, Laleh Beni, Alexandru Nicolau, Alexander Veidenbaum, Rosario Cammarota. A Compilation and Run-Time Framework for Maximizing Performance of Self-scheduling Algorithms. Ching-Hsien Hsu; Xuanhua Shi; Valentina Salapura. 11th IFIP International Conference on Network and Parallel Computing (NPC), Sep 2014, Ilan, Taiwan. Springer, Lecture Notes in Computer Science, LNCS-8707, pp.459-470, 2014, Network and Parallel Computing. 〈10.1007/978-3-662-44917-2_38〉. 〈hal-01403116〉

Partager

Métriques

Consultations de la notice

47

Téléchargements de fichiers

7