
HAL Id: hal-01403147
https://inria.hal.science/hal-01403147

Submitted on 25 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

An Estimation-Based Task Load Balancing Scheduling
in Spot Clouds

Daeyong Jung, Heeseok Choi, Daewon Lee, Heonchang Yu, Eunyoung Lee

To cite this version:
Daeyong Jung, Heeseok Choi, Daewon Lee, Heonchang Yu, Eunyoung Lee. An Estimation-Based
Task Load Balancing Scheduling in Spot Clouds. 11th IFIP International Conference on Network
and Parallel Computing (NPC), Sep 2014, Ilan, Taiwan. pp.571-574, �10.1007/978-3-662-44917-2_55�.
�hal-01403147�

https://inria.hal.science/hal-01403147
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Estimation-based Task Load Balancing
Scheduling in Spot Clouds

Daeyong Jung1, HeeSeok Choi1, DaeWon Lee2, Heonchang Yu1, Eunyoung Lee3*

1 Dept. of Computer Science Education, Korea University, Seoul, Korea
2 Division of General Education, SeoKyeong University, Seoul, Korea

3 Dept. of Computer Science, Dongduk Women’s University, Seoul, Korea
1 {karat, hsrangken, yuhc}@korea.ac.kr, 2 daelee@skuniv.ac.kr, 3 elee@dongduk.ac.kr

Abstract. Cloud computing is a computing paradigm in which users can rent
computing resources from service providers according to their requirements.
Cloud computing based on the spot market helps a user to obtain resources at a
lower cost. However, these resources may be unreliable. In this paper, we
propose an estimation-based distributed task workflow scheduling scheme that
reduces the estimated generation compared to Genetic Algorithm (GA).
Moreover, our scheme executes a user’s job within selected instances and
stretches the user’s cost. The simulation results, based on a before-and-after
estimation comparison, reveal that the task size is determined based on the
performance of each instance and the task is distributed among the different
instances. Therefore, our proposed estimation-based task load balancing
scheduling technique achieves the task load balancing according to the
performance of instances.

1 Introduction

In recent years, due to the increased interest in cloud computing, many cloud projects
and commercial systems, such as the Amazon Elastic Compute Cloud (EC2) [1] and
FlexiScale [2], have been implemented. Cloud computing provides high utilization
and high flexibility for managing computing resources. In addition, cloud computing
services provide a high level of scalability of computing resources combined with
Internet technology that are distributed among several customers [3, 4]. In most cloud
services, the concept of an instance unit is used to provide users with resources in a
cost-efficient manner.

Spot-market-based cloud environment configures the spot instance. In the spot
instance environment, spot prices changes depending on the supply and demand of
spot instances. The environment affects the success or failure of task completion
according to the changing spot prices. Spot prices have a market structure and follow
the law of demand and supply. Therefore, cloud services (Amazon EC2) provide a
spot instance when a user’s bid is higher than the current spot price. Furthermore, a
running instance stops when a user’s bid becomes less than or equal to the current

* Corresponding author

spot price. After a running instance stops, it restarts when a user’s bid becomes
greater than the current spot price.

We analyze the task and instance information from the price history data, and
estimate the task size and instance availability from the analyzed data. A workflow is
created using each available instance and the task size. However, the created
workflow has a problem in that it does not consider the failure time of each instance.
To solve this problem, we propose a scheme to change the task size of each instance
using an estimation algorithm, such as Genetic Algorithm (GA).

2 Estimation Method

In this paper, using environment expands workflow scheduling scheme from our
previous paper [5]. Our task distribution method determines the task size in order to
allocate a task to a selected instance. Based on a compute-unit and an available state,
the task size of an instance iI (

iIT) is calculated as

1

1
()
i i

i request baselineN
ii ii

U A
T T U

UU A
=

 × = × × ×
 × ∑

 (1)

where requestT represents the total size of tasks required for executing a user
request. In an instance iI ,

iIU and
iIA represent the compute-unit and the

available state, respectively. The available state
iIA can be either 0 (unavailable) or

1 (available). The baseline represents the standard of the instance.
In our scheduling scheme, chromosome is defined as an assigned task to an

instance. The length of chromosome composes the number of task. If available
instances allocate the same length of chromosome, each instance is different task
completion time. This reason, each instance has different the performance and the
occurrence frequency of out-of-bid situation. The problem solution is the length of
each chromosome varies to consider each instance condition (the performance, the
occurrence frequency of out-of-bid situation, etc.). Therefore, we have designed a
new crossover and mutation scheme for scheduling tasks that is based on the
performance of each instance.

tk,5 tk,6 tk,9 tk,12 tk,5

tj,3 tj,4 tj,8 tj,11 tj,3 tj,4 tj,8tj,6 tj,11

ti,1 ti,2 ti,7 ti,10 ti,1 ti,2 ti,7 ti,9 ti,12ti,10

Before Estimation After Sorting

tk,5

tj,3 tj,4 tj,8 tj,6tj,11

ti,1 ti,2 ti,7 ti,9 ti,12ti,10

After Migration

Ik

Ij

Ii

Ins.

Fig. 1. Processing of migration and sorting

The scheduling scheme is depicted in Fig. 1. The instances Ii, Ij, and Ik have high,

medium, and low performance, respectively. The instance Ik belongs to a positive

group and the other two instances (Ii, Ij) belong to a negative group. In the crossover
operation, we select an instance to find the target instances that belong to the positive
group. Next, we calculate the size of tasks in the positive group that are to be sent to
the negative group (e.g., Ik). Finally, the calculated tasks are distributed to instances in
the negative group (e.g., Ii and Ij) according to the performance of each instance. In
mutation, we perform the re-arrangement of tasks. The re-arrange method sorts tasks
in the increasing order of their indices.

3 Performance Evaluation

The simulations were conducted using the history data obtained from Amazon EC2
spot instances [6]. The history data before 10-01-2010 was used to extract the
expected execution time and failure occurrence probability for our checkpointing
scheme. The applicability of our scheme was tested using the history data after 10-01-
2010. Table 1 shows the parameters and values for the simulation.

Table 1. Simulation parameters and values for instances

Simulation
parameter

Task time
interval

Distribution
time

Merge
time

Checkpoint
time

Recovery
time

Value 43,200(s) 300(s) 300(s) 300(s) 300(s)

0

5,000

10,000

15,000

20,000

25,000

30,000

43,200 86,400 129,600 172,800 216,000 259,200

0

1,000

2,000

3,000

Task Size

 m1.small m1.large m1.xlarge c1.medium
 c1.xlarge m2.xlarge m2.2xlarge m2.4xlarge

-5,000

-3,000

-1,000

R
eq

ue
st

 S
iz

e

R
eq

ue
st

 S
iz

e
: I

ni
tia

l T
as

k

 Initial Task

Fig. 2. Size variations in requested tasks

Fig. 2 shows the size variations of requested tasks in each instance before and after

using the proposed estimation. Initial Task stands for the initial task size before using
the estimation in all instances. The task size is determined based on the performance
of each instance, and the task is distributed among the different instances. Each
instance type (m1.small, m1.large, etc.) indicates the task size.

Fig. 3 shows the variation of the allocated task size in each instance Ii when task
size is 86,400. In each instance, as the task size grows, the instance with high
performance increased the task size, whereas the instance with low performance
reduced the task size. It is due to the failure time of each instance. Therefore, we
reduced the failure time of low performance instances in order to achieve similar
estimated failure times across all instances.

0 2 4 6 8 10
0

3,000

6,000

9,000

12,000

Ta
sk

 S
iz

e

Estimated generation

 m1.small m1.large m1.xlarge c1.medium
 c1.xlarge m2.xlarge m2.2xlarge m2.4xlarge

Fig. 3. Task size variation in each estimated generation

4. Conclusion

In this paper, we proposed an estimation-based task load balancing scheduling in
unreliable cloud computing environments. The proposed scheduling technique
achieves the task load balancing according to the performance of instances. In our
scheme, we reduced the failure time of low performance instances in order to achieve
similar estimated failure times across all instances.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (NRF-2013R1A1A3007940).

References

1. Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2, (2013)
2. Ferraris, F.L., Franceschelli, D., Gioiosa, M.P., Lucia, D. and Ardagna, D., Di Nitto, E. and

Sharif, T.: Evaluating the Auto Scaling Performance of Flexiscale and Amazon EC2 Clouds.
In Proceedings of 14th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC). (2012) 423–429

3. Van, H.N., Tran, F.D., Menaud, J.M.: SLA-Aware Virtual Resource Management for Cloud
Infrastructures. In Proceedings of the 2009 Ninth IEEE International Conference on
Computer and Information Technology. Vol. 2. IEEE Computer Society. (2009) 357-362

4. Komal, M., Ansuyia, M. and Deepak, D.: Round Robin with Server Affinity: A VM Load
Balancing Algorithm for Cloud Based Infrastructure. Journal of Information Processing
Systems, Vol. 9. No. 3. (2013) 379-394

5. Daeyong Jung, JongBeom Lim, Heonchang Yu, JoonMin Gil, and EunYoung Lee.: A
Workflow Scheduling Technique for Task Distribution in Spot Instance-Based Cloud.
Proceeding CUTE2013 (2013) 409-416

6. Cloud exchange, http://cloudexchange.org, (2013)

