
HAL Id: hal-01404003
https://inria.hal.science/hal-01404003

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A High-Speed Network Content Filtering System
Guohong Zhao, Shuhui Chen, Baokang Zhao, Ilsun You, Jinshu Su, Wanrong

Yu

To cite this version:
Guohong Zhao, Shuhui Chen, Baokang Zhao, Ilsun You, Jinshu Su, et al.. A High-Speed Network
Content Filtering System. International Cross-Domain Conference and Workshop on Availability,
Reliability, and Security (CD-ARES), Sep 2014, Fribourg, Switzerland. pp.257-269, �10.1007/978-3-
319-10975-6_20�. �hal-01404003�

https://inria.hal.science/hal-01404003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A High-Speed Network Content Filtering System

Guohong Zhao1, Shuhui Chen1, Baokang Zhao1, Ilsun You2,Jinshu Su1, Wanrong Yu1

1School of Computer Science, National University of Defense Technology,

Changsha, Hunan, CHINA
1{ghzhao, csh, bkzhao, sjs, wlyu}@nudt.edu.cn

2School of Information Science, Korean Bible University, Seoul, South Korea
2{ilsunu@gmail.com}

Abstract. Current software based Content Filtering Systems are too computing

intensive in large scale packets payload detection and cannot meet the perfor-

mance requirements of modern networks. Thus, hardware architectures are de-

sired to speed up the detection process. In this paper, hardware based Conjoint

Network Content Filtering System (CNCFS) is proposed to solve the problem. In

CNCFS, a TCAM based algorithm named Linking Shared Multi-Match (LSMM)

is implemented, which can speed up large scale Multi-Pattern Multi-Matching

greatly. Also, this system can also be used in high speed mobile networks which

need to deal with the security of fast handover of mobile users. The results of

performance evaluation show that our solution can provide 5 Gbps wire speed

processing capability.

Keywords: Key words: Network Security, Hardware Accelerating, Content

Filtering, Pattern Match

1 Introduction

Today, large number of malicious attack, illegal intrusions, worms and other harmful
information are spreading over the Internet. CFS (Content Filtering System) and IDS
based on software are used to isolate and monitor these harmful information. However,
software based CFS and IDS are essentially computing intensive and can’t keep up
with the traffic rates requested by most of telecom backbone which employed OC48 or
OC192 high-speed links. Moreover, they can’t afford to support the high performance

requirements for secure and fast handover in mobile internet networks including Mo-
bile IPv6 (MIPv6) or PMIPv6 [14-15], Thus, new content filtering based on hardware
architectures is a promising way to fill up the gap between network traffic rates and
NIDS analysis rates.

Content Filtering is a pattern matching process focus on the payload of network
packet. There are many security applications which require content pattern matching,
such as network intrusion detection and prevention, content filtering, and load ba-
lancing. Measurements on Snort IDS show that 80% of total processing time is spent on
string matching [4]. Thus, using high-speed algorithms or customized hardware to
accelerate the speed of content matching becomes a critical problem.

Currently, network content filtering systems mainly deal with packet reassembly,
application recovery, content pattern matching, alarm and event log. Among all, con-
tent pattern matching consumes most of the computing resources. The process of

pattern matching is as follows: given { }kpppP L10 ,= as a set of patterns, which are
the character strings from fixed alphabet ∑; given NtttT L,, 21= as a very large
text, whose characters are also from ∑, then, the purpose of pattern matching is to find

out every ip in T, where)1,00(1100 Nkktttp kkki ≤≤= + L .
Some characteristics of the network content filtering system are listed here:

• The matching speed should be above Gbps.
• The payload of every packet should be matched and there are thousands or more

rules, whose length are various.
• Frequently updating of the rules is unnecessary. Adding or deleting single rule can

be completed within several seconds.

Since content pattern matching is computing intensive, lots of researches concen-
trate on how to accelerate the pattern matching. In 1975, Aho [1] proposed the AC
Algorithm, which maps the multi-pattern matching process to the state transfer on the
state machine. Based on it, many optimized algorithms have been proposed, such as
C.J. Coit’s AC_BM [3] algorithms and M. Fish’s Boyer-Moore-Horspool [4] algo-
rithm. Software based improving algorithms were proposed in [8-9]. In recent years,
content filtering turns to use customized hardware to accelerate the pattern matching.
TCAM (Ternary Content Addressable Memory) is a component providing tri-state
cells of fixed length. Every item (of the TCAM?) contains a bit string and each bit in the
string can be 0, 1, or x (do not care). According to the content being searched, TCAM
compares this string against all cells of it parallelly, and reports the matched entry.

TCAM have the characteristics of deterministic searching time and deterministic ca-
pacity, which make it quite suitable for packet classifying applications. Currently
TCAM supports more than 100M times searching in parallel over 288 Bit, or even
wider ranges. We can store more than 128K matched patterns in one TCAM.

Fang Yu [6] proposed a method which could store long-pattern segments into
TCAM and approach Gigabit matching speed. However, this system needs to maintain
a Match Table (MT) and its RAM requirement is too much for a network device. Based
on the DIRPE method, Karthik Lakshminarayanan [7] proposed a fence code, which
was used to solve the multi-matching problem of fixed area (e.g. five-meta item), and
there are different characteristics between content rules and fixed field rules .

The architecture and method proposed in this paper are applicable to IDS or Content
Filtering Systems. In this architecture, the software compiles rules and downloads them
to the hardware, while the hardware completes the packet stream recovery and pattern
match. This paper mainly discusses the following contents:

• A Conjoint Network Content Filtering System (CNCFS) is proposed and imple-
mented.

• Based on CNCFS, a long-pattern hardware matching method using TCAM is pro-
posed and actualized.

• By using little resources, a TCAM multi-matching scheme is implemented which
can provide more than 5 Gbps wire speed processing ability.

2 Proposed Approach

In CNCFS model, hardware component (Line Card) does packet reception, packet
stream recovery, pattern match and event alarm; software component (Control Card)
does rule compiling, loads compiled rule image to hardware, interfaces to Adminis-
trator and so on, as illustrated in Figure 1. After packets enter the system from the
interfaces, they are recovered to streams before being sent to Matching Engine for
pattern matching. During the matching, some event results are sent to software for log
records, alarming or composite rule processing on higher levels.

Packet reassembly and flow recovery are very critical in the system. In some special
applications, e.g. BBS (telnet), every packet only transmits a byte, while the combina-
tion of many bytes in different packets may form illegal information. During packet
transmission through the network links, large IP packets may be fragmented due to the
various MTUs of different links. To escape detection, illegal information promulgators

often divide the large data into many small packets and transmit them into the network.
Thus, the fingerprints are spread into several packets, which make the detecting of
those illegal information very difficult for the Matching Engine. The stream recovery
module takes the responsibility of preprocessing packets, combining the data from the
same flow to form one message. The stream recovery module reassembles the inactive
flows in every △t period, or buffer those data in a certain memory space (Memcap)
and reassemble them later. Here, the Memcap and △t should be selected carefully.

Fig. 1. CNCFS Architecture

The following of this paper mainly expatiates on the matching methods of multi-pattern
multi-matching using TCAM.

2.1 TCAM

TCAM is widely used on IP head rules matching, e.g. the longest prefix matching in
routing search. Due to its intrinsic ability of parallel searching, it is also used in other
high-speed pattern matching cases.

In the field of hardware packets classification, TCAM is one of the most popular
methods. Besides 0 and 1, TCAM can store “do not care (x)” state and compare the
input keywords with its items in parallel. Given the number of different rules is M, the
memory space TCAM requires is only O(M). For a packet of length N, W bytes of the
packet are matched in TCAM each time, where W is the width of the TCAM, then shift
one byte and check the TCAM again. The search speed TCAM can attain is O(N).

Besides its advantages, TCAM also has the shortcomings of low density and high
power consumption, so it should be used efficiently.

TCAM is based on first-match, which just exports the lowest index among all
matches of the input string if there are two or more matches. However, content filtering
system and IDS are based on multi-match, which means that a packet may match
multiple keywords. If TCAM is used for multi-matching of content patterns, we should
first solve the long rules (rules that exceed the width of TCAM) and the rules storage
sequence problems.

2.2 Rule Length

Content Security System often needs to add or delete some rules, but the proportion of
various lengths in the rule set is relatively stable. Figure 2 shows the length distribution
of 1070 rules. Here, the content of these rules is in unicode, so their lengths are all even.
There is only one longest rule of 18 Unicode UCS-2 characters (36 bytes). The shortest
rules have 2 unicode characters. The lengths of most rules are distributed between 6 and
10 bytes, which account for 80% of the rules. If we adopt the length of the longest rule
as the configuration length of TCAM, a lot of TCAM space will be used to store x (do
not care). Take Figure 2 as an example, if we adopt 36 bytes as the configuration length,
the utility ratio of TCAM is only 26.2%. So, in order to save TCAM space, we need to
find an effective method to store long rules.

Fig. 2. Rule Length Distribution

2.3 LSMM

We introduce the Linking Shared Multi-Match (LSMM) to solve the storage problem
of long rules. The storage strategy of LSMM is as following: every item in TCAM
consists of prefix number and segment content. Suppose the length of segments in
TCAM is 4, the rule “ABCDEFGHIJ” of length 10 is organized as Figure 3, in which it
is divided into three segments: “ABCD”, “EFGH” and “IJ”, the last two bytes of the
last segment are filled by “**” (denoting 16 “do not care” bits). In Figure 3, the leftmost
column is the index of TCAM, identified by the addresses. Column 2 stores the address
pointer of the preceding segment. Column 3 stores the segment patterns. Column 2 and
3 are stored in TCAM. Column 4 contains matching results which are stored in SRAM.

Index B6…B B3…B Matched
0 1 IJ** Ri
1 2 EFGH
2 -1 ABCD

Fig. 3. Rule Storage Example

If there are n items stored in TCAM, then it is necessary to increase n2log bits for
every item to store the addresses of preceding segments (the preceding field). Each time
before matching, we add the preceding field in the front of the matched content, then
send it to TCAM to do the next comparison. When there is a hit in the preceding
segment, we record it in memory. We call the data structure a partial hit list, which
records both the position and the index of the hit packets.

Suppose the payload of an input packet is “ZABCDEFGHIJKLMN” and we want to
perform content matching using the rules in Figure 3. First, we should add the pre-
ceding field “-1” (it is the preceding field value of the first segment). Second, use
“-1ZABCDEFGHIJKLMN” to match. If there is no hit, shift one byte so that the string
to be matched becomes “-1ABCDEFGHIJKLMN”. If there is a hit on the second
segment, the partial hit list records this hit. The desired next-hit position of the packet is
recorded on the first field, and the current TCAM position of this hit is recorded on the
second field. Then, we continue to shift and match “-1BCDEFGHIJKLMN”. When
reaching the position of the sixth byte, we use “-1EFGHIJKLMN” to match firstly.
There is not hit, so we take out address 2 from PHL to constitute “2EFGHIJKLMN”,

then there is a hit. According to the process, the last match is 0 segment and the
matching rule is Ri (Figure 3 and Figure 4).

If the length all the rules are shorter than or equal the TCAM width, they are stored
in TCAM according to their lengths in descending order to implement multi-match. If
the length of some rules is greater than the TCAM width, then these rules cannot be
simply stored due to the required segment. For example, if the TCAM width is 4, then
two rules “ABCDEFGH” and “EFGHXYZW” will share the segment “EFGH”. In this
case, an effective assignment method should be adopted to solve the share problem and
multi-match problem.

Fig. 4. Long pattern match process example

2.4 Well-ordered TCAM Rule Assignment

The aim of the Well-ordered TCAM Rule Assignment is that, after the rule assignment
of a rule set which consists of various rule lengths is stored in TCAM, there shoud be no
match missing for any packet and any rule set.

First, if the rules are within the TCAM width, for two rules iR and jR , the
matching list are iM and jM , the storage position of TCAM are iP and jP , and
TCAM width for storing content is W, the number of items in TCAM is H. Here are
four cases:

(1) If φRR ji =∩ , the sequence of iR and jR is not important for their position.

-1ZABCDEFGHIJKLM

Position 1

PHL

Match keyword

Packet
position Hit position

-1ABCDEFGHIJKLM

Position 2

 PHL

Match keyword

Packet
position Hit position

6 2

-1EFGHIJKLM

Position 6
（the first time ）

 PHL

Match keyword

Packet
position Hit position

6 2

2EFGHIJKLM

Position 6
（the second time ）

 PHL

Match keyword

Packet
position Hit position

10 1

-1IJKLM

Position 10
（the first time ）

 PHL

Match keyword

Packet
position Hit position

10 1

1IJKLM

Position 10
（the second time ）

 PHL

Match keyword

Packet
position Hit position

(2) If ji RR ⊆ , then jP < iP , and ij MM ⊇ .
(3) If ij RR ⊂ , then iP < jP , and ji MM ⊇ .
(4) If φRR ji ≠∩ and never meets the 2nd and 3rd conditions, then the sequence

of iR and jR is not important for their position.

Definition 1: for the general rule nSegSegSeg L,,R 21= , R is an ordered set,
11, −≤≤= niWSeg i ; WSeg n ≤ , ∑

=
= n

i iSegR
1 , S(R) = n.

Definition 2: for the connection operation “+”, i,ni,i,i Seg,,SegSegR L21= ,

j,mj,j,j Seg,,SegSegR L21= , j,mj,i,ni,ji Seg,,Seg,Seg,SegRR LL 11=+ .

Definition 3: given two rules *, Σ∈jk RR , if there is a max length ,iR that

jki RRR =+ , then we call iR is the prefix of jR , recorded as ji RR p .

Definition 4: given two rules *, Σ∈jk RR , if there is a max length ,iR that

jki RRR =+ , MWRi = , then we call iR is the ordered prefix of jR , recorded as joi RR p .

Definition 5: If there are iR , jR and max-length sR , and jos RR p ,

ios RR p , then iR and jR share prefix sR . We call iR and jR sharing max

ordered prefix sR , recorded as MOP(iR , jR)= sR .

There are several relationships between two different rules iR and jR :
(1) joi RR p , jR contains iR and S(iR)=MW.

(2) ioj RR p , iR contains jR and S(jR)=MW.

(3) MOP(iR , jR)= sR , iR and jR share the max-prefix sR .

(4) iR and jR do not contain each other or do not share the max ordered prefix.
When there are rules which contain others, a string matching the “parent rule”

should match the “child rule”. In order to ensure the TCAM be well-ordered, the “child
rule” must be stored after its “parent rule”. If there is a max ordered prefix shared
between different rules, then we just store the max-prefix sR once.

2.5 Algorithm

The algorithm converts the rule set ({ }kR,RRRuleSet L21=) to a well-ordered TCAM
extended rule set E, and loads the rule into TCAM. Insert (iR ,E) is a process which
inserts iR into E, scans all the rules of E, evaluates the relation between iR and every

rule in E, and then makes some disposition. The algorithm is described as follows:
CompileRule{
 φ=E ;
 for all the rule iR in RuleSet

 E=Insert(iR , E);
 Convert PrePoint to Address of Segment and write E into TCAM;
}
Insert(iR , E){
 int MinPosition = 0;
 int MaxPosition =H-1;
 int BeginStore=1;
 for all the jR in E{
 if joi RR p :
 iRsjRsj RMM jj ∪=)(,)(, ;
 return;
 if ioj RR p :
 jRSiRSi RMM jj ∪=)(,)(, ;
 Delete(jR);
 if MOP(iR , jR)= sR , sR ≠ iR , sR ≠ jR
 BeginStore= 1+/WRs
 continue;
 }
 for all the jR in E{
 if(ij RR ⊂) MaxPosition = Position of)(, jRSjSeg + 1;

if(ji RR ⊂) MinPosition = Position of 1,jSeg - 1;
 }

if BeginStore<=n
Insert niSeg , … rei,BeginStoSeg in any place from MinPosition to MaxPosition;

}
Now we explain the algorithm through an example. Supposing we have five rules,

which are 1R = “ABCDEFGHIJKLM”, 2R = “ABCDEFGH”, 3R = “ABCDWXYZ”,

4R = “AB”, and 5R = “EFGH”. If the TCAM width is 4, then the storage of these rules
is demonstrated in Figure 5.

0 4 WXYZ 3R

1 2 M*** 1R

2 3 IJKL
3 4 EFGH 2R ,

5R

4 -1 ABCD 4R

5 -1 AB** 4R

6 -1 EFGH 5R

Fig. 5. Example of rule assignment

Following is a list of the packet matching algorithm:
Match(Packet){
 for CurPositsition from 1 to packetlength{
 for all item in PHL{
 if item.PackPosition=CurPosition
 PHLPop();
 MatchingCont=item.PackPosition+*Packet[CurPosition];
 if(index=MatchTCAM() is valid){
 output(SRAM[index]);
 if(not TCAM[index].LastSeg) PHLPush(CurPostion, index);
 }
 }
 MatchingCont=”-1”+*Packet[CurPosition];

index=MatchTCAM();
 if(index is valid){
 output(SRAM[index]);
 if(not TCAM[index].LastSeg) Pop(CurPostion, index);
 }
}
An example using the algorithm is given in Section 2.3.

3 Analysis and Implementation

3.1 Implementation

The deployment of our system is plotted in Figure1. The control board uses Intel Pen-
tium M 1.6G CPU with 512M memory. The OS is RedHat Linux 9.0. The TCAM of the
line card uses Cypress CYN70256. There are two OC48 ports on the line card. One

Compact PCI bus is used to connect line card and control board as Control Channel and
Event Transfer Channel. We use two Matching Engines to process in parallel.

Packets enter the system through AMCC S4803, and then are sent to the Stream
Recovery Module for packet assembling. The stream recovery process adopts the idea
of [10]. After that, packets go to the Matching Engine for content matching. If there are
some hits, then software will deal with higher-level matching using more complicated
rules, such as probability, accumulation, and group, etc.

Section 3.2 indicates that, given a rule set, there is a minimum limit for the capacity
of the TCAM. Because there is a determinate configuration limit on the length of
TCAM, we should compromise between the configurable TCAM width and the per-
formance requirement [11].

When the length of a content rule is longer than 1 byte, it is necessary to match
TCAM many times. Multiple matching is implemented though shifting bytes as fol-
lowing. If the packet length is M bytes, we should shift M-1 times in all. Before each
shift, there is a match process for the items of TCAM. We can use S-Double technology
to accelerate the shifting step. We shift one byte rightward for each segment of all rules,
and then restore it. In order to speed up the matching, every segment is stored twice in
the TCAM. After each TCAM matching, we can shift the content rightward two bytes
before starting new matching. Thus, by trading space for time, we accelerate the speed
of TCAM matching [12-13].

When we use the S-Double technology, our system can automatically decide
whether to adopt S-Double or not, according to the number of rules. If the storage space
used by the rules decreases to half of the TCAM space, the system adopts this tech-
nology. On the contrary, if the space increases to half of the TCAM space, S-Double
will be shut down and the duplicated stored rules will be deleted. In order to avoid
fluctuation during the process of adding or deleting rules, after many simulations, we
select 2 proper threshold-values: waterline_nosd and waterline_sd. When the number
of the whole segment falls to waterline_sd, we adopt the S-Double technology; when it
grows up to waterline_nosd, we cancel it. This technology can effectively avoid fluc-
tuation during the process of adding or deleting rules and achieve the optimal speed
according to different states of the system.

Furthermore, the S-Double technology could be used repetitively. We can store rules
3 times of the original rules number and shift 3 bytes after each match, or store rules 4
times of the original rules number and shift 4 bytes every match, etc.

3.2 Memory Space Analysis

In a rule set of n rules, the length of every rule is iL , 0≤i≤N-1, the segment number of

the rules is SegNum, SegNum= ∑
−

=
−+

1N

0i
1)/WWi(L , the TCAM bits required to be

extended for every segment are ⎡ ⎤)(2 SegNumLogWext = , and the total TCAM space

is SegNumWW extcont *)(+ . As mentioned in section 2.2, the parameter W is con-

figurable and smaller W means higher utility ratio of the system. The smaller W is, the

larger the segment number will be, the more bits SegNum should be extend. The larger

W is, the smaller the segment number will be and fewer bits SegNum should be extend.

Regarding to the rule lengths in Figure 2, we compute corresponding TCAM space

size needed. We get the relationship between different segment length and different

TCAM space sizes, as shown in Figure 6. Using LSMM, for all those rule lengths,

averagely 6% accessional TCAM space is added to solve the long rule problem.

Fig. 6. Relationship between Segment Length and TCAM space size

Fig. 7. Relationship between rule number and RAM Space of LSMM

The RAM space size of LSMM can be depicted by the following expression:

⎡ ⎤ ∑ +)/)1((*)(2 WRSegNumNLog i . When the distribution of rule length is steady, the
size of the RAM space is almost linear with the rule number. Generally speaking,
TCAM width is 36, 72, 144 and 288 bits [2], etc. The frequency of TCAM is low if its
width is too small or too large. In our system, we consider the typical case (72 bits
width, 8 bytes segment width). Figure 7 shows the changing of the space size along
with different rule numbers.

3.3 Performance Analysis

After accessing TCAM, if there is a hit, then accessing SRAM is necessary and the
access process can be streamlined. The system performance is limited by the access
time of TCAM or SRAM. Because at some positions of some packets, if the PHL is not
empty and the desired next-hit position of some items equal the current position, we
need to access TCAM many times. Since the packet streamlining is limited, so FIFO is
needed to smooth the burst.

Considering random packet contents, for any w bytes in the packet, there are

w82 possible values, so the chance of matching one particular pattern is w82/1 . There

are ∑
i

iRS)(segments (TCAM items) to be matched. So counting in the address pointer

of the preceding segment, the hit probability of one pattern is ⎡ ⎤∑+∑)(2log82/)(iRSw
iRS ,

which decreases dramatically when w increases. For instance, supposing we have 1000

rules (each rule is 64bytes) and the segment width is 8 bytes (which is the typical width

with best TCAM performance), the hit rate should be 5.29e-20. The average PHL size

is too difficult to compute, theoretically speaking it should be less

than ⎡ ⎤∑+∑)(2log82/)(* iRSw
iRSw . Since the hit of last segments of all rules do not

increase the PHL size, so the average PHL size should be less than 5.29e-20.

 The size of the FIFO packet queue is determined by the maximum PHL, while not the
average PHL. Through capturing packets on an OC48 interface for 60 seconds (the
real-time throughput was about 1.8Gbps, all packets whose sizes were less than 62
bytes were ignored, because they did not match our rules. The total memory space of
the packets in the 60 seconds time was about 14.4G Bytes. Using the rules mentioned in
section 2.2, registers in Matching Engine showed that 9 rules were matched. The max

size of PHL was 3, because the rules we used contained segment inclusive relationships
as described in section 2.4. If we modify the rules, the max PHL would be even less.
 Table 1 lists the work process during the matching process using LSMM.

Table 1. Match Process

LSMM

Before match-
ing

Clear out-of-date items of Partial Hitting
List, add the preceding field of matched
content

Matching
process

Send the keywords to be matched into
TCAM, two processes is the same.

After
matching

Hit Get hit index and write Partial Hit List
Shift bytes

No
Hit

Shift bytes.

LSMM does not induce obvious additional time cost and FPGA logics is comparable to
the pure TCAM matching. The addition of preceding field before matching is parallel
to the TCAM searching process. If PHL is too long, system may be bottlenecked. In our
case, the operating frequency of TCAM is 100MHz and the width of TCAM is 72 bits.
For Cypress CYN70256 [2], two time cycles are needed to complete one match. In the
real network testing, without using the S-Double technology, CNCFS can obtain
throughput about 800Mbps (we had two matching engines work simultaneously, each
one achieves 400Mbps throughput), However, after using S-Double 8 times, the
throughput of CNCFS can be improved to 6.4 Gbps.

We also test our system using the SPRIENT AX4000, with the following setting of
traffic flows to simulate real network traffic:

64 bytes 50% of whole traffic
128 bytes 5% of whole traffic
256 bytes 5% of whole traffic
512 bytes 10% of whole traffic
1024 bytes 10% of whole traffic
1600 bytes 10% of whole traffic
2 OC48 ports of the AX4000 were connected to our system. The throughput ratio is

set as 100%, which means the whole traffic is about 5Gbps. In this test, our system
detects all packets correctly without any loss. In fact, because the packets headers do
not enter the matching engine, the actual payload traffic was less than 5Gbps.

Each time the LSMM updates a rule (delete or add), it needs to reorganize the entries
of TCAM. We utilize a batching process to load more than 1070 rules. This process
takes about 2 seconds for the loading of rules and less than 1.5 seconds for the writing
of TCAM, which is acceptable for real applications.

4 Conclusions

In this paper, a novel content filtering architecture (CNCFS) using LSMM in TCAM is
proposed to meet the requirements of the high performance processing for the rapid
increasing network bandwidth. Our NCFS implementation combines the software and
hardware to complete the process of content filtering. The performance evaluation
shows that our system can improve the network throughput up to 5Gbps.

This paper mainly addresses the following three issues:

• A new network content filtering system framework is proposed and implemented.
• The content rule matching is implemented using TCAM, which solves the problem

of long rules storage.
• Without changing the structure of TCAM, a new solution is proposed to solve the

multi-matching problem by using fewer storage resources, which can improve the
matching speed up to 5 Gbps.

5 Acknowledgment

The work described in this paper is partially supported by the project of National
Science Foundation of China under grant No. 61202488, 61272482; the National High
Technology Research and Development Program of China (863 Program) No.
2012AA01A506, 2013AA013505. This research was also in part supported by Basic
Science Research Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Science, ICT & Future Planning(2014R1A1A1005915).

References

1. A. V. Aho and M. J. Corasick, Efficient string matching: An aid to bibliographic search.

Communications of ACM, June 1975, 18(6): 333 - 334.

2. Cypress Semiconductor Corp. Content addressable memory. http://www.cypress.com/.

3. C.J. Coit, S. Staniford, and J. McAlerney, “Towards Faster String Matching for Intrusion

Detection or Exceeding the Speed of Snort,” DARPA Information Survivability Conference

and Exposition (DISCEX II'01), 2001.

4. M. Fish and G. Varghese, “Fast Content-Based Packet Handling for Intrusion Detection”

UCSD technical report CS2001-0670, 2001.

5. S.Antonatos, K.G.Anagnostakis, and E.P. Markatos. Generating realistic workloads for

network intrusion detection systems. In Proc. of the 2004 ACM Workshop on Software and

Performance.

6. Fang Yu, Randy H.Katz, and T. V. Lakshman. Gigabit Rate Packet Pattern-Matching Using

TCAM, In Proc. of the 12th IEEE International Conference on Network Protocols

(ICNP'04).

7. K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, Algorithms for Advanced

Packet Classification with Ternary CAMs. In SIGCOMM’05, August 21-26, 2005.

8. G. Peng, Z. Deyun, S. Qindong, Z. Yahui, and L. Wuchun, Multi-Pattern Approximate

Matching Algorithm of Network Information Audit System, Journal of Software, 2004,

15(7) :1074 - 1080.

9. S. Hua and D. Yiqi, A New Fast String Matching Algorithm for Content Filtering and De-

tection, Computer research and development, 2004, 41(6) :940-945.

10. Z. M. Zhong, G. J., and Ding Wei, Study of network flow timeout strategy, JOURNAL ON

COMMUNICATIONS, 2005, 26(4):88-93.

11. L. Caviglione, A. Merlo, and M. Migliardi, Green-Aware Security: Towards a new Re-

search Field, the International Journal of Information Assurance and Security (JIAS), Vol. 7,

2012, issue 5, pp. 338-346.

12. M. Migliardi and A. Merlo, Energy Consumption Simulation of Different Distributed In-

trusion Detection Approaches, In Proc. of the 27th IEEE International Conference on Ad-

vanced Information Networking and Applications (AINA’13), Barcelona, Spain, March

2013.

13. M. Migliardi and A. Merlo, Improving Energy Efficiency in Distributed Intrusion Detection

Systems, Journal of High Speed Networks, IoS Press, 19(3): 251-264, 2013

14. B Kim, J Yang, and I. You, A survey of NETLMM in all-IP-based wireless networks, In

Proc. of ACM Mobility 2008, I-Lan, Taiwan, September 2008

15. I. You, J.-H. Lee, and K. Sakurai, DSSH: Digital signature based secure handover for

network-based mobility management. Computer Systems: Science & Engineering. 27(3),

May 2012

