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Abstract. Current software based Content Filtering Systems are too computing 

intensive in large scale packets payload detection and cannot meet the perfor-

mance requirements of modern networks. Thus, hardware architectures are de-

sired to speed up the detection process. In this paper, hardware based Conjoint 

Network Content Filtering System (CNCFS) is proposed to solve the problem. In 

CNCFS, a TCAM based algorithm named Linking Shared Multi-Match (LSMM) 

is implemented, which can speed up large scale Multi-Pattern Multi-Matching 

greatly. Also, this system can also be used in high speed mobile networks which 

need to deal with the security of fast handover of mobile users. The results of 

performance evaluation show that our solution can provide 5 Gbps wire speed 

processing capability. 

Keywords: Key words: Network Security, Hardware Accelerating, Content 

Filtering, Pattern Match 

1 Introduction 

Today, large number of malicious attack, illegal intrusions, worms and other harmful 
information are spreading over the Internet. CFS (Content Filtering System) and IDS 
based on software are used to isolate and monitor these harmful information. However, 
software based CFS and IDS are essentially computing intensive and can’t keep up 
with the traffic rates requested by most of telecom backbone which employed OC48 or 
OC192 high-speed links. Moreover, they can’t afford to support the high performance 



requirements for secure and fast handover in mobile internet networks including Mo-
bile IPv6 (MIPv6) or PMIPv6 [14-15], Thus, new content filtering based on hardware 
architectures is a promising way to fill up the gap between network traffic rates and 
NIDS analysis rates.  

Content Filtering is a pattern matching process focus on the payload of network 
packet. There are many security applications which require content pattern matching, 
such as network intrusion detection and prevention, content filtering, and load ba-
lancing. Measurements on Snort IDS show that 80% of total processing time is spent on 
string matching [4]. Thus, using high-speed algorithms or customized hardware to 
accelerate the speed of content matching becomes a critical problem. 

Currently, network content filtering systems mainly deal with packet reassembly, 
application recovery, content pattern matching, alarm and event log. Among all, con-
tent pattern matching consumes most of the computing resources. The process of 

pattern matching is as follows: given { }kpppP L10 ,=  as a set of patterns, which are 
the character strings from fixed alphabet ∑; given NtttT L,, 21=  as a very large 
text, whose characters are also from ∑, then, the purpose of pattern matching is to find 

out every ip  in T, where )1,00(1100 Nkktttp kkki ≤≤= + L . 
Some characteristics of the network content filtering system are listed here: 

• The matching speed should be above Gbps. 
• The payload of every packet should be matched and there are thousands or more 

rules, whose length are various. 
• Frequently updating of the rules is unnecessary. Adding or deleting single rule can 

be completed within several seconds. 

Since content pattern matching is computing intensive, lots of researches concen-
trate on how to accelerate the pattern matching. In 1975, Aho [1] proposed the AC 
Algorithm, which maps the multi-pattern matching process to the state transfer on the 
state machine. Based on it, many optimized algorithms have been proposed, such as 
C.J. Coit’s AC_BM  [3] algorithms and M. Fish’s Boyer-Moore-Horspool [4] algo-
rithm. Software based improving algorithms were proposed in [8-9]. In recent years, 
content filtering turns to use customized hardware to accelerate the pattern matching. 
TCAM (Ternary Content Addressable Memory) is a component providing tri-state 
cells of fixed length. Every item (of the TCAM?) contains a bit string and each bit in the 
string can be 0, 1, or x (do not care). According to the content being searched, TCAM 
compares this string against all cells of it parallelly, and reports the matched entry. 



 

TCAM have the characteristics of deterministic searching time and deterministic ca-
pacity, which make it quite suitable for packet classifying applications. Currently 
TCAM supports more than 100M times searching in parallel over 288 Bit, or even 
wider ranges. We can store more than 128K matched patterns in one TCAM. 

Fang Yu [6] proposed a method which could store long-pattern segments into 
TCAM and approach Gigabit matching speed. However, this system needs to maintain 
a Match Table (MT) and its RAM requirement is too much for a network device. Based 
on the DIRPE method, Karthik Lakshminarayanan [7] proposed a fence code, which 
was used to solve the multi-matching problem of fixed area (e.g. five-meta item), and 
there are different characteristics between content rules and fixed field rules . 

The architecture and method proposed in this paper are applicable to IDS or Content 
Filtering Systems. In this architecture, the software compiles rules and downloads them 
to the hardware, while the hardware completes the packet stream recovery and pattern 
match. This paper mainly discusses the following contents: 

• A Conjoint Network Content Filtering System (CNCFS) is proposed and imple-
mented. 

• Based on CNCFS, a long-pattern hardware matching method using TCAM is pro-
posed and actualized. 

• By using little resources, a TCAM multi-matching scheme is implemented which 
can provide more than 5 Gbps wire speed processing ability. 

2 Proposed Approach 

In CNCFS model, hardware component (Line Card) does packet reception, packet 
stream recovery, pattern match and event alarm; software component (Control Card) 
does rule compiling, loads compiled rule image to hardware, interfaces to Adminis-
trator and so on, as illustrated in Figure 1. After packets enter the system from the 
interfaces, they are recovered to streams before being sent to Matching Engine for 
pattern matching. During the matching, some event results are sent to software for log 
records, alarming or composite rule processing on higher levels. 

Packet reassembly and flow recovery are very critical in the system. In some special 
applications, e.g. BBS (telnet), every packet only transmits a byte, while the combina-
tion of many bytes in different packets may form illegal information. During packet 
transmission through the network links, large IP packets may be fragmented due to the 
various MTUs of different links. To escape detection, illegal information promulgators 



often divide the large data into many small packets and transmit them into the network. 
Thus, the fingerprints are spread into several packets, which make the detecting of 
those illegal information very difficult for the Matching Engine. The stream recovery 
module takes the responsibility of preprocessing packets, combining the data from the 
same flow to form one message. The stream recovery module reassembles the inactive 
flows in every △t period, or buffer those data in a certain memory space (Memcap) 
and reassemble them later. Here, the Memcap and △t should be selected carefully. 

 

Fig. 1. CNCFS Architecture 

The following of this paper mainly expatiates on the matching methods of multi-pattern 
multi-matching using TCAM. 

2.1 TCAM 

TCAM is widely used on IP head rules matching, e.g. the longest prefix matching in 
routing search. Due to its intrinsic ability of parallel searching, it is also used in other 
high-speed pattern matching cases. 

In the field of hardware packets classification, TCAM is one of the most popular 
methods. Besides 0 and 1, TCAM can store “do not care (x)” state and compare the 
input keywords with its items in parallel. Given the number of different rules is M, the 
memory space TCAM requires is only O(M). For a packet of length N, W bytes of the 
packet are matched in TCAM each time, where W is the width of the TCAM, then shift 
one byte and check the TCAM again. The search speed TCAM can attain is O(N). 



 

Besides its advantages, TCAM also has the shortcomings of low density and high 
power consumption, so it should be used efficiently. 

TCAM is based on first-match, which just exports the lowest index among all 
matches of the input string if there are two or more matches. However, content filtering 
system and IDS are based on multi-match, which means that a packet may match 
multiple keywords. If TCAM is used for multi-matching of content patterns, we should 
first solve the long rules (rules that exceed the width of TCAM) and the rules storage 
sequence problems. 

2.2 Rule Length 

Content Security System often needs to add or delete some rules, but the proportion of 
various lengths in the rule set is relatively stable. Figure 2 shows the length distribution 
of 1070 rules. Here, the content of these rules is in unicode, so their lengths are all even. 
There is only one longest rule of 18 Unicode UCS-2 characters (36 bytes). The shortest 
rules have 2 unicode characters. The lengths of most rules are distributed between 6 and 
10 bytes, which account for 80% of the rules. If we adopt the length of the longest rule 
as the configuration length of TCAM, a lot of TCAM space will be used to store x (do 
not care). Take Figure 2 as an example, if we adopt 36 bytes as the configuration length, 
the utility ratio of TCAM is only 26.2%. So, in order to save TCAM space, we need to 
find an effective method to store long rules. 
 

 

Fig. 2.  Rule Length Distribution 



2.3 LSMM 

We introduce the Linking Shared Multi-Match (LSMM) to solve the storage problem 
of long rules. The storage strategy of LSMM is as following: every item in TCAM 
consists of prefix number and segment content. Suppose the length of segments in 
TCAM is 4, the rule “ABCDEFGHIJ” of length 10 is organized as Figure 3, in which it 
is divided into three segments: “ABCD”, “EFGH” and “IJ”, the last two bytes of the 
last segment are filled by “**” (denoting 16 “do not care” bits). In Figure 3, the leftmost 
column is the index of TCAM, identified by the addresses. Column 2 stores the address 
pointer of the preceding segment. Column 3 stores the segment patterns. Column 2 and 
3 are stored in TCAM. Column 4 contains matching results which are stored in SRAM. 
 

Index B6…B B3…B Matched 
0 1 IJ** Ri 
1 2 EFGH  
2 -1 ABCD  

Fig. 3. Rule Storage Example 

If there are n items stored in TCAM, then it is necessary to increase n2log  bits for 
every item to store the addresses of preceding segments (the preceding field). Each time 
before matching, we add the preceding field in the front of the matched content, then 
send it to TCAM to do the next comparison. When there is a hit in the preceding 
segment, we record it in memory. We call the data structure a partial hit list, which 
records both the position and the index of the hit packets. 

Suppose the payload of an input packet is “ZABCDEFGHIJKLMN” and we want to 
perform content matching using the rules in Figure 3. First, we should add the pre-
ceding field “-1” (it is the preceding field value of the first segment). Second, use 
“-1ZABCDEFGHIJKLMN” to match. If there is no hit, shift one byte so that the string 
to be matched becomes “-1ABCDEFGHIJKLMN”. If there is a hit on the second 
segment, the partial hit list records this hit. The desired next-hit position of the packet is 
recorded on the first field, and the current TCAM position of this hit is recorded on the 
second field. Then, we continue to shift and match “-1BCDEFGHIJKLMN”. When 
reaching the position of the sixth byte, we use “-1EFGHIJKLMN” to match firstly. 
There is not hit, so we take out address 2 from PHL to constitute “2EFGHIJKLMN”, 



 

then there is a hit. According to the process, the last match is 0 segment and the 
matching rule is Ri (Figure 3 and Figure 4). 

If the length all the rules are shorter than or equal the TCAM width, they are stored 
in TCAM according to their lengths in descending order to implement multi-match. If 
the length of some rules is greater than the TCAM width, then these rules cannot be 
simply stored due to the required segment. For example, if the TCAM width is 4, then 
two rules “ABCDEFGH” and “EFGHXYZW” will share the segment “EFGH”. In this 
case, an effective assignment method should be adopted to solve the share problem and 
multi-match problem. 

Fig. 4. Long pattern match process example 

2.4 Well-ordered TCAM Rule Assignment  

The aim of the Well-ordered TCAM Rule Assignment is that, after the rule assignment 
of a rule set which consists of various rule lengths is stored in TCAM, there shoud be no 
match missing for any packet and any rule set. 

First, if the rules are within the TCAM width, for two rules iR  and jR , the 
matching list are iM  and jM , the storage position of TCAM are iP  and jP , and 
TCAM width for storing content is W, the number of items in TCAM is H. Here are 
four cases: 

(1) If φRR ji =∩ , the sequence of iR  and jR  is not important for their position. 

-1ZABCDEFGHIJKLM

Position 1

         
PHL

Match keyword

Packet 
position Hit position

-1ABCDEFGHIJKLM

Position 2

           PHL

Match keyword

Packet 
position Hit position

6 2

-1EFGHIJKLM

Position 6
（the first time ）

          PHL

Match keyword

Packet 
position Hit position

6 2

2EFGHIJKLM

Position 6
（the second time ）

         PHL

Match keyword

Packet 
position Hit position

10 1

-1IJKLM

Position 10
（the first time ）

         PHL

Match keyword

Packet 
position Hit position

10 1

1IJKLM

Position 10
（the second time ）

         PHL

Match keyword

Packet 
position Hit position



(2) If ji RR ⊆ , then jP < iP , and ij MM ⊇ . 
(3) If ij RR ⊂ , then iP < jP , and ji MM ⊇ . 
(4) If φRR ji ≠∩  and never meets the 2nd and 3rd conditions, then the sequence 

of iR  and jR  is not important for their position. 

Definition 1: for the general rule nSegSegSeg L,,R 21= , R is an ordered set, 
11, −≤≤= niWSeg i ; WSeg n ≤ , ∑

=
= n

i iSegR
1 , S(R) = n. 

Definition 2: for the connection operation “+”, i,ni,i,i Seg,,SegSegR L21= , 

j,mj,j,j Seg,,SegSegR L21= , j,mj,i,ni,ji Seg,,Seg,Seg,SegRR LL 11=+ . 

Definition 3: given two rules *, Σ∈jk RR , if there is a max length ,iR  that 

jki RRR =+ , then we call iR  is the prefix of jR , recorded as ji RR p . 

Definition 4: given two rules *, Σ∈jk RR , if there is a max length ,iR  that 

jki RRR =+ , MWRi = , then we call iR  is the ordered prefix of jR , recorded as joi RR p . 

Definition 5: If there are iR , jR  and max-length sR , and jos RR p , 

ios RR p , then iR  and jR  share prefix sR . We call iR  and jR  sharing max 

ordered prefix sR , recorded as MOP( iR , jR )= sR . 

There are several relationships between two different rules iR  and jR : 
(1) joi RR p , jR  contains iR  and S( iR )=MW. 

(2) ioj RR p , iR  contains jR  and S( jR )=MW. 

(3) MOP( iR , jR )= sR , iR  and jR  share the max-prefix sR . 

(4) iR  and jR  do not contain each other or do not share the max ordered prefix. 
When there are rules which contain others, a string matching the “parent rule” 

should match the “child rule”. In order to ensure the TCAM be well-ordered, the “child 
rule” must be stored after its “parent rule”. If there is a max ordered prefix shared 
between different rules, then we just store the max-prefix sR once. 

2.5 Algorithm 

The algorithm converts the rule set ( { }kR,RRRuleSet L21= ) to a well-ordered TCAM 
extended rule set E, and loads the rule into TCAM. Insert ( iR ,E) is a process which 
inserts iR  into E, scans all the rules of E, evaluates the relation between iR  and every 

rule in E, and then makes some disposition. The algorithm is described as follows: 
CompileRule{ 
  φ=E ; 
  for all the rule iR  in RuleSet 



 

    E=Insert( iR , E); 
  Convert PrePoint to Address of Segment and write E into TCAM; 
} 
Insert( iR , E){ 
  int  MinPosition = 0; 
  int  MaxPosition =H-1; 
  int BeginStore=1; 
  for all the jR  in E{ 
      if joi RR p : 
       iRsjRsj RMM jj ∪= )(,)(, ; 
        return; 
      if ioj RR p :  
       jRSiRSi RMM jj ∪= )(,)(, ; 
        Delete( jR ); 
      if  MOP( iR , jR )= sR , sR ≠ iR , sR ≠ jR  
        BeginStore= 1+/WRs  
        continue; 
  } 
  for all the jR  in E{ 
    if( ij RR ⊂ )   MaxPosition = Position of )(, jRSjSeg + 1; 

if( ji RR ⊂ )   MinPosition = Position of 1,jSeg - 1; 
  } 

if BeginStore<=n 
Insert niSeg , … rei,BeginStoSeg in any place from MinPosition to MaxPosition; 

} 
Now we explain the algorithm through an example. Supposing we have five rules, 

which are 1R = “ABCDEFGHIJKLM”, 2R = “ABCDEFGH”, 3R = “ABCDWXYZ”, 

4R = “AB”, and 5R = “EFGH”. If the TCAM width is 4, then the storage of these rules 
is demonstrated in Figure 5. 

 
0 4 WXYZ  3R

1 2 M***  1R  

2 3 IJKL   
3 4 EFGH  2R , 

5R  



4 -1 ABCD  4R  

5 -1 AB**  4R  

6 -1 EFGH  5R  

Fig. 5. Example of rule assignment 

Following is a list of the packet matching algorithm: 
Match(Packet){ 
  for CurPositsition from 1 to packetlength{ 
    for all item in PHL{ 
      if item.PackPosition=CurPosition 
        PHLPop(); 
        MatchingCont=item.PackPosition+*Packet[CurPosition]; 
        if(index=MatchTCAM() is valid){ 
           output(SRAM[index]); 
           if(not TCAM[index].LastSeg) PHLPush(CurPostion, index); 
        } 
     } 
    MatchingCont=”-1”+*Packet[CurPosition]; 

index=MatchTCAM(); 
    if(index is valid){ 
     output(SRAM[index]); 
    if(not TCAM[index].LastSeg) Pop(CurPostion, index); 
  } 
} 
An example using the algorithm is given in Section 2.3. 

3 Analysis and Implementation 

3.1 Implementation 

The deployment of our system is plotted in Figure1. The control board uses Intel Pen-
tium M 1.6G CPU with 512M memory. The OS is RedHat Linux 9.0. The TCAM of the 
line card uses Cypress CYN70256. There are two OC48 ports on the line card. One 



 

Compact PCI bus is used to connect line card and control board as Control Channel and 
Event Transfer Channel. We use two Matching Engines to process in parallel. 

Packets enter the system through AMCC S4803, and then are sent to the Stream 
Recovery Module for packet assembling. The stream recovery process adopts the idea 
of [10]. After that, packets go to the Matching Engine for content matching. If there are 
some hits, then software will deal with higher-level matching using more complicated 
rules, such as probability, accumulation, and group, etc.  

Section 3.2 indicates that, given a rule set, there is a minimum limit for the capacity 
of the TCAM. Because there is a determinate configuration limit on the length of 
TCAM, we should compromise between the configurable TCAM width and the per-
formance requirement [11]. 

When the length of a content rule is longer than 1 byte, it is necessary to match 
TCAM many times. Multiple matching is implemented though shifting bytes as fol-
lowing. If the packet length is M bytes, we should shift M-1 times in all. Before each 
shift, there is a match process for the items of TCAM. We can use S-Double technology 
to accelerate the shifting step. We shift one byte rightward for each segment of all rules, 
and then restore it. In order to speed up the matching, every segment is stored twice in 
the TCAM. After each TCAM matching, we can shift the content rightward two bytes 
before starting new matching. Thus, by trading space for time, we accelerate the speed 
of TCAM matching [12-13]. 

When we use the S-Double technology, our system can automatically decide 
whether to adopt S-Double or not, according to the number of rules. If the storage space 
used by the rules decreases to half of the TCAM space, the system adopts this tech-
nology. On the contrary, if the space increases to half of the TCAM space, S-Double 
will be shut down and the duplicated stored rules will be deleted. In order to avoid 
fluctuation during the process of adding or deleting rules, after many simulations, we 
select 2 proper threshold-values: waterline_nosd and waterline_sd. When the number 
of the whole segment falls to waterline_sd, we adopt the S-Double technology; when it 
grows up to waterline_nosd, we cancel it. This technology can effectively avoid fluc-
tuation during the process of adding or deleting rules and achieve the optimal speed 
according to different states of the system. 

Furthermore, the S-Double technology could be used repetitively. We can store rules 
3 times of the original rules number and shift 3 bytes after each match, or store rules 4 
times of the original rules number and shift 4 bytes every match, etc. 



3.2 Memory Space Analysis 

In a rule set of n rules, the length of every rule is iL , 0≤i≤N-1, the segment number of 

the rules is SegNum, SegNum= ∑
−

=
−+

1N

0i
1)/WWi(L , the TCAM bits required to be 

extended for every segment are ⎡ ⎤)(2 SegNumLogWext = , and the total TCAM space 

is SegNumWW extcont *)( + . As mentioned in section 2.2, the parameter W is con-

figurable and smaller W means higher utility ratio of the system. The smaller W is, the 

larger the segment number will be, the more bits SegNum should be extend. The larger 

W is, the smaller the segment number will be and fewer bits SegNum should be extend.  

Regarding to the rule lengths in Figure 2, we compute corresponding TCAM space 

size needed. We get the relationship between different segment length and different 

TCAM space sizes, as shown in Figure 6. Using LSMM, for all those rule lengths, 

averagely 6% accessional TCAM space is added to solve the long rule problem. 

 

Fig. 6. Relationship between Segment Length and TCAM space size 

 

Fig. 7. Relationship between rule number and RAM Space of LSMM 



 

The RAM space size of LSMM can be depicted by the following expression: 

⎡ ⎤ ∑ + )/)1((*)(2 WRSegNumNLog i . When the distribution of rule length is steady, the 
size of the RAM space is almost linear with the rule number. Generally speaking, 
TCAM width is 36, 72, 144 and 288 bits [2], etc. The frequency of TCAM is low if its 
width is too small or too large. In our system, we consider the typical case (72 bits 
width, 8 bytes segment width). Figure 7 shows the changing of the space size along 
with different rule numbers. 

3.3 Performance Analysis 

After accessing TCAM, if there is a hit, then accessing SRAM is necessary and the 
access process can be streamlined. The system performance is limited by the access 
time of TCAM or SRAM. Because at some positions of some packets, if the PHL is not 
empty and the desired next-hit position of some items equal the current position, we 
need to access TCAM many times. Since the packet streamlining is limited, so FIFO is 
needed to smooth the burst.  

Considering random packet contents, for any w bytes in the packet, there are 

w82 possible values, so the chance of matching one particular pattern is w82/1 . There 

are ∑
i

iRS )(  segments (TCAM items) to be matched. So counting in the address pointer 

of the preceding segment, the hit probability of one pattern is ⎡ ⎤∑+∑ )(2log82/)( iRSw
iRS , 

which decreases dramatically when w increases. For instance, supposing we have 1000 

rules (each rule is 64bytes) and the segment width is 8 bytes (which is the typical width 

with best TCAM performance), the hit rate should be 5.29e-20. The average PHL size 

is too difficult to compute, theoretically speaking it should be less 

than ⎡ ⎤∑+∑ )(2log82/)(* iRSw
iRSw . Since the hit of last segments of all rules do not 

increase the PHL size, so the average PHL size should be less than 5.29e-20. 

  The size of the FIFO packet queue is determined by the maximum PHL, while not the 
average PHL. Through capturing packets on an OC48 interface for 60 seconds (the 
real-time throughput was about 1.8Gbps, all packets whose sizes were less than 62 
bytes were ignored, because they did not match our rules. The total memory space of 
the packets in the 60 seconds time was about 14.4G Bytes. Using the rules mentioned in 
section 2.2, registers in Matching Engine showed that 9 rules were matched. The max 



size of PHL was 3, because the rules we used contained segment inclusive relationships 
as described in section 2.4. If we modify the rules, the max PHL would be even less. 
   Table 1 lists the work process during the matching process using LSMM. 

Table 1. Match Process 

LSMM

Before match-
ing 

Clear out-of-date items of Partial Hitting 
List, add the preceding field of matched 
content

Matching 
process 

Send the keywords to be matched into 
TCAM, two processes is the same.

After 
matching 

Hit Get hit index and write Partial Hit List
Shift bytes

No 
Hit 

Shift bytes.

 
LSMM does not induce obvious additional time cost and FPGA logics is comparable to 
the pure TCAM matching. The addition of preceding field before matching is parallel 
to the TCAM searching process. If PHL is too long, system may be bottlenecked. In our 
case, the operating frequency of TCAM is 100MHz and the width of TCAM is 72 bits. 
For Cypress CYN70256 [2], two time cycles are needed to complete one match. In the 
real network testing, without using the S-Double technology, CNCFS can obtain 
throughput about 800Mbps (we had two matching engines work simultaneously, each 
one achieves 400Mbps throughput), However, after using S-Double 8 times, the 
throughput of CNCFS can be improved to 6.4 Gbps.  

We also test our system using the SPRIENT AX4000, with the following setting of 
traffic flows to simulate real network traffic: 

64 bytes  50% of whole traffic 
128 bytes  5% of whole traffic 
256 bytes  5% of whole traffic 
512 bytes  10% of whole traffic 
1024 bytes  10% of whole traffic 
1600 bytes  10% of whole traffic 
2 OC48 ports of the AX4000 were connected to our system. The throughput ratio is 

set as 100%, which means the whole traffic is about 5Gbps. In this test, our system 
detects all packets correctly without any loss. In fact, because the packets headers do 
not enter the matching engine, the actual payload traffic was less than 5Gbps. 



 

Each time the LSMM updates a rule (delete or add), it needs to reorganize the entries 
of TCAM. We utilize a batching process to load more than 1070 rules. This process 
takes about 2 seconds for the loading of rules and less than 1.5 seconds for the writing 
of TCAM, which is acceptable for real applications. 

4 Conclusions 

In this paper, a novel content filtering architecture (CNCFS) using LSMM in TCAM is 
proposed to meet the requirements of the high performance processing for the rapid 
increasing network bandwidth. Our NCFS implementation combines the software and 
hardware to complete the process of content filtering. The performance evaluation 
shows that our system can improve the network throughput up to 5Gbps. 

This paper mainly addresses the following three issues: 

• A new network content filtering system framework is proposed and implemented. 
• The content rule matching is implemented using TCAM, which solves the problem 

of long rules storage. 
• Without changing the structure of TCAM, a new solution is proposed to solve the 

multi-matching problem by using fewer storage resources, which can improve the 
matching speed up to 5 Gbps. 

5 Acknowledgment 

The work described in this paper is partially supported by the project  of National 
Science Foundation of China under grant No. 61202488, 61272482; the National High 
Technology Research and Development Program of China (863 Program) No. 
2012AA01A506, 2013AA013505. This research was also in part supported by Basic 
Science Research Program through the National Research Foundation of Korea(NRF) 
funded by the Ministry of Science, ICT & Future Planning(2014R1A1A1005915). 

References 

1. A. V. Aho and M. J. Corasick, Efficient string matching: An aid to bibliographic search. 

Communications of ACM, June 1975, 18(6): 333 - 334. 

2. Cypress Semiconductor Corp. Content addressable memory. http://www.cypress.com/. 



3. C.J. Coit, S. Staniford, and J. McAlerney, “Towards Faster String Matching for Intrusion 

Detection or Exceeding the Speed of Snort,” DARPA Information Survivability Conference 

and Exposition ( DISCEX II'01 ), 2001. 

4. M. Fish and G. Varghese, “Fast Content-Based Packet Handling for Intrusion Detection” 

UCSD technical report CS2001-0670, 2001. 

5. S.Antonatos, K.G.Anagnostakis, and E.P. Markatos. Generating realistic workloads for 

network intrusion detection systems. In Proc. of the 2004 ACM Workshop on Software and 

Performance. 

6. Fang Yu, Randy H.Katz, and T. V. Lakshman. Gigabit Rate Packet Pattern-Matching Using 

TCAM, In Proc. of the 12th IEEE International Conference on Network Protocols 

(ICNP'04). 

7. K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, Algorithms for Advanced 

Packet Classification with Ternary CAMs. In SIGCOMM’05, August 21-26, 2005. 

8. G. Peng, Z. Deyun, S. Qindong, Z. Yahui, and L. Wuchun, Multi-Pattern Approximate 

Matching Algorithm of Network Information Audit System, Journal of Software, 2004, 

15(7) :1074 - 1080. 

9. S. Hua and D. Yiqi, A New Fast String Matching Algorithm for Content Filtering and De-

tection, Computer research and development, 2004, 41(6) :940-945. 

10. Z. M. Zhong, G. J., and Ding Wei, Study of network flow timeout strategy, JOURNAL ON 

COMMUNICATIONS, 2005, 26(4):88-93. 

11. L. Caviglione, A. Merlo, and M. Migliardi, Green-Aware Security: Towards a new Re-

search Field, the International Journal of Information Assurance and Security (JIAS), Vol. 7, 

2012, issue 5, pp. 338-346. 

12. M. Migliardi and A. Merlo, Energy Consumption Simulation of Different Distributed In-

trusion Detection Approaches, In Proc. of the 27th IEEE International Conference on Ad-

vanced Information Networking and Applications (AINA’13), Barcelona, Spain, March 

2013. 

13. M. Migliardi and A. Merlo, Improving Energy Efficiency in Distributed Intrusion Detection 

Systems, Journal of High Speed Networks, IoS Press,  19(3): 251-264, 2013 

14. B Kim, J Yang, and I. You, A survey of NETLMM in all-IP-based wireless networks, In 

Proc. of ACM Mobility 2008, I-Lan, Taiwan, September 2008  

15. I. You, J.-H. Lee, and K. Sakurai, DSSH: Digital signature based secure handover for 

network-based mobility management. Computer Systems: Science & Engineering. 27(3), 

May 2012 


