On the convergence of gradient-like flows with noisy gradient input

Abstract : In view of solving convex optimization problems with noisy gradient input, we analyze the asymptotic behavior of gradient-like flows that are subject to stochastic disturbances. Specifically, we focus on the widely studied class of mirror descent methods for constrained convex programming and we examine the dynamics' convergence and concentration properties in the presence of noise. In the small noise limit, we show that the dynamics converge to the solution set of the underlying problem (a.s.). Otherwise, if the noise is persistent, we estimate the measure of the dynamics' long-run concentration around interior solutions and their convergence to boundary solutions that are sufficiently "robust". Finally, we show that a suitably rectified variant of the method converges irrespective of the magnitude of the noise (or the structure of the underlying convex program), and we derive an explicit estimate for its rate of convergence.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01404586
Contributeur : Panayotis Mertikopoulos <>
Soumis le : lundi 28 novembre 2016 - 23:32:26
Dernière modification le : mardi 17 avril 2018 - 09:08:52
Document(s) archivé(s) le : mardi 21 mars 2017 - 02:19:40

Fichier

Main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01404586, version 1

Citation

Panayotis Mertikopoulos, Mathias Staudigl. On the convergence of gradient-like flows with noisy gradient input. 2016. 〈hal-01404586〉

Partager

Métriques

Consultations de la notice

287

Téléchargements de fichiers

135