On integer-valued means and the symmetric maximum

Miguel Couceiro 1 Michel Grabisch 2, 3
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : Integer-valued means, satisfying the decomposability condition of Kolmogoroff/Nagumo, are necessarily extremal, i.e., the mean value depends only on the minimal and maximal inputs. To overcome this severe limitation, we propose an infinite family of (weak) integer means based on the symmetric maximum and computation rules. For such means, their value depends not only on extremal inputs, but also on 2nd, 3rd, etc., extremal values as needed. In particular, we show that this family can be characterized by a weak version of decomposability.
Type de document :
Article dans une revue
Aequationes Mathematicae, Springer Verlag, 2017, 91 (2), pp.353-371. 〈https://link.springer.com/article/10.1007%2Fs00010-016-0460-9〉. 〈10.1007/s00010-016-0460-9〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01404593
Contributeur : Miguel Couceiro <>
Soumis le : mardi 29 novembre 2016 - 00:05:51
Dernière modification le : mardi 27 mars 2018 - 11:48:04
Document(s) archivé(s) le : lundi 27 mars 2017 - 06:22:00

Fichier

integermean2a(1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Miguel Couceiro, Michel Grabisch. On integer-valued means and the symmetric maximum. Aequationes Mathematicae, Springer Verlag, 2017, 91 (2), pp.353-371. 〈https://link.springer.com/article/10.1007%2Fs00010-016-0460-9〉. 〈10.1007/s00010-016-0460-9〉. 〈hal-01404593〉

Partager

Métriques

Consultations de la notice

367

Téléchargements de fichiers

107