
HAL Id: hal-01405066
https://inria.hal.science/hal-01405066

Submitted on 29 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamic Interaction Plugins Deployment in Ambient
Spaces

Bashar Altakrouri, Andreas Schrader

To cite this version:
Bashar Altakrouri, Andreas Schrader. Dynamic Interaction Plugins Deployment in Ambient Spaces.
5th International Conference on Human-Centred Software Engineering (HCSE), Sep 2014, Paderborn,
Germany. pp.73-89, �10.1007/978-3-662-44811-3_5�. �hal-01405066�

https://inria.hal.science/hal-01405066
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Dynamic Interaction Plugins Deployment in
Ambient Spaces

Bashar Altakrouri ∗† and Andreas Schrader ∗

∗Ambient Computing Group, Institute of Telematics
University of Luebeck, Luebeck, Germany

{altakrouri,schrader}@itm.uni-luebeck.de

https://www.itm.uni-luebeck.de/

†Graduate School for Computing in Medicine and Life Sciences, University of Luebeck

Abstract. A large-scale dynamic runtime deployment of existing and
future interaction techniques remains an enduring challenge for engineer-
ing real-world pervasive computing ecosystems (ambient spaces). The
need for innovative engineering solutions to tackle this issue increases,
due to the ever expanding landscape of novel natural interaction tech-
niques proposed every year to enrich interactive eco-systems with multi-
touch gestures, motion gestures, full body in motion, etc. In this paper,
we discuss the implementation of Interaction Plugins as a possible solu-
tion to address this challenge. The discussed approach enables interac-
tion techniques to be constructed as standalone dynamically deployable
objects in ambient spaces during runtime.

Keywords: Ambient Assisted Living, Natural User Interfaces, Kinetic
Interactions, Dynamic Interaction Deployment, Sharing Interactions

1 Introduction

The human computer interaction (HCI) research continues to enrich users’ inter-
actions with real-world pervasive ecosystems (ambient spaces), with an increas-
ing interest in designing for the whole body in motion as part of the Natural
User Interface (NUI) paradigm [9][10]. Various definitions of NUI can be found
in the literature. Nonetheless, those definitions mostly refer to the user’s natural
abilities, practices, and activities to control interactive systems [11] and can be
simplified to voice-based and kinetic-based interactions [15]. The later defines
those interactions, which are mostly caused and characterized by motion and
movement activities, ranging from pointing, clicking, grasping, walking, etc. [2].
Herein, we focus on motion-based interactions as a dominant subset of Kinetic-
based interactions. This type of interaction has been adopted widely in various
commercial domains and became accessible to the end user, ranging from gaming
(e.g., motion-controlled active play by Microsoft Kinect1 or the Wii system2),

1 http://www.microsoft.com/en-us/kinectforwindows/, latest access on 26.06.2014.
2 http://www.nintendo.com/wii, latest access on 26.06.2014.



data browsing, navigation scenarios (e.g., tilting for scrolling photos as in iOS3

and Android4 devices) and many more.

Despite its success, the NUI paradigm poses a number of significant chal-
lenges to the design, engineering and deployment of NUI technologies, especially
when considering a far more diverse and heterogenous user population, e.g.,
due to aging and demographic changes; unknown interaction context, due to
increasing user mobility to unknown environmental settings at design time; and
spontaneous construction of interactive environments in-situ at runtime. Thus
the focus on isolated design of natural interface techniques will not be adequate
in current and future ambient spaces, which rapidly experience increasing emer-
gence of interconnected mobile devices, smart objects, and seamlessly integrated
context-aware services.

In our previous work, we proposed a shift towards completely dynamic on-
the-fly ensembles of interaction techniques at runtime. The Interaction Ensem-
bles approach is defined as ”Multiple interaction modalities (i.e., interaction
plugins) from different devices are tailored at runtime to adapt the available
interaction resources and possibilities to the user’s physical abilities, needs, and
context” [2]. This shift imposes new dissemination, deployment, and adaptation
requirements for engineering interaction techniques and interactive systems for
NUIs.

In this paper, we tackle some of the emerging deployment aspects of interac-
tion in ambient spaces. We believe that the deployment of interaction in NUIs is
a key player to enable a realistic adoption of NUIs in the design and engineering
of interactive systems. The paper presents a detailed overview and a reference
implementation for building and deploying interaction components for ambient
spaces, called Interaction Plugins. We have previously defined an Interaction
Plugin (IP) as ”an executable component in ambient interactive systems that en-
capsulates a single natural interaction technique with a set of interaction tasks
as input and delivers higher level interaction primitives to applications based on
specific interaction semantics” [1][2]. While our previous work in [1][2] proposed
the concept of IP on a high conceptual level, the work presented in this pa-
per primarily describes a detailed description of this approach and the resulting
implementation.

To the best of our knowledge, there is no research specifically targeted at
community-based creation and sharing of encapsulated natural interaction tech-
niques for ambient spaces. The Interaction Plugin approach is based on three
main design characteristics, namely, matching users and natural physical con-
text, precise and extensible natural interaction descriptions (human and machine
readable), and flexible deployment of interactions at runtime [1].

Interaction Plugin approach fosters soft-wired (de-coupled) applications and
devices in order to overcome the limitations of the static binding and to address
one of the most challenging requirements in pervasive environments, namely the
”come as you are” requirements. This approach matches calls from the HCI

3 http://www.apple.com/ios/, latest access on 26.06.2014.
4 http://www.android.com/, latest access on 26.06.2014.



community to overcome various challenging issues for user interfaces in ambient
spaces. Pruvost et al. [12] noted that interaction environments are becoming
increasingly heterogeneous and dynamic, hence they are no longer static and
closed; the interaction context is becoming increasingly more complex; and, in-
creasing adaptability is required for sustainable utility and usability.

We believe that investigating this approach is essential to understand some of
the challenges for engineering interactive systems in ambient spaces and setting
proper interaction dissemination guidelines, where interactions are becoming in-
creasingly dynamic, adaptive and multi-modal. Our approach aims at avoiding
mismatch problems between user’s needs and device’s offers by employing the
best matching natural interaction techniques to the given context, hence the
user independence (acceptability by permitting customizability) and usability
qualities required by Wachs et al. [15] are inherently enhanced.

2 Background and Related Research

Reviewing HCI literature reveals an extensive effort in the area of traditional user
interfaces adaptation in terms of context modeling, user modeling, automatic
generation of interfaces, etc. Most of the well-established concepts mainly target
the conventional Graphical User Interface (GUI) paradigm such as plasticity [3]
and the WWHT framework [13]. Despite their strong relevance, most available
adaptation approaches fail to satisfy four enduring challenges drawn from the
natural characteristics of ambient environments, presented by Pruvost et al. [12]:

– Heterogeneity and Distributivity: The interaction eco-system contains a va-
riety of interaction devices with various capabilities.

– Dynamic Media Mobility: Interaction capabilities are highly dynamic as in-
teraction devices may join or leave the ambient space at anytime.

– User Mobility: The user mobility in ambient spaces challenges the interactive
system attention to the user’s interaction needs.

In addition, most adaptation approaches focus on interface issues such as in-
formation presentation but not the interaction per se. Pruvost et al. [12] clearly
indicated that locking interaction devices in their own closed world is certainly
an issue for interaction systems adaptability in ambient spaces. This closeness
results into reducing the richness and unity of those interaction devices in vari-
ous context scenarios. They also argued for highly adaptable user interfaces that
preserve utility and usability across contexts. In their described adaptation vi-
sion, they have presented the concept of Off-the-shelf Interaction Objects, which
are pre-implemented bundles of code, intended to be reused and composed at
runtime. The objects aim to provide the necessary adaptation required for the
interaction technique. While their vision is focused on the structural adaptation
of user interfaces and the adaptation of a running dialogue, our work is more
concerned with the sharing and deployment aspects of NUI, especially kinetic in-
teractions. The Gestureworks Core5, which is limited to multitouch interactions,

5 http://gestureworks.com, accessed on 26.06.2014.



is one of the earliest multitouch gesture authoring solution for touch-enabled de-
vices on a variety of platforms such as Flash; C++; and Java. Based on the
GML (GML), the solution comes with a rich library of pre-built gestures and
allows for new custom gestures and gesture sequences to be built by designers.
For motion-based interactions, the OpenNI6 is an open source SDK used for
the development of 3D sensing applications and middleware libraries. The main
targets of this framework include enhancing the natural interaction techniques
development community; making it possible for developers to share ideas and
problems; to share code with each other; and to address the complete develop-
ment lifecycle by a standard 3D sensing framework.

Standalone deployable interaction components for NUIs are becoming es-
sential needs for ambient spaces. To our best knowledge, the work presented
in this paper is one of few HCI research efforts to tackle this problem. Inter-
estingly, dynamic component integration has been a rich and yet challenging
investigation aspect for the ubiquitous and pervasive computing research. The
dynamic component integration approach enables software components to be
discovered, downloaded, and integrated on-demand, as a means of adapting an
application’s behavior and enhancing its features [14]. This area of investigation
has been recently successfully applied to mobile environments as in the Mo-
bile USers In Ubiquitous Computing Environments (MUSIC) system that sup-
ports dynamic component integration on Android using OSGi (OSGi) containers
[8]; the Context-Aware Machine learning Framework for Android (CAMF) that
promotes plugin-based adaptation on Android [16]; and the Funf Open Sens-
ing Framework7 that promotes statically-linked context modeling plug-ins inte-
gration. More recently, the Dynamix framework [7] was introduced as an open
plug-and-play context framework for Android.

3 STAGE architecture and implementation

Our current implementation utilizes the wide spread and adoption of mobile
devices for rich personalization, customization, and context acquisition in am-
bient spaces. Hence, this work fosters the use of mobile devices as customized
and personalized interaction hubs. In our implementation, called STAGE, we
leverage Dynamix framework [7] as a mechanism for deploying natural interac-
tions. Dynamix is used due to its unique capabilities and flexibility, especially
related to dynamic discovery and deployment of suitable context plugins during
runtime. Hence, it was feasible to adopt and extend context plugins for inter-
actions. Although grounding the implementation on mobile devices may appear
limiting from the first glance, the use of the mobile devices as a personalized
interaction hub to facilitate interactions in ambient spaces provides various ben-
efits in terms of personalization, decentralization, user control, and lightweight
infrastructure. Figure 1 illustrates our underlying technical approach for imple-
menting natural interaction techniques as deployable and shareable IPs, based

6 http://www.openni.org, latest accessed on 26.06.2014.
7 http://funf.org, latest access on 26.06.2014.



on the Dynamix framework on the Android platform. As intended, the Dynamix
framework runs as a background service (Dynamix Service) and is situated be-
tween Dynamix enabled applications and the device’s interaction resources (i.e.,
interaction devices).

Fig. 1. A high-level overview - STAGE realization based on Dynamix (based on [1])

The STAGE technical implementation appears mainly in two areas: first, the
interaction application side; second, the context plugin side. Dynamix-enabled
applications are standard Android applications with extra context modeling
functionality provided by a local Dynamix Service. In STAGE implementation,
two new components are introduced, namely the Interaction Manager and Ability
Manager, to adjust the Dynamix framework to our needs. Additionally, Dynamix
context plugins were adopted and extended in the IP implementation.



3.1 Context modeling and deployment with the Dynamix
framework

The Ambient Dynamix framework was first proposed as a rich framework for
on-demand discovery and runtime integration of plugins for context acquisition
(sensors) and modification (actuators) in wide-area mobile contexts. Interest-
ingly, Dynamix features strong and flexible discovery and deployment of context
plugins at runtime. The framework was successfully used to model and deploy
context in different none-HCI related scenarios as in [5][6][4]. The two features
are essential building blocks for the implementation of the Interaction Plugin
concept. In fact, our work is the first to utilize and build on this framework
for deploying interactions in ambient spaces. In this section, the most relevant
internal components of the framework based on [7] will be described. The full
specifications and more extensive discussion can be found in the Dynamix online
portal8.

Dynamix runs as a background service on Android-based devices, which al-
lows multiple Dynamix-enabled applications to subscribe to Dynamix context
events. Principally, a Dynamix-enabled application is a normal Android appli-
cation that implements the necessary Dynamix API. Various context resources
deliver raw sensor data to the framework, which are then modeled by Dynamix
according to the available context plugins.

A context plugin is a standalone deployable OSGi container that allows for
seamless runtime deployment (i.e., installation, uninstallation) according to the
application needs. The flexibility of the Dynamix plugin’s technical structure
provided an adequate ground for our development of IP, as discussed lengthly
in this section.

The OSGi Manager resides at the core of Dynamix implementation, which
is build based on the Apache Felix OSGi. The manager is mainly dedicated for
all plugins deployment actions, including the installation and un-installation of
plugins from their OSGi containers. The OSGi framework allows for seamless
integration of software units (called bundles) at runtime. Internally, the OSGi
framework is composed of multiple layers responsible for bundle execution, bun-
dle management, bundle life cycle, service and binding management, and security
control. There are various communication aspects in Dynamix. We will focus,
herein, only on the communication between plugins and applications. The com-
munication between the Dynamix framework and Dynamix-enabled application
is featured using the Facade and Event API. The Facade API controls all re-
quests for context modeling support. Moreover, Dynamix currently uses POJO
(Plain Old Java Objects) objects to encode the events shared between plugins
and applications. The use of POJO objects allows both sides to work with Java
objects, hence increasing the operability and reducing the programming and
modeling load.

8 http://ambientdynamix.org, visited on 26.06.2014.



3.2 Implementing STAGE-enabled applications

Dynamix applications are designed to subscribe to dynamix and receive modeled
context events. Those two features ease the implementation of context-based ap-
plications dramatically. Nonetheless, Dynamix-enabled applications are not fully
adequate to the Interaction Plugin conceptual design. Hence, STAGE introduces
two important extensions to the architecture, in order to facilitate the use of this
framework for IPs, on the application and plugin levels. The changes and ex-
tensions are distinctly tinted (i.e., fully or partially shaded) in Figure 1. The
STAGE components on the application side are further illustrated in Figure 2.
STAGE-enabled applications contain the STAGE Manager (which contains the
Interaction and Profile Managers) and the Interaction Profile Manifest (which
encapsulates all necessary information about the required and relevant interac-
tion capabilities by the application).

STAGE Interaction Manager This class controls the activation of the avail-
able IP, based on the ability (the physical abilities required for the interaction
e.g., major life activities), movement (the exact movements required for the
interaction e.g., body part involved, type, and degree of movements), and inter-
action (the interaction semantic) profiles. The communication between the In-
teraction Manager and Dynamix service is facilitated using the Dynamix Facade
API. Following the dynamix context plugin model, Interaction Plugins are tai-
lored OSGi-based Bundles, which are loaded into the Dynamix embedded OSGi
container at runtime. Once loaded and activated, an Interaction Plugin sends
interaction encoded events to subscribed applications (as interaction primitive
events) using POJO. Principally, Interaction Plugins are hosted in an Internet-
based plugin repository, which in addition to the IP Bundle files, hosts the IP
profiles and (optionally) additional related plugins.

In addition to the usual Dynamix context sensing tasks, IPs can be queried
by the Interaction Manager to access the information encoded in the IP profiles.
Currently, the Dynamix Service provides all plugin discovery services, plugin
filtering based on the interaction requirements (interaction primitives required),
and plugin installation support. Filtering and activating the available interaction
plugins are currently handled by the Interaction Manager. The STAGE Interac-
tion Manager is composed from the following components, as shown in Figure
2:

– Subscription Manager is responsible for communicating directly with the
Dynamix facade API, in order to control and mange IP subscriptions;

– Event Handler consumes all Dynamix context events and filters all relevant
Interaction Events;

– Interaction Profile Builder is responsible to serialize the content of the In-
teraction Profile Manifest into a runtime object;

– Plugin Manager keeps track of all accessible IPs and handles the status,
subscription, plugin information, and discovery requests of all plugins;



– Ensemble Engine is responsible for monitoring interaction resources (i.e.,
IP) and build possible Interaction Ensembles adequate for the given context
based on the application’s required interaction capabilities, the available IP,
and the user’s physical ability profile; and

– STAGE Interface Controller : STAGE-enabled applications require to control
the application’s GUI elements according to the fired interaction primitives
from the IP (once an interaction primitive is fired, the corresponding action
on the interface is executed, e.g., a selection interaction primitive may be
interpreted as a button press).

Fig. 2. STAGE-enabled application architecture

Ability Manager This module is responsible for extracting the user’s ability
and disability qualities, based on the available Ability profile and Movement
profile. Currently, both profiles are modeled and represented in tailored XML
formats. This component is essentially split into the following modules:



– Ability Profile Builder is essentially an XML parser responsible to extract
and serialize the content of the Ability Profile into a runtime object; and

– Ability Provider provides all necessary information regarding the required
physical abilities for executing the interaction tasks adequately by the user.

Interaction Profile Manifest This profile manifest captures the main inter-
action semantics including the interaction primitives such as pointing, selecting,
dragging, etc. This is particularly important in ambient spaces because it pro-
vides indication on the main use of the interaction technique and its offerings.
We are considering interaction profile as a prime key for interaction adaption
and matching in ambient spaces. In ambient spaces, interaction profiles offer
the needed manifestation for coupling interaction techniques with applications.
Principally, it is used to in order to identify the required interaction capabilities
for the application. The manifest file is constructed in XML format, and con-
tains essentially the required interaction primitives. Figure 3 resembles a simple
profile example (i.e., an application requires a selection interaction primitive).

Fig. 3. STAGE-enabled application architecture

STAGE-enabled application interaction sequence The interaction se-
quence, shown in Figure 4, illustrates the communication steps between Dy-
namix and the STAGE Manager. The sequence illustrates the process of inter-
action requesting a certain IP, deploying IP in runtime, and delivering the event
information to the requesting application. The Interaction Manager triggers and
establishes the connection with the Dynamix framework. Upon connection, it
receives all Dynamix related events as long as the Dynamix connection remains
alive. For instance, the received events involve Dynamix activation events, de-
activation events, and plugin installation events. Next, the Interaction Manager



requests the ability profile from the Ability Manager. Moreover, it serializes the
application’s interaction profile, using its profile builder module.

Fig. 4. Sequence Diagram for STAGE-enabled application

The Interaction Manager requests Dynamix for all accessible plugins (i.e.,
those plugins available in its repository). Once the list is received, the Interac-
tion Manager identifies all accessible IPs and ignores all other context plugins.
Plugins that implement the required ”InfoObject” datatype object proposed by



STAGE are identified as IPs. Otherwise, the plugins are considered conventional
Dynamix context plugins (i.e., not related to interactions). The ”InfoObject”
contains the essential Uniform Resource Identifiers (URIs) for the IP and its
three profiles, which are used later for filtering adequate IP in a given context.
Next, it configures the Interfaces Controller event listener, in order to allow the
controller to utilize the detected events for controlling the interface controllers
accordingly. Moreover, the Interaction Manager sends Dynamix subscription re-
quests to the available IP. While getting accepted subscriptions, the manager
requests the plugin’s ability and interaction profiles in order to build a map of
IP and physical abilities required for each. This information forms the core base
for the Ensemble Manager’s matching algorithm. Accordingly, the Interaction
Manager requests the Interface Controller to activate those GUI elements that
are possible to be controlled by the available interaction resources (i.e., IPs).
Other GUI elements, not supported by the available interaction resources, are
not activated for NUI interactions, but can be still used conventionally (using
the conventional touch interface).

At the end of interaction sequence, the STAGE Manager is able to receive
modeled interaction events from the various IPs. The triggered interaction primi-
tives are then sent to the Interface Controller to perform the required interaction
tasks. It is important to know that multiple plugins may deliver the same inter-
action primitive. In this case, the Ensemble Engine may decide on which plugin
should be used according to the best match with the user’s physical abilities
(Ensemble Engine’s matching algorithms are not covered in this paper due to
the size limits).

3.3 Implementing Interaction Plugins

An IP is essentially an OSGi Bundle containing the plugin’s logic and con-
text acquisition code. In our case, Dynamix is responsible for handling the plu-
gin’s lifecycle, based on its embedded OSGi framework. Figure 5 illustrates the
technical implementation of the IP. The distinctly tinted (i.e., fully or partially
shaded) components in the diagram indicate the core STAGE components and
extensions:

– Context Acquisition & Modeling module resembles the logic required to ac-
cess the context provider and its raw context data. The raw context data
resources may be local resources (i.e., running on the same device, for exam-
ple a built-in orientation sensor) or remote sources (i.e., accessible ambient
context providers available in an accessible ambient space, for example an
external camera sensor);

– STAGE Handler is responsible to model the interaction events based on the
received information from the previous module;

– Plugin Factory provides the required mechanisms for plugin instantiation
(handled completely by Dynamix);

– PluginRuntime component contains the plugin’s core lifecycle methods;



Fig. 5. IP internal architecture

– Profile Builder, as part of the PluginRuntime component, is responsible for
serializing and building the interaction, movement, and ability profiles asso-
ciated with each IP. Those profiles are modeled as XML embedded in the
plugin’s file structure and accessible though the IPluginInfo object;

– ContextTypeInfo Objects contains the plugin’s supported datatypes. In our
implementation, those context type objects are used as interaction primitive
objects; and

– IPluginInfo Object, which is introduced as a new plugin information datatype
and dedicated for the necessary movement, ability, and interaction profiles.

4 Examples and Scenarios

The practical benefits of IPs can be seen in an endless variety of showcases and
scenarios. For instance, a person with limited arm rotation may take advantage
of replacing the arm-based rotation IP exceeding a certain rotation degree with
a foot-based rotation IP which utilizes an accelerometer sensor embedded in her
smart sport shoes and wirelessly connected to her smartphone. Another example



is allowing a person with total absence of three fingers due to an injury to inter-
act with typical mobile operation systems, which often requires swipe gestures
with three or more fingers. In such a case, one possible ensemble might comprise
two IPs combining two fingers multitouch swipe with one foot-based motion
swipe to replace the original three fingers swipe. In principle, the potential for
building useful scenarios for interaction plugins and ensembles is only limited by
the creativity of interface designers and engineers developing sensing devices in
various forms and shapes to be used in future ambient scenarios. For further il-
lustration, this section presents a full description of an interactive demonstration
scenario, called the AmbientRoom, to showcase the dynamic aspects of dynamic
interaction deployment at runtime.

The AmbientRoom is a STAGE-enabled mobile application for controlling
the ambient lighting of smart rooms. The application provides three simple func-
tionalities, namely dimming the light, changing light’s color (i.e., rotate between
the rainbow colors), and switching the light on/off. The application relies on our
implementation of the Art-Net Light Controller plugin, which uses the Art-Net
protocol to send DMX512 data for controlling lighting equipment over the Inter-
net Protocol networks. The Art-Net plugin is a conventional Dynamix context
plugin that acts as an actuator in this scenario, extensive discussion about this
type of plugins is covered in [4]. Therefore, it should not be mixed with the IP
concept discussed in this paper.

Because the application is STAGE-enabled, it adapts its interactivity to the
user’s physical capabilities. In the case of difficulties touching the interface con-
trols with fingers (due to finger injury), the AmbientRoom application searches
for alternative and adequate IPs allowing the user to perform the interaction
tasks required by the application. In this scenario, the applications finds two
motion-based interaction plugins for replacing the position (i.e., navigation) in-
teraction task with a shaking IP (shaking the device for positioning the focus on
the next GUI component) and the selection interaction task with an IP utilizing
head movement respectively. Those plugins are found and dynamically deployed
at runtime.

The rest of this section will demonstrate the flow of the various processes in-
volved in this scenario. Once the application is started, the application will show
the user with a disabled GUI presenting the application main functional capabil-
ities, as in Figure 6 (1). These capabilities are initially looked or disabled until
the required plugins are requested by the application and dynamically deployed
and activated by dynamix. In this case, the application starts by requesting the
Art-Net Light plugin. Once the plugin is found, downloaded, and activated suc-
cessfully by Dynamix, the application GUI controls will be activated, as shown
in Figure 6 (2).

Next, the AmbientRoom application requests two motion-based IPs to enable
users to interact with the application using two motion gestures. The first IP
relies on the mobile device built-in accelerometer for detecting device shaking
gesture to position the focus on the next button. The second IP relies on the



Fig. 6. AmbientRoom application (screenshots): (1) deactivated GUI controls; (2) ac-
tivated GUI controls after Art-Net plugin runtime deployment; (3) GUI controls are
marked after IPs runtime deployment

Asus Xtion PRO LIVE9 motion sensor for detecting head movements to select
(i.e., click) the selected button. Upon a successful deployment of the two plugins,
the corresponding GUI control are marked with a green symbol to indicate the
possibility to be controlled using motion gestures in addition to the conventional
multitouch interface as shown in Figure 6 (3).

Figure 7 demonstrates the NUI style interactions with motion gestures en-
abled by the deployed IP. Figure 7 (1) shows the NUI-enabled buttons. Using
the shaking gesture, the user positions the focus on the control of choice (each
device shake will position the focus on the next button) as illustrated in Figure
7 (2). Using the head movement, the user is able to select (i.e., push) the button
in focus as illustrated in Figure 7 (3).

9 http://www.asus.com/Multimedia/Xtion PRO LIVE/, latest access on 26.06.2014.



Fig. 7. AmbientRoom application NUI-enabled Interactions

Despite its limited scope, the AmbientRoom scenario illustrates the possibil-
ity to turn a mobile device into an interaction hub to enable the user to control
ambient resources (i.e., lighting) using natural interactions techniques (i.e., dif-
ferent motion gestures). Most importantly, it demonstrates the potential and
power of the soft wiring approach where interaction capabilities are deployed (as
plugins) at runtime using the STAGE system.

5 Provisioning Interaction Plugins

Provisioning IP undergoes a number of phases as illustrated in Figure 8. In the
first phase, the interaction techniques passes the usual design and implemen-
tation processes. In the second phase, the interaction developer (i.e., designer,
developer, or team) makes sure that the techniques satisfies the function and
utility defined in the interaction design. In the third phase, the interaction de-
veloper should define the interaction’s movement profile, based on an acceptable
level of movement description; define the interaction’s ability profile, based on
the most important physical qualities that impact the interaction; and assign
the interaction semantics, based on the envisioned utility of the technique. In
the fourth phase, the interaction developer wraps the interaction’s internal logic
as a Dynamix plugin. In the fifth phase, the IP is published to an accessible



repository. Dynamix supports two types of accessible plugin storage locations
(file-system or network). Our implementation supports the later type as shown
in Figure 1. The repository hosts the plugins OSGi bundles and the correspond-
ing context plugin description XML documents.

Fig. 8. IP provisioning lifecycle

6 Conclusions and Future Work

This paper argues that a large-scale dynamic runtime deployment of existing
and future interaction techniques for Natural User Interfaces remains an en-
during challenge for engineering interactive systems for ambient spaces. Only
few research projects aim to target this problem in the context of HCI. In this
paper, we have presented the architecture and implementation of the STAGE
system, which enables interaction techniques to be constructed as standalone dy-
namically deployable objects (Interaction Plugins) for Android mobile platforms
during runtime. The presented implementation is one of many possible ways to
realize the proposed concept. Hence, the proposed implementation should not be
necessarily considered as an ultimate implementation solution, instead the im-
plementation aims to demonstrate and evaluate the feasibility of the approach.
The current implementation utilizes the wide adoption of mobile devices for
rich personalization, customization, and context acquisition in ambient spaces.
Hence, this work fosters the use of mobile devices as customized and personal-
ized interaction hubs. As future work continuation to this paper, we are working
on an extended performance evaluation of the Interaction Plugins and rich feasi-
bility tests by implementing a number of demonstration scenarios. We also aim
at increasing the richness of Interaction Plugins and improving plugin’s filtering
and matching according to the user’s physical context.

7 Acknowledgement

This work was partially supported by the Graduate School for Computing in
Medicine and Life Sciences funded by Germany’s Excellence Initiative [DFG
GSC 235/1].



References

[1] Altakrouri, B., Gröschner, J., Schrader, A.: Documenting natural interac-
tions. In: CHI ’13 Extended Abstracts on Human Factors in Computing
Systems, pp. 1173–1178. CHI EA ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2468356.2468566

[2] Altakrouri, B., Schrader, A.: Towards dynamic natural interaction ensem-
bles. In: Devina Ramduny-Ellis, A.D., Gill, S. (eds.) Fourth International
Workshop on Physicality (Physicality 2012) co-located with British HCI
2012 conference. Birmingham, UK (Sep 2012)

[3] Calvary, G., Coutaz, J., Thevenin, D.: Embedding plasticity in the devel-
opment process of interactive systems. In: 6th ERCIM Workshop ”User
Interfaces for All”. Also in HUC (Handheld and Ubiquitous Computing)
First workshop on Resource Sensitive Mobile HCI, Conference on Hand-
held and Ubiquitous Computing. Florence, Italy (Oct 2000)

[4] Carlson, D., Altakrouri, B., Schrader, A.: Ambientweb: Bridging the web’s
cyber-physical gap. In: Internet of Things (IOT), 2012 3rd International
Conference on the. pp. 1–8. Wuxi, China (Oct 2012)

[5] Carlson, D., Altakrouri, B., Schrader, A.: An ad-hoc smart gateway plat-
form for the web of things. In: Green Computing and Communications
(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE
International Conference on and IEEE Cyber, Physical and Social Comput-
ing. pp. 619–625. Beijing (Aug 20-23 2013)

[6] Carlson, D., Altakrouri, B., Schrader, A.: Reinventing the share button for
physical spaces. In: IEEE International Conference on Pervasive Computing
and Communications Workshops (PERCOM Workshops). pp. 318–320. San
Diego, California, , USA (Mar 18-22 2013)

[7] Carlson, D., Schrader, A.: Dynamix: An open plug-and-play context frame-
work for android. In: Proceedings of the 3rd International Conference on
the Internet of Things (IoT2012). Wuxi, China (Oct 2012)

[8] Consortium, I.M.: ist-music: Context-aware self-adaptive platform for mo-
bile applications (2010), http://ist-music.berlios.de

[9] England, D.: Whole body interactions: An introduction. In: England, D.
(ed.) Whole Body Interaction, chap. Whole Body Interactions: An Intro-
duction, pp. 1–5. Springer London (2011)

[10] Fogtmann, M.H., Fritsch, J., Kortbek, K.J.: Kinesthetic interaction: reveal-
ing the bodily potential in interaction design. In: Proceedings of the 20th
Australasian Conference on Computer-Human Interaction: Designing for
Habitus and Habitat. pp. 89–96. OZCHI ’08, ACM, New York, NY, USA
(2008), http://doi.acm.org/10.1145/1517744.1517770

[11] Iacolina, S., Lai, A., Soro, A., Scateni, R.: Natural interaction and com-
puter graphics applications. In: Puppo, E., Brogni, A., Floriani, L.D. (eds.)
Eurographics Italian Chapter Conference. pp. 141–146. Eurographics Asso-



ciation, Genova, Italy (2010), http://publications.crs4.it/pubdocs/

2010/ILSS10

[12] Pruvost, G., Heinroth, T., Bellik, Y., Minker, W.: User Interaction Adapta-
tion within Ambient Environments, chap. 5, pp. 153–194. Springer, Boston
(USA), next generation intelligent environments: ambient adaptive systems
edn. (2011)

[13] Rousseau, C., Bellik, Y., Vernier, F., Bazalgette, D.: A framework for the
intelligent multimodal presentation of information. Signal Process. 86(12),
3696–3713 (Dec 2006), http://dx.doi.org/10.1016/j.sigpro.2006.02.
041

[14] Schrader, A., Carlson, D.V., Busch, D.: Modular framework support for
context-aware mobile cinema. Personal Ubiquitous Comput. 12(4), 299–
306 (Feb 2008), http://dx.doi.org/10.1007/s00779-007-0151-6

[15] Wachs, J.P., Kölsch, M., Stern, H., Edan, Y.: Vision-based hand-gesture
applications. Commun. ACM 54, 60–71 (February 2011), http://doi.acm.
org/10.1145/1897816.1897838

[16] Wang, A.I., Ahmad, Q.K.: Camf - context-aware machine learning frame-
work for android. In: Rey, M.D. (ed.) Iasted International Conference on
Software Engineering and Applications (SEA 2010). CA, USA, 2010 (Nov
2010)


