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Abstract—Wireless sensor networks (WSN) have specific fea-
tures such as low transmission range, stringent energy con-
sumption constraints, limited memory and processing power. For
this reason, tailored protocols have been proposed, optimizing
network protocols with respect to various assumptions: one
commonly exploited property of WSN is the stability of the
topology due to permanent installation of sensor nodes. However,
in some applications, some of the wireless sensor nodes might be
mobile, for instance when they are associated with users. In that
case, specific extensions of WSN protocols need to be designed.
Then a first step is the characterization of nodes’ mobility. This
is the focus of this article: we propose a general method of
mobility estimation for wireless sensor networks. Namely, using
a Bayesian framework, we derive a mobility prediction model
to estimate the node velocity (starting from no knowledge) from
observed events. In this article, we focus on events represented by
the most minimal information: mere observation of link duration
with neighbors. Simulations illustrate that, even with such limited
information, the mobility can be well inferred, and results show
the good performance of the method.

I. INTRODUCTION

Wireless sensor networks are integrated in very diverse
applications to achieve several purposes such as monitoring,
detecting anomalous events and various measurement collec-
tion tasks. A key feature of such networks is their facility
of deployment and their auto-adaptivity. However, due to the
limited capacities of wireless sensor nodes, auto-adaptivity
sometimes comes at the price of lesser generality: many WSNs
are not integrating routing protocols relying on more complete
information such as in mobile ad-hoc networks (MANETS), or
wireless mesh networks.

For instance, if we consider RPL (IPv6 Routing Protocol
for Low power and Lossy Networks) [21], the IETF routing
protocol for WSNs, RPL is designed in such a way to
adapt to WSN constraints (low energy resource, low memory
processing capabilities, etc.). But RPL is still inefficient faced
to nodes’ mobility and its performance degrades consequently
[24].

Some works [22], [23] have been proposed for monitoring
and detecting neighboring stable links but at the expense of
extra resource consumption. Some other schemes [24], [25]
have been proposed to enhance the RPL behavior. But their
contribution remains limited since they require several changes
to native RPL. The resulting schemes, even improving the
WSN behavior in case of nodes’ mobility, largely deviate the

native RPL behavior.

In general, WSN nodes are assumed to be static, and perfor-
mance may degrade if mobile nodes are present without being
taken into account. Therefore, first, characterizing node mo-
bility, and second, integrating the mobility into WSN routing
protocols is necessary in this scenario. The topic of mobility is
explored in this article: we propose a method to automatically
detect and estimate the nodes’ mobility in WSNs. The key
idea of this paper is to accurately predict the sensor nodes’
movement (velocity) without pre-knowledge of any mobility
information within the sensor node (current position/speed).
A straightforward way to derive sensor nodes’ mobility is to
equip each sensor node with a specific equipment (e.g. GPS -
Global Positioning System) to estimate the node’s mobility [2],
[3], [11]. As we could expect, using such techniques are not
universally applicable (GPS not embedded for cost reasons,
limited GPS coverage, limited GPS precision, ...).

Other techniques, based on sensor nodes’ mobility estimation
propose new metrics or new extensions for routing protocols
[1], [4], [10], [6], sometimes relying on analytical models [16],
[14], [5], [19].

The key difference between our approach and the above

mentioned techniques is that, we are deliberately making min-
imal assumptions and intend to propose the most general so-
lution possible. For instance, sensor nodes have no knowledge
of their initial positions/velocities. Nodes discover dynamically
existing and broken links. The proposed framework will allow,
given an initial random distribution of the sensor nodes’ speed,
to rapidly converge to the real distribution using Bayesian
inference [29]. The strength of Bayesian inference is that a
unique event (a broken link between two nodes namely U;
and U;) allows refining the velocity/mobility prediction of all
U; and U; neighbors. Therefore, the Bayesian inference allows
collaborating nodes to quickly converge to a correct mobility
prediction despite having initial arbitrary information about
their speed values.
In this paper, we present the different steps of the proposed
Bayesian model to predict the sensor node’s mobility. Then
we evaluate the convergence of estimated speed values to the
real values, through simulations.

The rest of the paper is organized as follows. In Section
II, we discuss the literature related to mobility prediction in
WSNss. Section III defines our mobility prediction model based



on Bayesian inference. In Section IV, we simplify our model
(to make it even more suitable for the WSN context) and
evaluate its performance. Finally, Section V concludes the
paper and present directions for future work.

II. BACKGROUND

In this paper we intend to propose a novel mobility pre-
diction scheme for WSNs based on Bayesian inference [29].
As mentioned above, the sensor nodes’ mobility in WSNs is
a critical issue and if no actions are taken with respect to the
sensor nodes’ movement, the whole network performance will
be considerably altered when the sensors effectively move.

Hence, we propose in this section to review the works
in literature related to sensor nodes’ mobility and mobility
prediction in WSNs. According to the technique used to
predict the sensors’ movement, the related studies can be
classified in three categories: mobility estimation techniques,
routing based mobility prediction techniques and mobility
prediction analytical models.

A. Mobility estimation techniques

One simple way to estimate the sensor nodes’ mobility is
to equip them with GPS receivers as proposed in [2], [3].
GPS gives the absolute coordinates of a mobile sensor at the
expense of cost and energy.

Moreover GPS may suffer from frequent satellite discon-
nections in indoor environments. To estimate nodes’ mobility,
methods uses the Received Signal Strength (RSS) to measure
the power of a received signal [11] as an indicator of the
distance between two nodes. However, these techniques might
be computationally expensive (time, CPU and memory). More
importantly, they require perfect modelling of the wireless
channel: the obtained values will fluctuate according to multi-
path effects, fading, or limited temporal coherence (due to the
presence of obstacles for example or in mobile environment)
leading to imprecise values. A common issue in such mobility
estimation techniques using sensors (RSSI, ranging devices,
...) is that they often rely on some hypothesis (such as perfect
models, or at least good characterization of the stochastic
component of the measured values, e.g. noise, error, variance).
In real implementations, it might happen that some hypothesis
are not verified.

B. Routing based mobility prediction techniques

In this paragraph, we discuss the different works using the
routing metric to predict the sensor nodes’ mobility in wireless
networks. A first example is [1], using a link stability metric as
a mobility indicator between two nodes. This metric is defined
as the number of successive beacons. The mobility prediction
is based on the past received values. However, the lost beacon
frames used to predict the link stability provide false predicted
values due to obstacles, collisions, etc.

[10] proposes a modified AODV (Ad hoc On demand Distant
Vector) routing scheme to predict the neighbors’ mobility
in MANET (Mobile Ad hoc NETwork by calculating the
effective communication distance (the distance between two

nodes that allows them to directly communicate). In fact, the
update of the effective communication distance is triggered
when the real distance between nodes is higher than the
estimated distance. This approach has some disadvantages
such as requiring a centralized agent with a permanent power
or periodic calculation of the received power.

C. Mobility prediction analytical models

In this paragraph, we discuss the analytical works modelling
the sensor nodes’ mobility in WSNs. Many approaches are
based on Markov chain paradigm. In [16], links lifetime is
considered as the sum of two states’ Markov model: the
link availability when the velocities of the two nodes keep
unchanged during a period 7}, and the second state represents
the case where velocity changes. Accordingly, the probability
that the link is broken is divided into two states. This approach
requires the knowledge of the nodes’ velocity. The mobility
prediction model in [19] is based on the Markov assumption:
the future depends only on the present state. Hence, the state
must contain sufficient information to get a precise system
behavior prediction.

The models presented in [14] are an inspiration for our
work: they characterize the probabilistic properties of observed
events (link duration, number of neighbors, ...), with respect
to node speeds and directions (considered as random variables)
under some assumption. However they do not go the extra
step of using this as input for estimating the random variables
(mobility parameters).

Recently, [5] focus on Bayesian model to predict mobility in
WSNs. It uses metadata to predict the network behavior. This
approach is very difficult to implement because requires self
configured nodes and needs a coordinator to collect the results.
In [5], the authors proposed a Bayesian model to predict
mobility in ad hoc networks hence helping routing protocols
to avoid broadcasting request messages in mobile regions.
Therefore, the model classifies the nodes’ speed in three
categories (low, medium and high) based on two estimated
quantities Average Encounter Rate (AER), given the average
number of new encounters experienced in a duration T and the
node’s degree known as the number of one node’s neighbors.
Two nodes encounter each other when the distance between
them becomes smaller than the communication range. Even
using Bayesian inference, [5] only gives a rough prediction
of nodes’ mobility without deriving any accurate information
about effective speed values.

III. BAYESIAN MODEL FOR NODE SPEED AND LINK
DURATION ESTIMATION

In this section, we present our Bayesian inference frame-
work for the mobility prediction in WSNs. WSNs may contain
a certain number of mobile sensor nodes depending on the
network deployment context. An accurate prediction of sensor
nodes’ mobility can obviously aid the network to reactively
adapt to such topological changes.

We propose a framework to predict sensor nodes’ speed
using a Bayesian inference framework [29]. In short: a node



maintains an estimate of its speed as a distribution (e.g.
probability that the speed equals such and such value). This
distribution represents the best knownledge/estimate that a
node possesses of its own speed (at a given moment). Bayesian
inference consists in having sensor nodes to updating their
speed estimates with each encountered event. Starting from
any given unknown initial velocity distribution, the estimate
will be gradually updated towards the actual values, assuming
that the speed stays constant.

With Bayesian inference, convergence is ensured hence
avoiding non-trivial computational issues we may encounter
with some other models [26]. Moreover, two additional prop-
erties are: implicit robustness, because the inference is con-
stantly refining estimates, thus any noise or errors would
fade gradually with further estimates; and extensibility, with
the possibility of taking into consideration additional events
(for instance, an event “observed variation in accelerometer
sensor”).

A. Overview and Assumptions

We deliberately consider that sensor nodes have no infor-
mation about their positions, velocities, speed variation, etc.
The only information that allows predicting accurate speed
values is the occurrence of the particular events. In this article,
we consider the case of events “broken links” caused by
sensor nodes’ movement (nodes get out of range). We detail
a new framework based on Bayesian inference to derive real
sensor nodes’ speeds upon the occurrence of subsequent events
(here, “’broken links” events). Hereafter, we present the key
assumptions we adopt in the rest of our study:

o Assumption 1: The sensor network is composed of both
mobile and fixed nodes.

o Assumption 2: Sensor nodes have limited resources and
have no information to derive their speed values (GPS,
accelerometer, ...). Notice that when such additional
source of information are available, they could be easily
integrated in the Bayesian inference as additional events.

o Assumption 3: Sensor nodes’ velocity magnitudes are
constant over the time. Sensor nodes can however change
direction.

o Assumption 4: We assume that the sensor nodes’ direc-
tions are independently distributed [20].

In the following, we introduce the main notations:

o Let £ be the particular event representing link duration
before break between nodes U; and Us; € = { a link
between U; and U, lasted for 7 }. We denote p.(t)
the associated probability density function (pdf) of link
duration between two given nodes in the network.

o We also define p;(v;), the pdf of the node U; speed. p;(v;)
is called the prior speed distribution of the node U; (prior
to the event &).

o Similarily, we have p; ;(v;,v;) the prior joint speed
distribution.

o We also use the notation p*(...) for all the posterior
distributions (after the event &).

B. General Bayesian Inference

Exploiting the network dynamics, Bayesian inference allows
updating posterior sensor nodes speed distributions using
Bayes’ rule. We consider a two nodes’ scenario U; and U,
having respective speeds v; and vy, which were neighbor, and
just observed the event £ = their link has broken. Then, using
Bayes’ rule, we have:

P(U; has a speed v; and Us has a speed vs| event &)

= P(event £ |U; has a speed vy and U; has a speed vy )
o P(U; has a speed vy and Us has a speed vs)
Pr(€&)

where Pr(€) is the event £ probability. With the model
notations given in paragraph III-A, the posterior speed joint
distribution of v; and wo, resulting from the prior joint
distribution pq 2(v1,v2) and the observed link broken event

£, is:

P o(v1,02|E) = )pr(5|v17v2)p1,2(v1702) (2)

1
Pr(&
Moreover, using the assumption 4, related to the independence
of speeds v; and v,, we have

Pl,z(vh 122) =D1 (Ul) X p2(U2) 3)

As common in the Bayesian inference, Pr(£) is a normalizing
constant: it can be ignored, under condition to later normalize
posterior distributions (e.g. [ p = 1). After this step, the inde-
pendence property between vy and ve may not be still valid
after inference, especially if nodes become later neighbors
again, but as an approximation, we will ignore it, and use
only the definition:

wiwmle) = [

V2 =0

+o0
P o (v1,v2|E)dvy (4)

From equations (2), (3) and (4) we obtain:

Pl (01]€) p1(v1)/

V2 =0

o0

P (tlvr, v2)pa(va)dva  (5)

C. Conditional Link Duration Distribution

In this article, the events considered are link breakage, and
from inference in equation (5), deriving posterior speed dis-
tributions depend on the quantity p, (t|v1, v2): the probability
that a link lasts for a duration ¢ given prior speed distributions
v1 and v,. Link duration is a random variable because the
angle between the nodes is not known (supposed uniform in
[0, 27]). To evaluate the link duration, a good starting point is
[13]. Other studies focused on link dynamics using different
approaches (GPS [27], empirical residual link lifetime [28],
etc.). Despite its accuracy, [13] introduces two relative angles
« and [ to derive links’ duration whereas only the “minimum
distance” between the two nodes and the absolute value of
the relative speed are needed. Hence, we propose here to
derive a simple expression of link duration using the property:
the “minimum distance during their encounter” between two



nodes (that get in range of each other) is uniformly distributed
in [-R, R] [13].

We first start with a normalized/unit parameters assuming
that v = 1 and the radio range R = 1. We denote by p-(¢)
the pdf of link duration with unit parameters. Let U; and Us
be the nodes of the link (U; has speed 0, Uz has speed v). To
simplify the notation, without loss of generality, we assume
that Us is moving horizontally. Let y be the closest distance
between U; and U, when they are in the communication range
of each other. We assume that g is an instance of a random
variable Y which is uniformly distributed in [0, 1] with density
p3-(y) = 1. The relation between Y and the duration ¢ is given

by t = f(y) = 24/1 — y2. As in [18], we define:
pe(t) = | oy (f18) = [/ X))

)
After calculating f/(x) and f~!(z), we get:
pr(t) = ! (7)

2v/4 — 2

Now, if we remove the assumption about v and R, we have

Tactual = — Tnormalized- 1Us wWe apply the change of variable
T=yg(7)= &7
() = —1ope(g™ () = 2pr(2) @)
pT - g/_l(t))pT g - RpT R

This value is only defined when 0 < %t < 2, in other words
t< %. In the following, we assume that R = 1 and v will be
expressed in the following units: “radio-range per unit time”

(instead of “unit distance per unit time”). Then:

pr(t) = vpr (vt) ©)

The speeds vy and vy result in a relative speed v equal
to v = h(f) = \/v?+vZ—2v1vzcos(f), where 0 is the
angle between the nodes and is uniformly distributed in [0, 27].
Using the same computations as in (6) and (8), we have for
v €]lv1 — va|,v1 + vo[:

v (vl 2) =2 s (™ ()
2v

/IR — (02 + 02 — 02)?

’ _ viv2sin(f)
where /1 (9) - \/vf+v372v1v2 cos(0)
h~1(v) = arccos (%) in the range [0, 6] and another
one in the range [m,27]: 27 — h™1(v).

We can then express the conditional probability p, (t|v1, v2)
that a link lasts for a duration 7 when nodes have speeds vy

and vy. Notice that:

(10)

and

o The minimum possible relative speed is: |v; — v| (two
nodes in the same direction).

o The maximum possible relative speed is: v; + vo (two
nodes crossing each other in the opposite direction).

o The maximum possible relative speed that could result in

a link of duration ¢, is v = 2.

We denote vg(v1,v2,t) = min(vy; + vg, %) the maximum
relative speed given v; and vs that could possibly yield a link
of duration ¢.

pr(tlvi,v2) =0 if < t, otherwise :

[v1 — Vg

P (tfon, v2) = / pr (E0)py (v]or, v2)du

v=vg(v1,v2,t) V2t 2v
:/ 2.2 2 9 2 2 2 QdU
. 2v/4 — v2t 7T\/4U1U2*(U1+”2*”)

=|v1—v2|
/U—W(Ulﬂ)z,t) 3¢
= dv
v=lor—va| T/ (4= 022) (40703 — (vF + 5 — v?)?)
(11)

The expression (11) can be simplified through use of elliptic
integrals [19]. This also allows faster computation for evaluat-
ing (11). We introduce the following quantities: o = (v1v3)?,
B = (0 + )% v = 5, f = min(8*,7") and v =
max(B*,7*). Then, if § < a, then p(t|v1,v2) = 0, and
otherwise:

(w? + @)K (k) — w?E(k)

W

pr(tlvr,v2) = (12)

where w = /v —«a, k = < ij_a, FE is the complete integral
of the second kind and K is the complete integral of the first
kind in Jacobi form [19].

D. The Bayesian Inference Implementation

To implement the Bayesian inference model on the sensor
network, we consider that sensor nodes periodically exchange
Hello beacons to detect links’ expiration. Then Bayesian
inference can be performed with discretized quantities: each
node U; maintains a vector V; of n discrete velocity values
representing its discretized pdf and initialized it with random
distribution. Upon the occurrence of a link expiration event
& between two nodes U; and U,, the node U; evaluates the
matrix M(7g) = |p-(7g|v1,v2)| for all possible values of
vy and v, pr(Te|v1,v2) is given by equation (11). Then the
posterior is given by vector V;T is computed as follows:

Vit o V1o (M(ve)Va) (13)

where o is the element-wise product (Hadamard product).
Vfr is obtained by renormalizing the right hand of the expres-
sion. The node U performs the same evaluation steps. Once
U, computed its posterior distribution V1+, it broadcasts it
to its neighbors, hence to be considered int the next velocity
estimation round when another “broken link” event occurs.
To evaluate the effectiveness of the Bayesian inference with
such limited information, we implement Bayesian inference
(with python) and test it on a simple scenario with 2 nodes,
one with speed= 1 (expressed in unit distance per unit time,
with unit distance defined by radio range R = 1), and one
with speed= 2, with random (uniform) changes of direction



between encounter. Initially, all the nodes are unaware of their
real velocity values and use an arbitrary prior distribution
(as common in Bayesian inference). Figure 1 represents the
distribution of the velocity v; of one node: iteration number
increases corresponding to encounters (and events of link
breakage) with the other node. As illustrated, after 100 events,
the distribution of the velocity is concentrated around its actual
value 1, indicating excellent convergence of the estimate.

lity

=0.30¢

=0.25

=0.20

ty of probab

=0.15

dens

=0.10

=0.05

Fig. 1. Bayesian model validation

Despite its accuracy, the model proposed here requires
exchanging a large amount of data, upon a “link expiration”
event, corresponding to posterior link velocity estimation vec-
tors. The overhead introduced by this exchanged information
may largely degrade the network performance especially for
high mobility scenarios. A simplification of the Bayesian
inference model is detailed in the next section.

IV. SIMPLIFIED MODEL

A frequent exchange of posterior speed vectors computed
by the Bayesian inference model may result in a non neg-
ligible overhead, hence increasing energy consumption in
the network. Therefore, to reduce the amount of data sent
upon the occurrence of expiration links events, we propose
to model speed distributions as Gaussian distributions. Thus
we send mean and standard deviation of (posterior) speed
distributions. Receivers will interpret them as parameters of
Gaussian distributions. Hence, once a node U; computes its
posterior speed distribution vector VT, then it evaluates the
mean p,+ and the standard deviation o+ values and send
them to its neighbors. The receiver reconstructs the pdf of the
posterior distribution as:

v;— My +

P (v;) = i (14)

From equation (14), we derive discretized values of speed
distribution pf (v;). The simplified model is validated (in

Python) using the same simulation procedure as in Figure 1.
Mobile nodes may have one of the 5 velocities: 1, 1.5, 2, 3
and 4. After 100 iterations, the final speed density curves are
presented in Figure 2. The Figure shows that the estimated

velocity values are very close to the real ones.
Simplified prediction
0.35

0.30

0.25-

0.201

0.15f

velocity distribution

0.10F

0.05F

Values of "v*
Fig. 2. The simplified model using 5 velocities

Moreover, to show the quick convergence of the speed
estimation process, we depict in Figure 3 the average estimated
speed values as a function of the iteration number. We also
depict speed deviation curves given by (average speed +/-
standard variation). We notice, in Figure 3, that the gap
between curves decreases as the iteration number increases.
This behavior highlights the fact that the predicted velocity
converges to the real one.

convergence velocity

w
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Fig. 3. Velocity behavior as a function of the iteration number

In Figure 4, we consider a large scale scenario with 50
mobile nodes and two velocity values (1 and 2 - half of the
nodes each). We depict in Figure 4(a) (respectively in Figure
4(b)) the estimated average, maximum and minimum velocities
of all mobile nodes with real speed 1 (respectively 2). Figures
4(a) and 4(b) show that all mobile nodes’ predicted velocities
(average, maximum and minimum) converge to real speed
values 1 respectivly 2.

The slower speed convergence is caused by the choice of
the worst predicted values at each iteration (the minimum and
the maximum values). Figure 4 illustrates the scalability of
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Fig. 4. Velocity convergence of the large scale mobility scenario

our mobility prediction model and shows that the Bayesian
inference remains feasible for large-scale networks.

A further validation step is done in Figures 5 and 6 where
realistic mobility models are used to derive link durations.
Mobility scenarios are generated using the BonnMotion tool
[12]. Analysis of the mobility scenario allows deriving links’
duration values. These durations are therefore injected in the
Bayesian model to predict nodes’ velocities.

In Figure 5, we use the Random Waypoint (RWP) model
to generate movement traces of two nodes with real velocity
values equal to 0.9 and 1.8. Figure 5 shows that with real
mobility scenario, the Bayesian inference model converges
after the given iteration (encounter) number 100. The same
result is obtained in Figure 6 where the Random Direction
(RD) mobility model is used and for sensor nodes speeds equal
to 0.7 and 2.

We can therefore conclude that all the performance results
showed the efficiency of the Bayesian inference in predicting
real sensor nodes’ speed values and its convergence in a timely
manner given unknown initial speeds; even with as minimal
information as observed link durations.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new mobility prediction model
for WSNs based on a Bayesian inference approach. We dis-
cussed the existing solutions in MANETSs and WSNss related to
the nodes’ mobility estimation. We then proposed a Bayesian
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& S & > &

-
o
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0 20 40 60 80 100
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(b) intermediate velocity values

Fig. 5. Velocity convergence using the Random Waypoint (RWP) model

inference framework that derives sensor nodes’ velocity only
based on the occurrence of particular ”link expiration” events.
Therefore, we detailed the different steps of our mobility
prediction model and simplified the model expressions hence
to be easily implemented in a sensor network context. Perfor-
mance evaluation results show the accuracy of the Bayesian
Inference framework and its convergence in a timely manner.

In our future work, we intend to use the Bayesian inference
model in the RPL protocol [12] to derive a new routing metric
adapted to mobile sensor networks.
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