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Abstract. Industrial system development is facing an ever growing com-
plexity of the target applications together with market demands of reduc-
ing time and costs of products. This issue is even more relevant in safety
critical domains, where the quality of the system has to be necessarily
validated before any release can be placed on the market. Bombardier
Transportation works in one of such domains, namely rail-equipment
development, and has to deal with problems related to testing the devel-
oped applications in an efficient and effective way while trying to reduce
costs and time-to-market.

This work illustrates the concrete solutions adopted by the company in
order to effectively test their systems; in particular, they adopt auto-
mated regression testing and simulated environments to speed-up the
process and alleviate the problems due to hardware costs and size as
well as the non-reversibility of reality.

Keywords:
Industrial System Testing, Automated Regression Testing, Simulation Envi-
ronments, Rail Equipment Development

1 Introduction

Nowadays’ needs to increase software quality assurance and reduce development
time is making manual testing not appropriate to meet market demands [10].
Moreover, companies that produce artefacts for safety-critical applications, no-
tably automotive, aviation, medicine, nuclear engineering, transport, etc., have
to face some additional issues. In particular, they have to deal with high costs
for buying hardware units devoted to developers and testers; they have to face
the impossibility to perform certain types of tests because of their dangerousness
and destructiveness, and management of timing issues related to the execution
of tests.

Bombardier Transportation is one of the world’s largest companies in rail-
equipment manufacturing and servicing industries with a wide product range



of passenger trains, locomotives, and boogies [11]. MAXIMATECC is a Swedish
company whose purpose is to support manufacturers of industrial vehicles with
solutions that deal with humans in control of vehicles working in critical en-
vironments [13]. Besides providing mechanical and electrical parts, Bombardier
Transportation also produces software for its vehicle control systems. One of the
most important parts of such software is the Train Control and Management
System (TCMS), which is a high capacity, infrastructure backbone that allows
easy integration of all controls and communications requiring functions on-board
the train [11][12].

This article discusses about the exploitation of automated regression test-
ing in a simulated environment by illustrating its concrete implementation in
an industrial setting. The aim is to clarify the general needs, implementation
solutions, advantages, and drawbacks of adopting such a testing methodology
in industrial practice. To the best of our knowledge, despite the relevance of
the problem, this is the first work that illustrates the issues and possible so-
lutions due to the introduction of regression testing techniques and simulated
environments in the railway industrial domain.

The paper is structured as follows: Sect. 2 describes the basic concepts that
underpin the contribution of this work, while Sect. 3 illustrates the main charac-
teristics of the TCMS and its complexity. Sect. 4 presents the Bombardier Trans-
portation and MAXIMATECC framework that supports automated regression test-
ing and its interconnection with the simulated environment, while Sect. 5 clar-
ifies the fundamental steps the brought Bombardier Transportation and MAX-
IMATECC to obtain the desired support for simulation. The paper then shows
concrete results of the comparison between manual versus automated testing
procedures both in a real and in a simulated environment in Sect. 6. The work is
concluded in Sect. 7 by drawing considerations on the lesson learned in the real-
ization of the automated regression testing support including its interconnection
with simulated environments, and outlines some future investigation directions.

2 Background

Software testing has been traditionally meant to be a manual activity, where
people sitting in front of the computers test the software by trying various usage
and input combinations. In the last decade, due to the need of increasing the
effectiveness, efficiency and coverage of the testing, companies are investing more
and more on the automation testing. [16]. In this work we refer to automated
testing as the process to analyse software by using special tools to automatically
control the execution of tests and detect differences between existing software
conditions and expected results [1] [17]. Its introduction has given a significant
boost to the testing area, by allowing to speed-up testing activities and hence the
whole Software Development Life-Cycle (SDLC). Moreover, it has contributed
to alleviate relevant disadvantages of manual testing by reducing test execution
time, human mistakes in performing and evaluating tests, and limitations related
to the dangerousness and time extension of tests [2] [16]. Besides, automated



testing has also favoured the use of regression testing, which was considered an
expensive and time consuming testing technique. The combination of automated
and regression testing has given life to a practice that is usually called automated
regression testing [15].

Regression Testing is a particular type of software testing that prescribes
retesting the software during its SDLC, with the aim to detect defects deriving
from software changes. When a new version of the software is released, existing
test suites have to be partly or completely rerun to verify and validate that
software changes did not introduce new faults, and that the software behaviour
is still matching the requirements. During the re-testing phase, developers and
testers have to continuously revise and refine test cases with the aim to make
them as much as possible accurate for the new software release [2].

The combination of automated and regression testing has the benefit that
they compensate the disadvantages of one another. On the one hand, automated
testing has the advantage to automatically perform tests avoiding human re-
sources to step by step verify and validate the correctness of the software, but
has the disadvantages of high initial costs, time-consuming setup and configu-
ration operations needed to prepare the environment to run tests. On the other
hand, regression testing has the advantage to have a short setup phase to run
tests, but has the disadvantage that for each software change tests should be re-
run and consequently very time-consuming if manually done. Therefore, benefits
of automated regression testing become evident in long-term SDLCs, where the
testing phase is quite long and there is the necessity to frequently run tests [2] [3].

Among possible implementations, automated regression testing in a simu-
lated environment represents an important possibility for companies since it
magnifies the advantages gained through automation [4]. In particular, it allows
to improve accuracy, coverage, and reusability by setting and possibly enforcing
certain system states that constitute the pre-conditions for a given test to be
run. It is worth noting that in real environments it can be very difficult (and
even impossible in some cases) to reproduce particular conditions due to timing
issues as well as because of the potential destructiveness of the test. For the
same reasons, simulated environments permit to save time and money (e.g by
avoiding to buy multiple hardware components) in selecting the best alternative
among several acceptable design solutions.

In the following, we first illustrate the TCMS system in order to let the
reader grasp the complexity of a modern train application; then, we describe how
Bombardier Transportation and MAXIMATECC provided an integrated solution
for automated regression testing in a simulated environment.

3 The TCMS system

Bombardier Transportation produces software for its Vehicle Control Units (VCU)
and Intelligent Display Units (IDU). One of the most important parts of the de-
veloped software is the TCMS, which is a high capacity, infrastructure backbone
that allows easy integration of all controls and communications requiring func-
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Fig. 1. General architecture of the TCMS system.

tions on-board the train. It provides a high processing capability and bandwidth
for real time exchange of data, both throughout the train and with the outside
world, via up to date mobile communications [5].

TCMS interacts with all train subsystems, notably brakes, pantographs,
doors, lights, toilets, and so forth. The architecture of TCMS consists of mainly
three networks, namely Internet Protocol Train Communication (IPTCom), Mul-
tifunction Vehicle Bus (MVB), and Serial. In Fig. 1 is shown an example of an
IPTCom network 4, where it is illustrated how involved sub-units communicate
with each other. Even though the architecture in the picture is train specific, it
is noteworthy that train architectures adhere to a generic design pattern that is
detailed in the following.

Usually, each train consists of multiple cars, where the first and the last are
a combination of control and passenger cars, whereas the ones in between are
usually only passenger cars. As expected, control cars (which in this figure are
named with Al and A2) are the places where the driver can sit and where most
of the train controls are contained. Moreover, they contain most of the TCMS
units and those units that are classified as safety critical. Instead, B1 and B2
contain only units to control normal actions and reactions that are executed in all
cars (e.g, activate driver’s desk, raise pantograph, open battery contact, activate
emergency brakes). A relevant characteristic of the TCMS architecture is its

4 For the sake of space and readability, in this paper we only show part of the IPTCom
network to let the reader grasp the complexity of the TCMS system.



redundancy: almost all units included in both control/passenger and passenger
cars are replicated. This serves to increase the reliability of the system in case
of malfunctions, damages, etc. of architecture units. Moreover, safety critical
devices have the capacity to take decisions and act on the train in case of system
malfunctions, driver absence, etc. These actions depend on the status of TCMS
units, the status of the train and its location, the communication with the outside
world, etc.

By looking deeper at the TCMS architecture example, it is possible to notice
that most of the units contained in A1l are duplicated in A2 and the same happens
for B1 and B2. In particular, B1 and B2 contain Heating, Ventilation and Air-
Conditioning (HVAC), Driver Control Unit 1 (DCU1), Driver Control Unit 2
(DCU2), Passenger Counting System (PCS), and Drive Control Unit Motor
(DCUM) converter units. A1 and A2 include a majority of the passenger car
units, and additionally locate units such as Driver’s Key, those classified safety
critical such as IDUs, Central Computing Unit Safety (CCU-S), and GateWay
Safe (GW-S), those protected by firewall (exclusion MCG) such as Closed Circuit
TeleVision Digital Video Recorder (CCTV DVR) and Passenger Information
System (PIS) System, and the Central Computing Unit Operation (CCU-O).

Since TCMS communicates with other systems (both inside and outsite the
train), it needs to be protected with firewall units. In the IPTCom network of
the TCMS architecture there are five devices that are protected by the firewall
and they are CCTV DVR, PIS System and MCG as shown in Fig. 1. Moreover,
TCMS is responsible to read Input and Output (I0) signals connected to the
driver control and communicate their states to the dedicated hardware to process
their values and perform corresponding actions. Additionally, it is also respon-
sible to evaluate reactions, which can be generally described as consequences to
actions, e.g., open doors, release brakes, activate heating, turn on lights [14].

Over the years, this system has become more and more complex and cus-
tomer’s requirements of shorter time-to-market became more stringent. Bom-
bardier Transportation, with the aim to meet these requirements, keep its global
leader position, improve its competitiveness and quality, and reduce the devel-
opment time and costs, has revolutionized its development process by creating,
i) an automated testing environment and, i7) a simulated environment able to
replicate the behaviour of the real system, both in its software and hardware
parts. The need to perform critical tests and regression testing has encouraged
the use of automated testing versus manual testing. Furthermore, the decision
to create a simulated environment has been mainly due to the impossibility to
have the real train in the office because of space, costs, and because typically
software development is distributed across different company sites.

4 Automated Regression Testing support at Bombardier
Transportation

This section describes how automated regression testing and simulated environ-
ment techniques are combined in the state of practice at Bombardier. In partic-
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Fig. 2. General architecture of the test environment.

ular, we first introduce the overall environment that supports testing for both
real and simulated artefacts. Then, we illustrate how simulation mechanisms are
integrated to test the System Under Testing (SUT).

4.1 Test Environment

Bombardier Transportation has created a testing environment with the aim to
speed-up and automate as much as possible the testing process, and ease the
adoption of regression testing. The result is a simple architecture, but at the
same time complex in software components, consisting of two blocks, namely
Test System and Test Object, as depicted in Fig. 2.

Test System consists of two sub-systems, i.e. Testing and Control, that pro-
vide automation support for the testing process and a controller tailored to the
Test Object, respectively. The former includes the Test Automation Framework
(TAF) and Visual Source Safe (VSS), whereas the latter encompasses a Vehicle
Control Simulator (VCS) and Driver Control Unit (DCU).

TAF is a set of applications devoted to the specification of tests and their
automated execution. In particular, the Test Script Editor (TSE) serves to create
and edit test scripts and snippets ® based on the definition of test specifications.
TSE requires the communication with the VCS and VSS databases (as shown
by means of interconnection lines in Fig. 2), in order to gather on one hand train
signals and controls, and on the other hand test scripts, snippets, and sessions,
respectively. Train signals and controls are categorized as action, reaction, and
neutral instructions. Actions are the operations the SUT is subject to, reactions
are the corresponding effects triggered in the SUT and observable in terms of
changes to the system, and neutrals have no effects on the SUT, but serve to

5 Snippets allow the modularization of test scripts by grouping testing operations.
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support the execution of test scripts, such as the execution of parallel reactions,
the displaying of comments, etc. The Test Engine (TE) is in charge of running
test scripts against the SUT. It consists of a GUI application that initializes the
SUT and test scripts, and a library containing validation rules to compare testing
against expected results. Therefore, TE takes care to perform actions against
the SUT and verify the correctness of SUT reactions. In this respect, DCUTerm
and DCUIP are exploited to access TCMS’s built-in logging functionality for
monitoring the status of signal values at millisecond resolution, and to generate
test reports for each test script execution in various formats (i.e., PDF and XML
documents), respectively. Finally, the Test Execution Manager (TEM) is used to
create advanced testing workflows, notably collections of one or more test scripts
scheduled by following a user’s defined logic known as sessions. In the session the
user can set a number of repetitions and conditional jumps for each test script,
as well as define termination policies.

Test Object is the block that represents the SUT and can be either TCMS
or SoftTCMS. TCMS differs from SoftTCMS since the latter is a simulated
environment of the former. Test System, excluded the VCS, is the part of the
Test Environment that is considered static, since all the included components
are invariants of the testing support. Instead, the VCS and Test Object change
depending on the project definition and can vary between the real and simulated
environments, simply by selecting TCMS or Soft TCMS. In this manner the test
object can be totally real, hybrid, or totally simulated.

4.2 Simulated SUT

The simulation of VCUs and the TCMS software loaded into them consists in
creating several applications that replicate the behaviour of VCUs allowing the
execution of the same TCMS software that is executed in real VCUs (called



Soft TCMS in fig. 3). This provides the advantage to have the same application
in both simulated and real environments. In fact, the creation of train software
applications is done by means of the same tool, namely MITRAC CC, regardless
they are going to interact with real or simulated environments. This has the
remarkable advantage that once specified, the application can be compiled to
be executed on a general purpose operating system (OS), notably Microsoft
Windows in this case, to be simulated, or can be compiled to be executed on a
train-specific OS, to be run on real VCUs. Software systems are designed in terms
of Programmable Logic Controller (PLC) applications written in the Function
Block Diagram (FBD) language specified by the IEC 61131-3 standard [9]. Then,
the phases to generate applications for both environments are two and they
consist in the generation of the framework and in the compilation. The former
addresses the generation of configuration files that are necessary to compile
the final application toward the target OS. Once configuration files are ready,
the applications for the simulated and real environments are compiled by using
Microsoft Visual Studio and MITRAC CC, respectively. Moreover, a glue layer
has been developed to make train OS applications compatible with Microsoft
Windows OSs and hence properly interface them with the simulation layer.

The information about the status of the train is mainly provided to drivers
by using IDUs, while the communication among VCUs, IDUs, etc. and their
startup-setup is done by using IP Switches and Gateways. As a consequence,
during the realization of the train also IDUs, IP-Switches and Gateways are
subject to testing and need to be simulated. IDUs are simulated following a
similar procedure of VCUs, whereas IP-Switches and Gateways are simulated
by means of a single application that provides network services, such as DHCP,
DNS, etc., as depicted in Fig. 3. The use of this application makes easier and
faster the preparation of the simulated environment since there is no need to use
real IP-Switches and Gateways.

Ultimately, with the aim to improve the debugging and testing experience,
some additional tools have been developed, namely DCUTerm and the Mitrac
Desktop Component Tester (MDCT). These tools allow debugging and testing
whole as well as partial device applications, disclosing the opportunity to perform
unit, integration, and system testing at software level.

To summarize, the development of the simulation environment and its sup-
porting applications allowed the remote control and management of the real
hardware, avoiding the uncomfortable need to have it on developer and tester’s
desks. In this respect, we discuss a sample testing scenario in the following, in
order to illustrate a typical testing scenario in BT and clarify the potentials of
exploiting simulated environments.

4.3 A sample testing scenario

The example shown in Fig. 4 illustrates an excerpt of a test case that serves
to verify the correctness of the closing of load shed contactors. It consists in
verifying a series of requirements that are part of the Technical Requirements
Specification, localised at system level. The approach that is used at this test
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Wait total 30 minutes
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-Check that the BC3 contactors are opened after 30 minutes with discharging current
more than 10A.

-Check that the battery discharging current is not less than 10A as then the limit for
detecting discharging is not correct.

-Check that no incorrect events are set when BC3 contactors are opened.

Fig. 4. A test case excerpt (from ComTS-IVVP-0181).

level is requirements based, which means that all test cases are created against
specific requirements.

A typical test case is made up of a sequence of steps composed of actions and
reactions (see Fig. 4). Moreover, all actions and reaction listed in the test cases
are available in the TAF to design corresponding test scripts ¢. This means that
each test script reflects exactly a test case and vice-versa. A further benefit that
this approach gives to testers is the possibility to first create test scripts that can
be immediately tested against the system and then create “official” test cases
for documentation purposes.

The explanation of the whole test case goes beyond the purpose of this work;
what is worth noting in Fig. 4 is the frequent exploitation of timed events, no-
tably deadlines, delays, and so forth. The combined use of automation testing
and simulation gives to testers the possibility to perform “short-cut” actions
during tests in order to reduce the execution time. For example, when a test
case introduces delays due to hardware parts, they can be easily reduced by
performing additional actions against the system. The benefit of this approach
is the possibility to cut the testing execution duration while preserving its relia-
bility. In fact, if a tester has to check that the BC3 contactors are opened after
30 minutes with the discharging of the current of more than 10A, she/he can
avoid waiting 30 minutes in the simulated environment by introducing an action
that speeds up the discharging of the battery in the test script.

5 We refer to test cases for the manual testing and test scripts for automated testing.




In the following, a deeper discussion of the simulation techniques is provided,
in order to better illustrate available features and challenges faced in their real-
ization.

5 Towards a completely simulated train

The simulation of the TCMS has been a long-lasting and intense activity de-
manded an in-depth analysis and understanding of how to create an appropriate
simulation and how to make the simulation as much as possible close to the real
environment. The first simulation step has been addressed with the VCS, which
is the control simulator of all TCMS subsystems, including physical and electri-
cal models, driver desks (e.g. LEDs, buttons, hand levers, displays, etc.), and 10
modules (i.e. sensors, actuators, etc.). The simulation of the VCS reproduces all
possible train controls and signals by using graphical panels, with the purpose to
enable users to control and manage the TCMS system by using GUI simulators
instead of real hardware. Furthermore, the VCS simulator has been designed and
developed to be reusable across different projects making minor adjustments. In
this respect, a database has been created where information about train controls
and signals are contained. The database is not common across train projects,
rather it is project specific; however, it allows to decouple the VCS GUI from the
corresponding signals exchanged when acting on the VCS, making the simulation
support more scalable and re-usable.

After the realization of the VCS, Bombardier Transportation was able to
run a hybrid system made up on the interaction between the VCS and VCUs.
The non-simulated part of the hardware was still built up in rack cabinets and
connected with the VCS through IO boards. Although this was a relevant step
forward to speed up the testing, availabilities and costs to build up rack cabinets
still represented a relevant limitation to perform parallel tests. Furthermore, the
application update on TCMS devices still constituted a bottle-neck in the test-
ing procedures. In fact, that is a complex and time-consuming process due to a
careful (and often tricky) management of safety devices and because of the up-
date speed. The application update requires a specific process that takes about
30 minutes for each safety device and only a bit less for non-safety devices. Fur-
thermore, for safety devices if the update is not performed by strictly following
a step-by-step well-defined procedure and respecting all its pre-conditions, it is
very likely to get a failure during the update. This is mainly due to the fact that
the update has to take into consideration a lot of information of the device, such
as version match among software components, Cyclic Redundancy Check (CRC)
of files, and so forth. As a consequence, by considering the complexity of the train
architecture, the update of all installed devices is a procedure that takes several
hours with a high probability of making mistakes during the update. Even worse,
taking into account the typical change rate of VCU applications during the train
development process, TCMS updates constituted one of the main time costs in
debugging and testing activities.
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As an additional remark, the difficulty or impossibility to debug VCU appli-
cations during their execution in the real environment contributed to make the
work for developers and testers harder. In particular, because of timing prob-
lems when applications run asynchronously it is very difficult (and even not
possible at all) to perform tests on time-dependent actions and reactions, espe-
cially when several events are expected to happen in parallel. As a consequence,
Bombardier Transportation decided to simulate the remaining TCMS hardware
units and communication buses with simulators compiled for Microsoft Win-
dows OSs. Nowadays Bombardier Transportation is able to run the whole train
system on a computer, which marked a major turning point in the context of
application development and testing for TCMS. In today’s practice, the main
goal for this company is to set up a test system able to perform the automated
regression testing on the realized simulated environment.

5.1 Architecture

In general, when a real environment is replicated with a simulated one, the main
goal is to make the simulation as accurate as possible, in order to get reliable
results and reduce efforts due to tuning the environment itself. In this respect
Bombardier Transportation and MAXIMATECC adopted a well-defined layered
architecture rather than simply developing simulators specific to each project,
since empirical experience has shown its efficacy. In particular, MAXIMATECC
proposed a Hardware Abstraction Layer (HAL), that is a simulation architec-
ture where each layer and its components are simulated by preserving the same
characteristics and intercommunications of the real environment. Fig. 5 depicts
the core concept of the HAL: it mainly consists of three layers that represent
different levels of abstraction, namely software, driver, and hardware.

The Applications layer comprises a single component that is the Embedded
System Application. It represents the applications that are executed on the real
environment as well as on the simulated environment. It is worth to recall here
that this layer remains unchanged in both environments, making an application
developed and tested with a simulated environment ready to be executed on
the real environment. The layer of Drivers includes the Controller Area Net-



work bus, 10 interfaces, memory, and so forth. It is replaced in the simulated
environment with the Emulation Glue Layer, which is a connection wrapper be-
tween Applications and Simulation Tools. Finally, the Hardware layer comprises
the CPU, Control Area Network (CAN) connection, 10 interfaces, Electrically
Erasable Programmable Read-Only Memory (EEPROM), etc., and it is repli-
cated component by component in the simulated environment with simulation
tools.

5.2 SimTecc

One important issue to address when executing a real time system in a simulated
environment is the timing. Usually, the execution of software simulators is faster
than the real hardware, so it is tricky to get an accurate replica of the real
environment timing behaviour in a simulated one. In general, a simulated test
environment should have a predictable behaviour, independent of the computer
performance, and exploiting breakpoints without affecting test results. Recent
experiences in testing in simulated environments show empirical evidence that
usually a small amount of bugs are related to timing issues. These bugs are
typically more difficult to solve rather than logical bugs, therefore there exists a
general pressure on tool providers to invest time and money for improving the
time management accuracy.

In order to face the timing issues mentioned so far, MAXIMATECC has devel-
oped a platform that enables the simulation of hardware and buses on ordinary
computers running Microsoft Windows OSs. This platform, called SimTecc, is
mainly designed for testing distributed embedded systems [6]. MAXIMATECC ad-
dressed timing issues by developing a software component called TimeSync that
operates as a clock and scheduler for simulated environments. The idea behind
the development of this clock is to keep aligned the tick pace of all simulators
and offer the possibility to speed-up the simulation according to the availability
of operating system resources. To take advantage of TimeSync, all simulators
present in the simulated environment use this software component by referring
to its time instead of the one provided by the operating system. Fig. 6 shows an
example of how two threads are scheduled in the real environment and in the
simulated one by using the normal speed mode and full speed mode of TimeSync.
In particular, in the simulation the tasks are not executed in parallel, rather the
simulated clock is not advanced until all tasks scheduled for a certain point
in time have been executed. In this way, the applications will behave as if the
execution happened in parallel.

The use of the clock can be done in two different ways: using sleep functions
or polling the current time. The main difference between them is that the former
is a blocking action, whereas the latter is not. When a blocking function is called,
a new target time is calculated by adding the sleep time to the target time. After
the update of the time, it is work of the scheduler to compare the target times
and perform the task with the lowest target time. Furthermore, before the task
is executed a check against the system clock is done to decide if some idle time
is required or if the task has to start immediately. This clock has the special
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Fig. 6. Example of thread scheduling in the real and simulated environments.

benefit to operate in two different modes: normal speed and full speed. The
former sets its tick pace as the one of the system; instead, the latter sets and
changes continuously its tick pace in accordance to the availability of system
resources. This means that if the system has free resources, TimeSync speeds
up its tick pace with the aim to perform a faster simulation, whereas it slows
down the tick pace if the system has limited resources. In this way it is possible
to guarantee that the performance of the simulation and the corresponding test
results are not affected by system slowdowns.

When automatic testing is performed in a simulated environment, there is
no need for extra delays where no task is executing. So, the full speed mode
is very useful to accelerate the testing by skipping the idle times and directly
performing the next pending tasks. As a consequence, tasks that only need to
check that a certain amount of time has elapsed, such as delays, can be realized
as non-blocking functions. Another useful feature disclosed by TimeSync is the
possibility to break and resume the simulation by stopping and resuming the
clock and then providing a predictable behaviour when test applications mea-
sure the time. This feature allows developers and testers to break the execution
of the simulation for debugging the code and then restart it without facing time-
out issues. To summarize, TimeSync not only allows to speed-up testing and
debugging phases by effectively exploiting resources available for the simulated
environment, but also permits to perform actions that would not be possible in
a real environment, notably stopping and resuming a testing procedure.

6 Performance analysis

This section presents the results of a comparison done by performing selected test
cases defined for a real train project. Each test can be decomposed in the follow-
ing main phases: instrumentation, initialization, execution, and result storage.



In Table 1 are shown testing times’ devoted to manual testing and automated
testing, both in the real (TCMS) and simulated environment (Soft TCMS). Each
row represents a test case (the excerpt shown in Sect. 4.3 is ComTS-IVVP-0181
in the table) while the corresponding columns illustrate the time required to
execute each test case both manually and automatically, and in both real and
simulated environments. The times shown in the table, which are referred to the
automated testing, are performed setting the TimeSync to normal speed.

Manual Testing Automated Testing
Test Cases TCMS Soft TCMS |TCMS Soft TCMS
ComTS-IVVP-0179 00:10:00 00:08:48 00:03:14 00:02:04
ComTS-IVVP-0181 01:00:00 00:58:48 00:07:59 00:07:01
ComTS-IVVP-0183 00:10:00 00:08:48 00:05:41 00:04:32
ComTS-IVVP-0186 00:30:00 00:28:48 00:07:29 00:06:26
ComTS-IVVP-0188 00:10:00 00:08:48 00:03:19 00:02:16
ComTS-IVVP-0189 01:00:00 00:58:48 00:08:19 00:07:19
ComTS-IVVP-0194 01:00:00 00:58:48 00:02:11 00:01:05
ComTS-IVVP-0199 00:10:00 00:08:48 00:05:00 00:03:39
ComTS-IVVP-0205 00:30:00 00:28:48 00:06:08 00:02:57
ComTS-1IVVP-0213 00:20:00 00:18:48 00:03:33 00:02:26
ComTS-IVVP-0214 00:10:00 00:08:48 00:03:21 00:02:15
ComTS-IVVP-0216 00:10:00 00:08:48 00:03:19 00:02:19
ComTS-IVVP-0225 00:05:00 00:03:48 00:02:21 00:01:11
Total 05:25:00 05:09:24 01:01:54 00:45:23

Table 1. Time costs of manual and automated testing performed on the TCMS and
Soft TCMS

By looking deeper at table data it is noticeable the significant difference
between manual and automated testing, as well as between the operation on
TCMS or SoftTCMS (see the row “Total”). In particular, in this case study
the improvement achieved by using the automated testing is over 500%, which
means that by following this approach the company is able to use less than 5
times the personnel involved in testing, or to quintuple the testing. Therefore,
only by changing the testing process and keeping the same human resources,
the software quality is expected to increase. Notably, in the current practice
regression testing is a feasible activity that is performed each time changes are
operated on the train application. The same practice could be hardly adopted
without automated testing support since each re-testing would have required a
couple of days to be completed. As a matter of fact, a quite widespread practice
was to test changes only locally (e.g. the function subject to modifications) with
the relevant risk of having a multitude of bugs appearing at system integration
time.

" For the sake of space only the total testing time is shown, that is the time elapsed
from instrumentation to result storage.



Going down in detail and comparing TCMS versus Soft TCMS results, it is
possible to notice that the difference between them is minimal, since they only
differ for the re-initialization time that is typically faster when done virtually
rather than on real hardware. Concretely, it takes about 1 minute and 52 seconds
in the former case and only 45 seconds in the latter. Differently from manual
testing, in automated testing some tests performed on the TMCS are twice
slower than those performed on the SoftTCMS, even by setting normal speed
for the TimeSync component (see Section 5.2) as in this case. This is due to
the fact that the combination of automated testing and simulated environment
tends to speed-up the testing, for example by shortening instrumentation phases.
Therefore, setting the TimeSync in full speed could have further improved test
performances by a 200% factor, that is both manual testing and automated
testing in the Soft TCMS would have taken half the time.

Finally, it is essential to remark that the comparison provided in the table
above is only related to the time spent for a single test station. The benefits in
terms of time and cost savings to reach the same coverage level are not taken into
consideration at all. In fact, as aforementioned in this paper, the combination
of the test system with Soft TCMS can be entirely executed on a computer,
whereas the combination between the test system and TCMS needs a computer
for running the test system and train hardware for running the TCMS. In this
respect, Bombardier Transportation already equipped its testing laboratories
with a dozen of simulation workstations, pursuing a drastic cut of testing costs.

7 Conclusions and Future Directions

Automated testing and simulated environments have been often considered pre-
mature for being used in industrial areas, especially when dealing with safety
critical applications. However, nowadays’ market expectations made their usage
a way to pursue in order to reduce costs and time-to-market while still preserving
(if not enhancing) the delivered products quality. As illustrated in this paper, au-
tomated testing and simulation environments are two orthogonal strategies that
can support companies in matching market demands. However, they require a
(possibly) long process in order to deeply analyse the domain and derive opti-
mal automation and simulation solutions. In other words, the benefits granted
by simulation and automation are the rewards gathered after a significant ini-
tial investment. On the other hand, when finally established those techniques
allow companies to dramatically improve their testing performances, and as a
consequence, their efficiency and efficacy in the application development. As a
matter of fact, test automation permits companies to save relevant amounts of
human resources that can be exploited in creating test cases and increasing the
test coverage, for instance.

As future enhancements, Bombardier Trasportation and MAXIMATECC are
investigating the extension of testing support to non-functional properties. No-
tably, they are working on the realization of fault injection [7] features to be
added both in the automation testing and simulation tools in order to test fault-



tolerance of system communications and applications. Moreover, in a long term
view they envision the complete integration of Model-, Software-, and Hardware-
in-the-Loop techniques to maximize the benefits of distributed development [§].
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