G. Allaire, S. Clerc, and S. Kokh, A Five-Equation Model for the Simulation of Interfaces between Compressible Fluids, Journal of Computational Physics, vol.181, issue.2, pp.577-616, 2002.
DOI : 10.1006/jcph.2002.7143

P. T. Barton, R. Deiterding, D. Meiron, and D. Pullin, Eulerian adaptive finite-difference method for high-velocity impact and penetration problems, Journal of Computational Physics, vol.240, issue.C 3, pp.76-99, 2013.
DOI : 10.1016/j.jcp.2013.01.013

P. T. Barton and D. Drikakis, An Eulerian method for multi-component problems in non-linear elasticity with sliding interfaces, Journal of Computational Physics, vol.229, issue.15, pp.5518-5540, 2010.
DOI : 10.1016/j.jcp.2010.04.012

P. T. Barton, D. Drikakis, E. Romenski, and V. A. Titarev, Exact and approximate solutions of Riemann problems in non-linear elasticity, Journal of Computational Physics, vol.228, issue.18, pp.7046-7068, 2009.
DOI : 10.1016/j.jcp.2009.06.014

P. T. Barton, B. Obadia, and D. Drikakis, A conservative level-set based method for compressible solid/fluid problems on fixed grids, Journal of Computational Physics, vol.230, issue.21, pp.7867-7890, 2011.
DOI : 10.1016/j.jcp.2011.07.008

M. Berndt, J. Breil, S. Galera, M. Kucharik, P. Maire et al., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian???Eulerian methods, Journal of Computational Physics, vol.230, issue.17, pp.6664-6687, 2011.
DOI : 10.1016/j.jcp.2011.05.003

G. H. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.3, pp.471-492, 2008.
DOI : 10.1051/m2an:2008013

URL : https://hal.archives-ouvertes.fr/hal-00297711

S. Davis, Simplified Second-Order Godunov-Type Methods, SIAM Journal on Scientific and Statistical Computing, vol.9, issue.3, pp.445-473, 1988.
DOI : 10.1137/0909030

N. Favrie, S. Gavrilyuk, and . Ndanou, A thermodynamically compatible splitting procedure in hyperelasticity, Journal of Computational Physics, vol.270, issue.C 3, pp.300-324, 2014.
DOI : 10.1016/j.jcp.2014.03.051

N. Favrie and S. L. Gavrilyuk, Diffuse interface model for compressible fluid ??? Compressible elastic???plastic solid interaction, Journal of Computational Physics, vol.231, issue.7, pp.2695-2723, 2012.
DOI : 10.1016/j.jcp.2011.11.027

URL : https://hal.archives-ouvertes.fr/hal-01443381

N. Favrie, S. L. Gavrilyuk, and R. Saurel, Solid???fluid diffuse interface model in cases of extreme deformations, Journal of Computational Physics, vol.228, issue.16, pp.6037-6077, 2008.
DOI : 10.1016/j.jcp.2009.05.015

R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method), Journal of Computational Physics, vol.152, issue.2, pp.457-492, 1999.
DOI : 10.1006/jcph.1999.6236

S. Galera, P. Maire, and J. Breil, A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, Journal of Computational Physics, vol.229, issue.16, pp.5755-5787, 2010.
DOI : 10.1016/j.jcp.2010.04.019

URL : https://hal.archives-ouvertes.fr/inria-00453534

S. L. Gavrilyuk, N. Favrie, and R. Saurel, Modelling wave dynamics of compressible elastic materials, Journal of Computational Physics, vol.227, issue.5, pp.2941-2969, 2008.
DOI : 10.1016/j.jcp.2007.11.030

S. K. Godunov, Elements of continuum mechanics, Nauka Moscow, 1978.

Y. Gorsse, A. Iollo, T. Milcent, and H. Telib, A simple Cartesian scheme for compressible multimaterials, Journal of Computational Physics, vol.272, pp.772-798, 2014.
DOI : 10.1016/j.jcp.2014.04.057

URL : https://hal.archives-ouvertes.fr/hal-01089287

D. J. Hill, D. Pullin, M. Ortiz, and D. Meiron, An Eulerian hybrid WENO centered-difference solver for elastic???plastic solids, Journal of Computational Physics, vol.229, issue.24, pp.9053-9072, 2010.
DOI : 10.1016/j.jcp.2010.08.020

G. S. Jiang and C. W. Shu, Efficient Implementation of Weighted ENO Schemes, Journal of Computational Physics, vol.126, issue.1, pp.202-228, 1996.
DOI : 10.1006/jcph.1996.0130

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Kluth and B. Despres, Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme, Journal of Computational Physics, vol.229, issue.24, pp.9092-9118, 2010.
DOI : 10.1016/j.jcp.2010.08.024

P. Maire, R. Abgrall, J. Breil, R. Loubère, and B. Rebourcet, A nominally second-order cell-centered Lagrangian scheme for simulating elastic???plastic flows on two-dimensional unstructured grids, Journal of Computational Physics, vol.235, issue.C 2, pp.626-665, 2013.
DOI : 10.1016/j.jcp.2012.10.017

URL : https://hal.archives-ouvertes.fr/hal-00934989

A. Marquina and P. Mulet, A flux-split algorithm applied to conservative models for multicomponent compressible flows, Journal of Computational Physics, vol.185, issue.1, pp.120-138, 2003.
DOI : 10.1016/S0021-9991(02)00050-5

G. H. Miller, An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics, Journal of Computational Physics, vol.193, issue.1, pp.198-225, 2003.
DOI : 10.1016/j.jcp.2003.08.005

G. H. Miller and P. Colella, A Conservative Three-Dimensional Eulerian Method for Coupled Solid???Fluid Shock Capturing, Journal of Computational Physics, vol.183, issue.1, pp.26-82, 2002.
DOI : 10.1006/jcph.2002.7158

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Ndanou, N. Favrie, and S. Gavrilyuk, Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form, Journal of Elasticity, vol.44, issue.2, pp.1-25, 2013.
DOI : 10.1007/s10659-013-9440-7

URL : https://hal.archives-ouvertes.fr/hal-01441475

B. J. Plohr and D. H. Sharp, A conservative Eulerian formulation of the equations for elastic flow, Advances in Applied Mathematics, vol.9, issue.4, pp.481-499, 1988.
DOI : 10.1016/0196-8858(88)90025-5

B. J. Plohr and D. H. Sharp, A conservative formulation for plasticity, Advances in Applied Mathematics, vol.13, issue.4, pp.462-493, 1992.
DOI : 10.1016/0196-8858(92)90022-O

URL : http://doi.org/10.1016/0196-8858(92)90022-o

J. Quirk and S. Karni, On the dynamics of a shock???bubble interaction, Journal of Fluid Mechanics, vol.18, issue.-1, pp.129-163, 1996.
DOI : 10.1017/S0022112078000981

E. F. Toro, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, vol.54, issue.1, pp.25-34, 1994.
DOI : 10.1007/BF01414629