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Abstract

Supported by a novel eld de nition and recent control theory results, a new method to avoid local minima is proposed. It is
formally shown that the system has an attracting equilibrium at the target point, repelling equilibriums in the obstacles centers ar
saddle points on the borders. Those unstable equilibriums are avoided capitalizing on the established Input-to-State Stability (IS
property of this multistable system. The proposed modi cation of the PF method is shown t@tiée by simulation for a two
variables integrator and then applied to an unicycle-like wheeled mobile robots which is subject to additive input disturbances.

1. Introduction Using this notion, it is hereby presented a reactive obstacle
Path ol ing is th o b ¢ I hen deali avoidance technique for WMRs based on the PF method.
Withana\ﬁ;aﬁ?c;ggf;f mgbﬁreuféio%fs e\/”;ryoezorl‘)’/erewsu?trs‘ Oﬁ""ﬂ']”eg The main problem with the PF method is the appearance of
' local minima which block the WMR and prevent to achieve the

eld [1] date back to the beginning of second half of the last . ) -
century but in the 80's, when the amount of research increasegaSk ([20] and Sectiqj 2 for further details), thus the rst contri

results were produced which are used up to the presenEHay [ ution of this work is represented by a local minima avoidance
3] P P P y gchnique along with aad-hocde ned eld. Starting from the

Path planning can be interpreted in two eiient ways[] hypothesis of disjoints obstacles, common in literature [16], a
. Pt g can be P . YSUA- twice di erentiable PF is designed and the gradient of such a
First, motion planning, in which the path is computegriori

knowing the environment and the robot model to determine eld is used as input for a two variables integrator. As detailed
9 Tjater in the manuscript, under certain assumptions the system is

collision-free path. In th|s case a solgtpn can be.evalluateshown to be Input-to-State-Stable (ISS) with respect to decom-
for very complex scenarios but uncertainties (changing) in thé . . : .
models of the environment, or of the robot, could lead to failure posable invariants ses [19]. Formally proving the ISS property

. . . ..._allows us to escape local minima and to guarantee the global
In this category it is possible to nd approaches based on Dijk- P 9 g

stra or the A* algorithms [5.6], Potential Field methods [7] andattracuveness of the target point. The singularities are avoided

Rapidly exploring Random Trees (RRT) [8, 9]. The second Cat:’;1dd|ng a complementary input which plays on the fact that the

; s appearance of any bounded perturbation does not compromise
egory1s represgnted by .th(? sensor based appro 9, the ISS propertyl[21] and this result is formally proven in the
in order to avoid thea-priori knowledge of the map and deal

with unknown conditions; among them it is possible to list thepaper. . . . .
Dynamic Window Approach (DWA) [10], the Velocity Obsta- The deS|gr\ed PF_and Io_cal minima av0|d§1nce technique are
cles approach [11], the Virtual Field Histogram (VFH)[12] and app_hed to dr|v§ a umcycle !'ke Wheeled Mob|le'Robot (WMR)
its modi cation VFH+ [13], the last two based on the Potential sybjec_'i_tt_lo aqldltly etln;;]ut d'StLurb\i/r;;;Stto ta takrg{f (the ori- i
Field (PF) method [14]. It is straightforward to understand thatgm)' € aim IS to have ne 0 frack n€ movemen

a combination of the two categories is the best solution to thé’f the 2D particle. The stabilization and tracking problem for

path planning problem for mobile robots and it is indeed thenon—holonomic WMR has been previously treated in literature

most adopted [15, 16, 17,118] 16, [22,[23,24], often in obstacles free scenario. Here we
This work is inspired by a recent resulf[19], in which a no- Present 2 approaches: the former one applies an output lin-

tion of Input to State Stability (ISS) for systems evolving in earization techniqué [25, 26] and it is indeed the simplest. The

Riemannian manifolds is presented. The method takes into ag_ontrols obtained for the particle case is applied, with a simple

count multiple disconnected invariant sets and it allows the ro__change of coordinates, directly to the WMR conirol inputs; the

bustness against external disturbances to be evaluated in ﬂkrg:on\éerzler!t 'St t?at this approach does not allow us to control
complex scenario. € robot orientation.

A second controller,and second contribution of this paper, is
- designed to control both linear velocity and orientation of the
Corresponding author WMR. This controller assigns for the linear velocity the norm
Email addressmatteo.guerra@onera.fr, The work has been . . . .
performed while M. Guerra was at Ecole Centrale de Lille of the elq grad_lent. while the an.gu_lar velocity Commanq Is reg-
and part of the NON-A team (M. Guerra) ulated with anite-time control similar to the one used in [24].
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It is formally shown that the nite time control robustly guar- nearby(GNRON), treated in[37], deals with the case in which
antees the convergence of the robot orientation to the gradiettte repulsive force generated by an obstacle close to the target
direction and simulations have been carried to illustrate the begenerate a force higher than the attractive one, preventing the

haviour. robot to accomplish the task. There are also methods which do
The contribution of the paper can be summarizesvimmain ~ not eliminate unwanted equilibriums but generate local forces,
points: Virtual Hill, to escape the disturbing minimum as(inl[38].

Within the local planners directly derived from the PF ap-
proach, as mentioned above, the VFH method rstly presented
in [12] (see also its more recent modi cations [13] 39]) repre-

A nite time control able to robustly track the trajectories Sents also a widely used solution to real-time obstacle avoid-

generated by the designed PF. ance. The rst experiments ran on WMRs showed the short-
comings inherited after the PF approach: presence of traps and

Moreover, an experimental part sees a Turtlebot 2 WMRocal minima. Thus, hybrid modi cations merging global and
avoiding obstacles in an cce-like environment. Usually, ob- |ocal planners, like VFH, were proposed: starting from a grid
stacle avoidance methods (as the PF one) relied on ultrasonigap, evaluates the PF at each iteration for a subset of active
sensor[[217] or infrared one5 [28] while the actual trend is tocells of the map, builds an obstacle histogram and reduces it to
use camera devices or laser range nders; in this work we usg polar form to nally compute the velocity commands. Many
a LIDAR device to localize the WMR in a map with unknown other modi cations [40, 41, 42, 48, 44] have been proposed in
obstacles and to realize the avoidance. order to overcome all the cited shortages![ I [42], a new smooth

The paper is organized as follows: Secfign 2 presents somepulsive force for the eld is proposed applying theID con-
related works, Section] 3 recalls the results[ofi [19], Sedtion 4rol method but no proof is given about actions taken to avoid
contains the de nition of the eld, its properties along with |ocal minima. The papef[43] studies just some aspects of the
the main result. Sectidi 5 shows how to apply the result to apotential eld method as local planner focusing on the repulsive
unicycle-like WMR, presents the nite time control, and shows e|d and not addressing the local minima problem. The work
simulations and experiments; the paper ends with a conclusiy@7] is the one more similar to the result of the authors and it
sectior 6 in which the authors present also some future diregs pased on a potential eld which is not smooth. [n][40] the

" A solution to the local minima appearance in the PF
method based on [19];

tions. PF method is applied to drive a group of WMR to a goal; the
design of the PF is made to accomplish this task avoiding lo-
2 Related Works cal minima but very simple and standard control techniques are

applied (PI control).
The Potential Field method was rstly introduced by Khatib
in [29] and developed in its generalized modi cation in[30].
Originally designed for manipulators (other examples can b
found in [31] and[[32]), it has been modi ed to drive a mobile . . 2 . .
: - , For ann-dimensionalC* connected and orientable Rieman-
robot along a potential eld whose minimum is at the target and_. . . I
. . " nian manifoldM without boundary (it is assumed here tihat
in which each obstacle generates an additional repellent force . :
; . . .can be embedded in a Euclidean space, thad), let the map
which drives the robot away from it. It has been shown that this, ", m 1 ;
) : ; f:M R™! T4M be of clas€C* (TxM is the tangent space),
solution, even though mathematically elegant and quitece : : ) )
. . : and consider a nonlinear system of the following form:
tive practically, has some drawbacks when special events occur
[20]. The main inconvenient with the method is the appear- x(t) = f(x(®): d(t) )

ance oflocal minimawhich block the robot due to particular

obstacle con gurations. Koditschet al. in [14] proposed a \here the statex 2 M andd(t) 2 R™. The inputd() is a
modi cation of the PF based onavigation functionsin an- |ocally essentially bounded and measurable signat for 0.
dimensional spherical space the adopted eld had no other logye denote byX(t; x; d()) the uniquely de ned solution of 1)

cal minima than the target speci ed, supposing though the comyt timet ful lling  X(0; x; d()) = x. Together with[{L) we will
plete environment to be known a priori. Other solutions use gpalyze its unperturbed version:

harmonic potential eld proposed in [33,134], and the more re-

cent [35], in which the method computes solutions to Laplace's x(t) = f(x(t); 0): (2)
Equation in arbitrary-dimensional domains to have local min-

ima free eld, and results in a weak form af [14]. 1h [36], a A setS M is invariant for the unperturbed systefr (2) if
di erent eld formulation and obstacle representation are conX(t;x;0) 2 Sforallt 2 R and for allx 2 S. For a compact
sidered: the potential eld includes 2 superquadric functionssetS M de ne the distance to the spfis = mings (X;a)
one for the obstacle avoidance and one for the approachinfgom a pointx 2 M, where the symbol(x;; X2) denotes the
which result in an elliptic isopotential contour of the obstaclesRiemannian distance ([45]) betwegnandx, in M, jXj = jXjog

to model a large variety of shapes. Last aw of the method isfor x 2 M or a usual euclidean norm of a vecto? R". For a
the possibility to miss the target in case of an obstacle too closgignald : R! R™ the essential supremum norm is de ned as
to it. This problem called>oals nonreachable with obstacles kdk; = esssupjd(t)j.

2

e”s. Preliminaries



3.1. Decomposable sets De nition 5. We say that the systein|(1) has the limit property
Let M be a compact invariant set fdr| (2). (LIM) with respect toW if there exists 2 K such that for all
x 2 M and all measurable essentially bounded inglftsthe
De nition 1. [46] A decomposition of is a nite and disjoint  solutions are de ned for al 0 and the following holds:

inf jX(t; x; d)jw (kdky ):

[k to

- i De nition 6. We say that the systenj](1) has the practical
=1 global stability (pGS) property with respect\® if there exist

For an invariant set , its attracting and repulsing subsets are 2 K1 andq 0 such that for alk 2 M and all measurable

de ned as follows: essentially bounded inpud§ ) the following holds foralt  0:
WS( )=fx2M:jX(tx0) ! Oast! +1g; XExdiw g+ (maxjxjw ; kdki 9
WA ) =fx2M1jX(tx0) ! Oast! 1g It has been shown iri [19] that to characterizp (3) in terms of

De ne a relation onW M and D MbyW D if Lyapunov functions the following notion is appropriate:

WS(W)\ WD), . De nition 7. A C! functionV : M | R is a practical ISS-
Lyapunov function for[(lL) if there exist§; functions 1; »;

aee:mon 2. [46] Let 4;:::; x be a decomposition of , and ,andscalag Oandc O such that

1: Anr-cycle ¢ 2)is an ordered-tuple of distinct indices (Xiw) V() 2w + ©);
i1;::5irsuchthat §,  ::: i i

2: A l-cycleis anindex such thatyW"( )\ Ws( )] i, the functionV is constant on eact/ ; and the following dissi-

pative property holds:

3: A ltration ordering is a numbering of the ; so that ; o o
)i DV(X) f(x;d) (xjw )+ (dj) + o

As we can conclude from De nitiofi]2, existence of estycle  If the latter inequality holds fog = O, thenV is said to be an
with r 2 is equivalent to existence of a heteroclinic cycle ISS-Lyapunov function.
for () [47]. And existence of a 1-cycle implies existence of a

homoclinic cycle for[[2)47]. Notice that the existence of andc follows (without any addi-

tional assumptions) by standard continuity arguments.

De nition 3. The setW s called decom@sable if it admitsa  The main result of[[19] connecting these robust stability
nite decomposition without cyclesv = ~ ¥, W ;, for some  properties is stated below:

non-empty disjoint compact seW ;, which form a lItration

ordering ofW , as detailed in de nition§|1 arfd 2. Theorem 1. Consider a nonlinear system as [ (1) and let a

compact invariant set containing all and! limit sets of [(2)
LetacompactsélV M be containing all - and! -limitsets W be decomposable (in the sense of De nitign 3). Then the

of (2) [48]. following facts are equivalent.
1: The system admits an ISS Lyapunov function;
3.2. Robustness notions 2: The system enjoys the AG property;

3: The system admits a practical ISS Lyapunov function;
4: The system enjoys the pAG property;
5: The system enjoys the LIM property and the pGS.

The following robustness notions for systems [if (1) have
been introduced in [19].

De nition 4. We say that the systeni|(1) has the practical
asymptotic gain (pAG) property if there exist2 K; E]and a
non-negative reaj such that for alix 2 M and all measurable
essentially bounded inputf ) the solutions are de ned for all

A system in[(1), for which this list of equivalent properties is
satis ed, is called ISS with respect to the ¥t [19].

t 0 and the following holds: 4. Potential eld method with static obstacles
lim supjX(t; x; d)jw (kdky ) + Q: 3) First, let us consider a simpli ed model of a mobile agent
t+1 represented by doubled integrator dynamics:
If g = 0, then we say that the asymptotic gain (AG) property X = Uy (4)
holds. _ .
y - Uya
1A continuous functior : [0;a) ! [0;1 ) belongs to clasK if it is strictly wherex E R an?y 2 R are the coordinates of the agent ”? the
increasing anth(0) = O; it is said to belong to clagé; if a= 1 andh(r) ! 1 plane,z = [x y]", ux 2 R anduy 2 R are the corresponding
asr!1 [27]. controls. It is necessary to design the contrgla, providing



the agent regulation to the origin under avoidance of collisiong
with isolated point-wise obstacles, which are de ned by theirjs
coordinates; = (X;V;) and safe distanced around them for '
i = 1;:::;N, whereN > 0 is a nite number of obstacles.
We will assume thai; ;j > maxd;; d;gandj ;j > d; for all
1 i, j N,ie the obstacles are separated and the origin igf
not occupied by an obstacle.
Applying the potential eld method, the controls can be de- g
signed proportional to the “forces” generated by the total po
tential U. U is the sum of a repulsion potentibl, with re-
spect to the obstacles and attraction potertfighvith respect
to the origin[25/ 14]. In this work we will use the results pre-
sented in the previous section to design the agent dynamics t
is C! and ISS with respect to the 3&t composed by equilibri-
ums, among them the equilibrium at the origin is attractive, thdi
equilibriums related to the obstacles are repulsing, while ong
corresponding to the local extrema are saddle. Next, applyin
specially designed small perturbations to that ISS system
will avoid the unstable equilibriums. _ Figure 1: The continuous eld in the case of a single obstacle
To design the attraction potentiél, we impose the con- ity = 03, = 05, 1=(22),d;=08and =4
straints: it has to be twice continuously @irentiable with re-
spect tox andy, and its gradient to be globally bounded. The

following potential yields these constraints: where' () =r, (i@)iz*+[1 (i7)lig is the corresponding
8 " o C! function ensuring a continuous transition betweera@d
Z ifjig Zi7i L. Note that by construction,U(2) is aC! function ofz
Ua(2 = %izj ifjg As usual in the potential eld method we assign:
~ (2)ig°+[1  (2)]ig otherwise " Uy #
o 25 3+ )6 s+ A 3)"7 u @Y ©

(0 3)+ %3 ) , wherev 2 R? is an auxiliary bounded input to be designed later,
where 0< < < +1 are the design parameters. Thus, thethen the closed-loop systefr] (4)] (6) takes the gradient form:

potentialU, is quadratic irz close to the origin, it has a linear 2= 1 U@+ 7)
. - Z .
growth rate far enough and the functionensures a smooth
transition between these zones. Next, we are going to show that fer= 0 this system has an

The repulsion potentidl; must be also twice continuously attracting equilibrium at the origin, repulsing equilibriums in a

the obstacle presence only locally in an uncertain environmentherefore, a compact invariant 38t containing all - and! -

in a robotic application, for example): limit sets of [T) forv = 0 is decomposable in the sense of Def-
X\l inition [3, and that Theorein 1 can be applied to establish ISS
Ui (2 = maxo;, 2 jz P with respect to the sét/ for the inputv.
_ _ =t 4.1. Equilibrium at the origin
where > 0Qis atuning parameter. Under the restrictiongij > d; forall1 i N, the system
The total potential, Fig[], has the form: (@ is reduced to
U@ = U@ + Ui (@) 5 =
) ) forjzz ~ for some 0< ~ , Which is obviously locally
with the gradient attractive. For simplicity of presentation below we will assume
_ . that the constantsand are selected in a way to proviglgj
r,u@=r,Us2+r,Ul(2; ;
(@ =r1,Ua(2 +r1 U (2 + dforalll i N.
2z ifiz
rU.d=3744 ' ifjg : 4.2. Equilibriums around the obstacles
_§- (2 otherwise Since the obstacles are separated from one another and from
" the origin, around each obstacle the sys{gm (7) takes a reduction
U@ 4 @ Jmaod jz g @y
i=1 z= 77 '+4 (z )maxod’ jz fg+v



forsome 1 i N. Clearly, ifd, <jz ijthenz= zzZ ! The Carda 's method can be used to nd the solutions of the
and there is no equilibrium, thus we may restrict attention to thequation 4 V(di2 V) = 1, which determines the sign de -

casgz ij dand niteness o¥/. The expression in the square brackets &/(d?
2= Zd4l+4 (z YR jz P+v V) 1 reaches its maximum?—é EBE d® 1dforV=1d?

_ - _ ~ which is positive if the conditior] {8) is ful lled (note that since
On this set the equilibriums df}(7) satisfy the vector equation the value ofd; is constrained by the physical dimensions of the
agent, then[(8) is a condition forto satisfy). Thus the repul-

_ . 2 - 2\io
z=4 (z )& jz i[)ig sion zone around the obstacle exists and it can be easily esti-
or the corresponding scalar equation mated.
i7> 8 (diz iz Pz ) 4.3. Robustness with respect to v
+16 4z (d? jz P3P = 0 The conditions on existence of the equilibriums, established
above, are as follows:
Introducing parametrizatiom = ; + , where 2 R and ] - ) i
2 R2, and substituting it in the last equation it is tedious but'A‘SS’Wn_pt'On 1. Let the condition[(B) be satised,i  jj >
straightforward to obtain that for afyj , O the equality is not MaXdi;digandjij  + diforalll i, j N.
Satlﬁ ed. Therefore setup= 0, then under substitutian= Now we would like to show that the sew =
we have ffogzg s zy% 2t 2% 03y 2)°g which is composed by
2 R 4 [ ( 14 B DE=0; the equilibrium at the origin anhl pairs of equilibriums*; ;*
associated with each obstacle, contains adind! -limit sets of
the equation for equilibriums is reduced to (7) forv = 0 and it is decomposable in the sense of De nifipn 3.
) o The system[(7) has a Lyapunov functibifz), by construction
1 4[d $jiljis=0 1G7d) U@  2(d) forall z2 R? and some 1; » 2 Ky,
whose derivative has the form:
fors= 1, or
@ L U = jr  U@P+rlu@v
—=S+t ——==0 05 U2 + 0:5)vf° )
Il 4]

that is a depressed cubic equation, which by the Cardano%nd the total potfntlal stops to dgcrea;evfm 0 On.ly. o.n.the
method has only real roots if Set Wherer U(2 = 0, but by congqleraﬂpn aboye |tW'. ie
there exist 1; 2 2 Ky suchthat 1(jzw) jr V@]  2(Zw)
3p§ for all z2 R?. There is no cycle in the decompositionwf due
df‘ > — (8)  tothe same property O forv = O (indeed the obstacles are
separated and to pass from one saddle equilibrium around the
Next, by the Routh—Hurwitz stability criterion the equation hasobstacle ; to another one around it is necessary to cross the
2 roots with positive real parts. Therefore, for ;j d the  zone where ,U(2) = r ,U,(2) andU < 0, therefore a trajectory
system) has two equilibriunzs™ andz;> under the condition  cannot return back). Thug/ is decomposable and contains all
@). The Cardano's method also provides the expressions of- and! -limit sets of [T) forv = 0. Further,
exact solutions and, hence, the coordinates of the equilibriums
", 7 (not given here for compactness, both equilibriums are U 05 3(Zw) + 05\
located farther from the origin than the obstagl®n the line ) )
connecting the origin and the poing{y;)). Finally, the system thenU is an ISS Lyapunov function and by Theorgn 1 the fol-
(@ is continuously dierentiable, then the linearization shows 10wing result has been proven.

that the equ'ilibriunv'gl (closer to ) is purely repulsing, and Lemma 2. Under Assumptiof]1 the system (7) is ISS with re-
another one:‘o;2 is saddle (the corresponding local minimum). spect to the s&tv for the input v.

To evaluate the zone of repulsion around Lyapunov func-
tion for linearization arouna“o;l can be used, or let us consider 4 4 Design of the input v to escape local minima

a Lyapunov functiorV/(e) = jg° fore=z ;andv=0: )
The advantage of the ISS property is that appearance of any

V = 26"[ 747 1+ 4 d? j )] bounded disturbancedoes not lead to the system instability.
= 2'77 '+8 V(@ V) In our case the total potential functids is also an ISS Lya-
26 +8 V(@ V): punov function for the systeri|(7). = 0 and the agent iff [7)
1€ i ' is approaching an unstable equilibrium, then according to the

Note thatjej = p\7 then expression ol the velocity of the agent is decreasing propor-
p_ p_ tionally tojr ;,U(2)j. Thus, ifjr ,U(2)j for some prede ned
vV [4 V(di2 V) 1]2° V: > 0 and we are far from the origin, it can be a signal of



closeness to a saddle equilibrium, then an input O can be global:
generated to shift the movement direction.

The inputv must be selected bounded and pushing the sys- J—é yx i if jr ,U(2)j andjz > ;

00K/ /XK CO

tem in an arbitrary direction with a uniform distribution, by ISS V= _ (11)
property the solutions asymptotically will stay close/tb and -0 ?therwme
it is possible to show that the origin will be globally attractive. Vi o .
However, using the Lyapunov functidhthe inputv always can =sgny ZX 1 =ang) 'j”leZ il
be designed in order to additionally guarantee a decreasing of 8 _
U. From [9) sgne) = ;1 ifs O
1 otherwise
1
ryu(2 % - . o where" > 0 is a design parameter. It is easy to check that
V= § r U2 itir.U@j  andig>; (10) V'z=0forallz2 R?andjvj="1if jr U@ andjj> in
-0 ?therwise €.
~ Vi . o ) Theorem 4. Under Assumptign| 1 the systdm (7) with the avoid-
=sgny ZX 1 =ag, 'j”fNJZ il ance control [(I]l) has the origin globally attractive provided
gl . 0 that" > 2 and > 0is selected suciently small.
ifs O
sgn@) = 3 1 otherwise Proof. From Lemm4R the systeifi (7) is ISS with respect to the
setW for the inputv. By Theoren{ ]l we known that in this
case all solutions in the system remain bounded sijce ",
ensuresthal Oforallt O U = jr ,U(2)j? while v, and due to AG property we have
0) and forU = 0 as well, and for the case of agent velocity ) o .
dangerous decreasing {U(2)j ) far from the origin j7 > “[‘nflUpJZ(t)JW ")

) the proposed input generates an orthogonal disturbance to
the current direction of movement. The variablele nes the for some 2 K. If the value of has been selected saiently
orientation of this orthogonal perturbation, i}10) it points outsmall, then the seA = fz 2 R* : jzw (")gis a union of
from the line connecting the origin and the poirt §;) (thatis ~ Separated sefs! andA ? contained only one equilibrium point
the coordinate of the closest obstacle) and where we have tlzél andia2 resgectively, and a neighborhodéd, of the origin,
unstable equilibriums. e A =Ao[ "N, (AL[A 2).InAjthe system is converging
to the origin. Assume thg(t)iy 2 Al or jz(t)iw 2 A2 for

. . ..somel i N, then forjr ,U(2)j andjz > the inputv
Theorem 3. Under Assumptl_oﬁ]l the sy_ste@ @ Wlt_h _the av0|d-is always acting fronial; 20;2 by construction, thehJ is strictly
ance control[(IP) has the origin attractive from all initial con-

" decreasing. Indeed, for all casegJ,(2) is proportional toz,
ditions 70) <Wnf0g thenv'r ,Ua(2) = O forallz 2 R% Next,r,U,(2 = 4 (z
)(d? jz ) forz2Dj thenv'r, U= 4 (d® jz
Usually, for a robotic application, it is assumed that the robot ii°)V" iwhereT4 (d*jz j*) 0Oforz2D;. Due toselection
starts in the collision-free conditionsg. z0) <D = [ N,D;  of wehavev' ;> 0, then
whereD; = fz2 R? : jz ;j dig Therefore, in this case _ 2 T
de nitely z(0) <W nfOgsinceW nfOg D . Us=irU@r+virl@
with vir ,U(2) 0 for alljr ,U(2)j andz 2 D;. Therefore,
o _ U is not increasing. Note thafr ,U(2) = 0 only if d? = jz
Proof. Considering the ISS Lyapunov functidh for the sys- ij2, i.e. zbelongs to the border d;. By selection (and")

tem [7) with the avoidance contrl (10) we obtain: su ciently smallitis possible to ensure that intersection& pf
andA 2 with the set whergr ,U(2)] belongs to the interior
U= jr JU@PR of D;, thenv'r ,U(2) < 0 always for alljr ,U(2)j andjz >

, thusU is strictly decreasing to zero. In addition, frofj (7)
@=(r U@ r V@) =ir V@PF 2rU@ -+
sincer JU(2)v = 0 always. In addition, by constructionshifts ~ ang forjr ,U(2)j andj7 > we havezz 2" +"2>0,
the system trajectories out frqm the lige= %X that contains  then there is no new equilibrium point inducedbfas can be
the unwanted equilibriungl; 202 then the only point to stop seen also in Fid.]2) .
is the origin.

4.5. More complex situations
Formally the control[(TI0) does not use ISS property of the set Of course in reality the assumption about separation between

W , itis designed from a pure Lyapunov approa¢h] (10) is modebstacles may be not satis ed, but even for this case the ap-
i ed as follows in order to make the attractiveness of the originproach can be easily extended. Application of perturbation

6



5. Wheeled mobile robot regulation with obstacle avoid-
ance

Consider a wheeled mobile robot, whose kinematic model is
given by a unicycle:

dx = cos(Ju(l + 1);
gy = sin(Ju(l+ 1); (12)
qg="!'@1+ 2);

where (ix; dy) 2 M is the robot position ani! R?is a com-

pact set containing the origi, 2 ( ; ]is the robot orienta-

Figure 2: Gradient Lines in the case of a single obstacle withion, juj  umaxandj! j ! nax are linear and angular veloci-
=03, = 05, 1=(22),d,=08, =4and =01 ties of the robot respectivelyifax and! max are given bounds),

k 2 [ min; mad, K= 1;2 are exogenous bounded disturbances,
which are introduced in order to represent the dynamical model
uncertaintie&lynamics (they are not taken into account in the
usual unicycle model) [49] ,1 < min < max< +1.

The easiest way to apply the strategy to an unicycle-like
S WMR would be to linearize the system [25] considering the dy-
o ] / namics of a point on thex axis of the robot reference frame
. : / (Fig. [4) and apply the contrdl|(6) to it. In particular the point
1/ / = (x y) =(x+ cosq;q+ sing)T, with the
distance between the robot center anchas the following dy-
— namics:

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

# "
uldl+ ;1) . _ cosq sing

Figure 3: The results of the systey (7) simulation ; "R oya+ ) RT sing cosg - 19

The expressiorf (13) can be rewritten as

with the amplitude' do not destroy boundedness of the system R T

trajectories by ISS property. 1f has been selected sgiently ; =R R (14)
small, then asymptoticallgt) entersA, as it has been de ned mogo #

above, whose separated subsets contain a single isolated %t us consideR " = Y% of (H) and [(11), the following
treme point ofU. The functionjr ,U(2)j is C* by construction, : Uy

thenr ,r ;U(2)j can be calculated and localycan be selected theorem will apply:

proportional ta Jr ;U(2)j in order to maximizgr ;U (2)j, which Theorem 5. Let Assumption 1 to be satised. The system

is equivalent of the extreme point avoidance. In the simple C&S@) with control [§) and[(T1), wheré > 2, > 0su -
presented above the calculationrafr ;U (2)j may be avoided. ciently small, hag the origin globally attractive, provided that
jili<max; *.
" # "#

4.6. Results of simulation f’rOOf# Let us consider thalt'? ,u#l2 jdjjR ,u . Being
EX =r U()+v=R [ ,andconsideriny = U( )
y !

For =01, = 0:5, =2,N=1and :y:) = (22)with as a Lyapunov function, witl( ) de ned as (%), then:

di = 1, the results of the systeri] (7) simulation for eient " " #l

initial conditions withv = 0 are shown in Fid.]3a. The results of Vo= rU()r U()+v+R 7

the systen{(7) simulation with (J.0) ajd {11) are shown irf FFig 3b _ b o -

(the di erence between the contrdis|(10) and (11) is not visible ro U +ir VE)Iv+HIRR 2 jdiir UC);

in this scale). As we can conclude, for 0 the potential eld RIRYjdi 1jr UC)P+jr U()jv

method sticks in the local extreme for some initial conditions,
while with the proposed modi cation§ (IL0) dr (11) the origin is it follows that if jRj R * j j < 1 the stability is proven using the
attractive under provided restrictions. results of Lemm@l]2 and Theorém 4.



Potential Field Method - Comparison fential Field Method - Comparison

” A :
: .
:

Figure 4: Position of the point. 0s / o
’ g T N
- .. . a) Single obstacle b) Several obstacles
Remark 1. The value jRiR1jj can be rewritten as () Sing (®)
max ; ! jj, it means that selecting carefully the Figure 5: The result of simulations for the three elient mod-
condition is always veri ed. i cation of the PF method.

Such a technique is easy andegtive as can be seen in Hig. 5
(blue path), but it doesn't allow the direct control on the WMR
orientation and on the positivity of the linear velocity, resulting[5B). In both parts of Fig[]5 the obstacle is the zone lled in
for instance in backward maneuvers (this happens when the in¥olet, while the distance of in uence is the black circle around
tial conditions are not ideal, like the WMR non facing the targetthe obstacle itself. The proposed methods are calfgfeR ma-
point). The authors want to avoid this kind of movements fortrix and NON-Apf the latter to emphasize thm®on asymptotic
practical reasons. ( nite time) behavior of the controller acting on the orientation
of the WMR. Moreover the proposed modi cations have been
For this purpose, to control both linear velocity and orien-compared with the standard AFE[14].
tation of the WMR the trajectory generated By (7),](11) (or In both gures of Fig.[$ the comparison with the standard
with (I0)) can be used as a reference for] (12), de nigg=  APF has been made for 2 valueskpfvhen using th&lON-Apf

arctan2r yU(2);rxU(@ and = 4 @ control, to show how it aects the control inputs and the overall
q performances.
gz dmax "o (15) The unwanted behavior of the controllépf-R matrix
n X y? . . . . . .. . .
1+ p_ _ method discussed in the previous section is visible both in Fig.
= Vax Jj+k sign(): [5 and Fig[¥; the path followed by the WMR (F[d. 5) using this

method clearly shows a backward maneuver, as it is con rmed
Theorem 6. Let Assumptiof]1 hold. The contrpT{15) stabilizesfrom Fig.[7, where it is shown the negative linear velocity input.
the (t) variable in nite-time orienting the robot as the gra-  Fig [g shows the orientation of the rotptwith respect to the
dientr JU(2) of the eld , it follows that the systerfi (12) with gjrection of the eld ¢, the desired angle, as tkejain changes
control (I3) has the origin globally attractive. (not controlling the orientation of the WMR th&pf-R matrix
method has been omitted from the plot). The second column
of Fig. [§ shows how the controlled variablegvolves. As it
can be gathered from the plots, as the valu& wfcreases the
V= L1+ ) WMR reacts faster to the change of direction of the eld due to
the obstacles presence, decreasing also the instantaneous value
As speci ed in sectioﬁ]zl, thel(2) eldis a C! functionthere- ©Ofthe error variable. Nevertheless, these improvements come
fore the derivative of (t) exists, is continuous and bounded be-With a drawback, increasing (seek = 0:5, Fig. [§ and FigJ7)
cause of the construction of the eld(z)_ Such a derivative is could cause a bit of chattering around the stabilization point due

Proof. Let us consider the variablgt); and consider the Lya-
punov functionV = 7 2, then:

bounded, then it is possible to nd a to the increased control ert as it can be noticed also in F[d. 7.
!
k % arctan2r yU(2;rxU(@ =(1  min) 5.2. More complex scenarios

_ o . Several simulations were run also for more complex scenar-
tohaveV 0. Since, of consequencg,T o time in which jos, in which the features of the equipped sensor for the imple-
the robot orientation is aligned with one of the gradient lines;mentation are taken into account. In the case the real WMR
under Assumptiop]1 and Theorems 2 @id 4, the controlier  has a LIDAR laser ranger nder. In Fig. Bb is shown the path

(I5) asymptotically stabilizes the WMR. followed by the WMR using the proposed modi cation of the
_ _ potential eld, while in Fig.[8& the strategy to decide which is
5.1. Simulations the “point” to use as reference for the obstacle. Basically, the

The results of simulation for the systejn|(14) with contr¢l (6) chosen point, green star in Fig._8a, is the averaging on the
and [11) and for the systein (12), [15) are shown in[Hig. 5. Thandy coordinates of the LIDAR sensed points in a prede ned
bounds for the inputs arg,ax = 1 and! ,ax = 3. Two cases are range; the radius is the distance amoritself and the farthest
presented: single obstacle (Fid.5a) and multiple obstacles (Figensed point of the scan, which leads to the de nition of the in-
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Figure 6: Evolution of the WMR orientatiog and desired
angle 4 and respective error variable dynamic

Figure 7: Input Signals for the derent methods

(a) WMR equipped with a LIDAR (b) The path followed by the WMR
laser range nder: obstacle de ni- in a complex scenario
tion

Figure 8: Results on complex environment

(a) Trajectories in the map (b) Trajectories in Cartesian
plane

Figure 9: The trajectories followed by the WMR in a real envi-
ronment

uence distancal that is the radius augmented of the diameter
of the robot.

5.3. Implementation

The presented strategy has been implemented on a Turtlebot2
(http://www.turtlebot.com/ ) mobile robot. The WMR
was equipped with a Hoku® (http://www.hokuyo-aut.
jp) UTM-30LX LIDAR device. The necessary libraries to
communicate with the WMR were found on Robotic Oper-
ating System (ROS) (www.ros.org). The same strategy used
in Section[5.P to simulate the LIDAR based obstacle detec-
tion algorithm has been implemented to get obstacles positions

i = (%;V)) in real time. The WMR avoided obstacles without
any previous knowledge of the environment, nevertheless some
oscillations have been noticed while moving in narrow corri-
dors. The trajectories followed in an @e-kind environment
are shown in Fi§.9a, the WMR objective is to reach the origin
of the global frame in the lower-right corner, a plot of the tra-
jectories in the Cartesian plane is given in 9b while Fig.
[19 shows the evolution of theg andqy through the origin. As
it can be seen the robot avoids the obstacles and passes trought
a narrow passage (80) to nally arrive to its destination (it is
useful to remark that the robot has no knowledge of the obsta-
cles a priori).



6. Conclusions

(8]
[9]
(10]
[11]
[12]
[13]
Figure 10: Evolution of theandgyvariables.

(14]

(15]

Local minima represent a problem when applying the potengg
tial eld method. This work presented a solution to avoid them,[17]
using a control theory result [19], which allowed the authors
to prove the ISS property for a system of two integrators feqls]
with the gradient of amad-hocdesigned eld. It has been for-

mally shown how the introduction of a small perturbatioas

(19]

input does not introduce new equilibriums, making the origin
the only attractive point for the system. Two drent strategies 20]
have been proposed and proven to apply the method to the oE)—
stacle avoidance problem for an unicycle-like WMR. The rst
strategy, linearize the output to directly apply the results synl?1]
thesized for the particle case, without having the capability tdzz]
control the orientation of the robot. A second strategy is, thus,

presented which uses the particle case results as a base to s}

sign a control. The control steers the robot in the direction of
the eld lines in nite time. Both formulations are presented in
simulations for a unicycle-likle WMR, it is shown how the task [24]
is achieved avoiding standing alone and multiple obstacles and
in complex environments. Real experiments with a Turtlebot[zs]
Il platform in an 0 ce environment are presented too, showing
some issues in presence of narrow passages and obstacles [e8} G. Oriolo, A. De Luca, M. Vendittelli, Wmr control via dynamic feedback
cessively close to the target, which did not prevent to reach the

goal.

[27]

The authors intend to improve the method to cancel any oscil-
lations, to augment the dimension to the 3D case and to extend

it to be used in the case of multi-agent systems.
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