T. Lozano-pérez and M. A. Wesley, An algorithm for planning collision-free paths among polyhedral obstacles, Communications of the ACM, vol.22, issue.10, pp.560-570, 1979.
DOI : 10.1145/359156.359164

Y. K. Hwang and N. Ahuja, Gross motion planning---a survey, ACM Computing Surveys, vol.24, issue.3, pp.219-291, 1992.
DOI : 10.1145/136035.136037

O. Souissi, R. Benatitallah, D. Duvivier, A. Artiba, N. Belanger et al., Path planning: A 2013 survey, Proceedings of 2013 International Conference on, pp.1-8, 2013.

E. Masehian and D. Sedighizadeh, Classic and heuristic approaches in robot motion planning a chronological review, Proceedings World Academy of Science Engineering and Technology, pp.101-106, 2007.

P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic determination of minimum cost paths, Systems Science and Cybernetics, IEEE Transactions on, vol.4, issue.2, pp.100-107, 1968.

E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.4, issue.1, pp.269-271, 1959.
DOI : 10.1007/BF01386390

O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, The International Journal of Robotics Research, vol.5, issue.1, pp.90-98, 1986.
DOI : 10.1177/027836498600500106

S. Lavalle and J. K. Jr, Rapidly-exploring random trees: Progress and prospects

D. Fox, W. Burgard, and S. Thrun, The dynamic window approach to collision avoidance, IEEE Robotics & Automation Magazine, vol.4, issue.1, pp.23-33, 1997.
DOI : 10.1109/100.580977

P. Fiorini and Z. Shillert, Motion Planning in Dynamic Environments Using Velocity Obstacles, The International Journal of Robotics Research, vol.17, issue.7, pp.760-772, 1998.
DOI : 10.1177/027836499801700706

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Borenstein and Y. Koren, The vector field histogram-fast obstacle avoidance for mobile robots, IEEE Transactions on Robotics and Automation, vol.7, issue.3, p.278288, 1991.
DOI : 10.1109/70.88137

I. Ulrich and J. Borenstein, VFH+: reliable obstacle avoidance for fast mobile robots, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), pp.1572-1577, 1998.
DOI : 10.1109/ROBOT.1998.677362

E. Rimon and D. Koditschek, Exact robot navigation using artificial potential functions, Robotics and Automation, IEEE Transactions on, vol.8, issue.5, pp.501-518, 1992.
DOI : 10.1109/70.163777

URL : http://repository.upenn.edu/cgi/viewcontent.cgi?article=1364&context=ese_papers

R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, 2004.

M. Khatib, Sensor-based motion control for mobile robots, 1996.

T. Rizano, D. Fontanelli, L. Palopoli, L. Pallottino, and P. Salaris, Global path planning for competitive robotic cars, 52nd IEEE Conference on Decision and Control, pp.4510-4516, 2013.
DOI : 10.1109/CDC.2013.6760584

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Hwang and N. Ahuja, A potential field approach to path planning, Robotics and Automation, IEEE Transactions on, vol.8, issue.1, pp.23-32, 1992.

D. Angeli and D. Efimov, On Input-to-State Stability with respect to decomposable invariant sets, 52nd IEEE Conference on Decision and Control, 2013.
DOI : 10.1109/CDC.2013.6760819

Y. Koren and J. Borenstein, Potential field methods and their inherent limitations for mobile robot navigation, Proceedings. 1991 IEEE International Conference on Robotics and Automation, pp.1398-1404, 1991.
DOI : 10.1109/ROBOT.1991.131810

C. Samson, Commande de véhicules non-holonomes pour le suivi de trajectoire et la stabilisation vers une posture désirée, Colloque Automatique pour les Véhicules Terrestres, 1993.

D. Panagou, H. Tanner, and K. Kyriakopoulos, Control of nonholonomic systems using reference vector fields, IEEE Conference on Decision and Control and European Control Conference, pp.2831-2836, 2011.
DOI : 10.1109/CDC.2011.6160922

J. Guldner, V. Utkin, H. Hashimoto, and F. Harashima, Tracking gradients of artificial potential fields with non-holonomic mobile robots, Proceedings of 1995 American Control Conference, ACC'95, pp.2803-2804, 1995.
DOI : 10.1109/ACC.1995.532361

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics -modelling, planning and control, pp.469-521, 2009.

G. Oriolo, A. De-luca, and M. Vendittelli, Wmr control via dynamic feedback linearization: design, implementation, and experimental validation, Control Systems Technology, IEEE Transactions on, vol.10, issue.6, pp.835-852, 2002.
DOI : 10.1109/tcst.2002.804116

P. Veelaert and W. Bogaerts, Ultrasonic potential field sensor for obstacle avoidance, IEEE Transactions on Robotics and Automation, vol.15, issue.4, pp.774-779, 1999.
DOI : 10.1109/70.782033

K. Pathak and S. , An integrated path-planning and control approach for nonholonomic unicycles using switched local potentials, Robotics, IEEE Transactions on, vol.21, issue.6, pp.1201-1208, 2005.
DOI : 10.1109/tro.2005.853484

O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, IEEE International Conference on Robotics and Automation, pp.500-505, 1985.
DOI : 10.1007/978-1-4613-8997-2_29

A. Hourtash and M. Tarokh, Manipulator path planning by decomposition: algorithm and analysis, Robotics and Automation, IEEE Transactions on, vol.17, issue.6, pp.842-856, 2001.
DOI : 10.1109/70.976006

K. Varsos and J. Luntz, Superposition methods for distributed manipulation using quadratic potential force fields, Robotics, IEEE Transactions on, vol.22, issue.6, pp.1202-1215, 2006.
DOI : 10.1109/tro.2006.882924

C. Connolly, J. B. Burns, and R. Weiss, Path planning using Laplace's equation, Proceedings., IEEE International Conference on Robotics and Automation, pp.2102-210610, 1990.
DOI : 10.1109/ROBOT.1990.126315

K. Sato, Deadlock-free motion planning using the Laplace potential field, Advanced Robotics, vol.7, issue.5, pp.449-461, 1992.
DOI : 10.1163/156855393X00285

A. Masoud, A harmonic potential field approach for navigating a rigid, nonholonomic robot in a cluttered environment, 2009 IEEE International Conference on Robotics and Automation, pp.3993-3999, 2009.
DOI : 10.1109/ROBOT.2009.5152177

R. Volpe and P. Khosla, Manipulator control with superquadric artificial potential functions: theory and experiments, IEEE Transactions on Systems, Man, and Cybernetics, vol.20, issue.6, pp.1423-1436, 1990.
DOI : 10.1109/21.61211

S. Ge and Y. Cui, New potential functions for mobile robot path planning, Robotics and Automation, IEEE Transactions on, vol.16, issue.5, pp.615-620, 2000.
DOI : 10.1109/70.880813

M. G. Park and M. , Real-time path planning in unknown environment and a virtual hill concept to escape local minima, 30th Annual Conference of IEEE, pp.2223-2228, 2004.

I. Ulrich and J. Borenstein, VFH/sup */: local obstacle avoidance with look-ahead verification, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000.
DOI : 10.1109/ROBOT.2000.846405

M. Okamoto and M. R. Akella, Novel potential-function-based control scheme for non-holonomic multi-agent systems to prevent the local minimum problem, International Journal of Systems Science, vol.46, issue.12
DOI : 10.1016/j.automatica.2013.03.005

D. Kim, H. Wang, G. Ye, and S. Shin, Decentralized control of autonomous swarm systems using artificial potential functions: analytical design guidelines, in: Decision and Control, CDC. 43rd IEEE Conference on, pp.159-164, 2004.

Y. M. and Z. Qiu, Motion planning for non-holonomic mobile robots using the i-pid controller and potential field, Intelligent Robots and Systems (IROS) 2014 IEEE/RSJ International Conference on, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071506

J. Chuang and N. Ahuja, An analytically tractable potential field model of free space and its application in obstacle avoidance, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.28, issue.5, pp.729-736, 1998.
DOI : 10.1109/3477.718522

Y. Nishimura, K. Tanaka, Y. Wakasa, and N. Yamashita, Stochastic Asymptotic Stabilizers for Deterministic Input-Affine Systems Based on Stochastic Control Lyapunov Functions, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.96, issue.8
DOI : 10.1587/transfun.E96.A.1695

J. M. Lee, Riemann Manifolds, an introduction to curvatures, Springers, 1997.

Z. Nitecki and M. Shub, Filtrations, Decompositions, and Explosions, American Journal of Mathematics, vol.97, issue.4, pp.1029-1047, 1975.
DOI : 10.2307/2373686

N. Bhatia and G. Szegö, Stability Theory of Dynamical Systems, 1970.
DOI : 10.1007/978-3-642-62006-5