N

HAL

open science

Graph-FCA in Practice
Sébastien Ferré, Peggy Cellier

» To cite this version:

Sébastien Ferré, Peggy Cellier. Graph-FCA in Practice. International Conference on Conceptual
Structures (ICCS), Jul 2016, Annecy, France. pp.107 - 121, 10.1007/978-3-319-40985-6_9 . hal-

01405491

HAL Id: hal-01405491
https://inria.hal.science/hal-01405491
Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01405491
https://hal.archives-ouvertes.fr

Graph-FCA in Practice

Sébastien Ferré* and Peggy Cellier***
*IRISA /Université de Rennes 1
**IRISA/INSA Rennes
Campus de Beaulieu, 35042 Rennes cedex, France
ferre@irisa.fr, cellier@irisa.fr

Abstract. With the rise of the Semantic Web, more and more relational
data are made available in the form of knowledge graphs (e.g., RDF, con-
ceptual graphs). A challenge is to discover conceptual structures in those
graphs, in the same way as Formal Concept Analysis (FCA) discovers
conceptual structures in tables. Graph-FCA has been introduced in a
previous work as an extension of FCA for such knowledge graphs. In this
paper, algorithmic aspects and use cases are explored in order to study
the feasibility and usefulness of G-FCA. We consider two use cases. The
first one extracts linguistic structures from parse trees, comparing two
graph models. The second one extracts workflow patterns from cooking
recipes, highlighting the benefits of n-ary relationships and concepts.

Keywords: Formal Concept Analysis, Knowledge Graph, Semantic Web,
Graph Pattern

1 Introduction

With the rise of the Semantic Web, more and more data are made available in
the form of RDF graphs. More generally, knowledge graphs (e.g., RDF graphs,
Conceptual Graphs) allow for the representation of complex information as a set
of entities interlinked with binary, and possibly n-ary, relationships. A challenge
is to discover conceptual structures in knowledge graphs, in the same way as
Formal Concept Analysis (FCA) discovers conceptual structures in tables [6].
Relational Concept Analysis (RCA) [11], an extension of FCA, shows interesting
results on relational data, in particular in software engineering [§].

Recently, Graph-FCA (G-FCA) [3] has been introduced as another extension
of FCA for knowledge graphs. The specifity of G-FCA is to extract n-ary concepts
from a knowledge graph using n-ary relationships. The intents of n-ary concepts
are graph patterns with a focus on one or several nodes, i.e. Projected Graph
Patterns (PGP). In practice, it allows to discover n-ary relational concepts. For
instance, in a knowledge graph that represents family members with a “parent”
relation, the “sibling” binary concept can be discovered, and described by a PGP
as “a pair of persons having a common father and a common mother”.

* This research is supported by ANR project IDFRAud (ANR-14-CE28-0012-02).

Georges Charlotte

1 parent “parent—parent parent\] 1 2
William Kate female X y
ent | parent
L parel arent

Cane) - Cemte) L= [

Fig. 1. (a) Graph context about the British royal family. Rectangles are objects, word-
labelled links are binary edges, and ellipses are other edges. (b) PGP defining the
“sibling” binary relation. Rectangles are variables, diamonds are projection tuples.

In this paper, algorithmic aspects of G-FCA and use cases are explored in
order to study the feasibility and usefulness of G-FCA. We address the problem
of an efficient generation strategy of concepts in order to avoid as much as
possible duplication in computation and in the presentation of results. We have
also conducted experiments on two use cases. The first one is the exploration of
linguistic structures in parse trees, comparing two graph modellings. The second
one is about the extraction of workflow patterns from cooking recipes

In the following, Section [2| recalls the main definitions of G-FCA. Section
discusses related work. Section [f] presents an algorithm to extract concepts from
a graph context. Section [5| shows two use cases.

2 Graph-FCA

Graph Contexts. We here recall the main definitions and theoretical results
of Graph-FCA (G-FCA) [3], and illustrate them with an example about the
British royal family. Whereas FCA defines a formal context as an incidence
relation between objects and attributes, G-FCA defines a graph context as an
incidence relation between tuples of objects and attributes.

Definition 1 (graph context). A graph context is a triple K = (0, A, I),
where O is a set of objects, A is a set of attributes, and I C O* x A is an
incidence relation between object tuples (o € O*E and attributes (a € A).

The graphical representation of a graph context uses objects as nodes, inci-
dence elements as hyper-edges, and attributes as hyper-edge labels. Note that
attributes can be interpreted as n-ary predicates, and graph contexts as First
Order Logic (FOL) models (without functions and constants). Different kinds

! Empty tuples are covered for the sake of generality but are not used in this paper.

of knowledge graphs, such as conceptual graphs, RDF graphs, and RCA con-
texts, can all be mapped easily to a graph context. Figure (a) shows the
graphical representation of a small graph context about the British royal fam-
ily. The objects are the royal family members (e.g., Harry, Georges). They are
represented as rectangles. The attributes are a binary relation ”parent” and
two unary relations "male” and ”female”. The edges ((Harry,Charles),parent),
((Georges,Kate),parent), and ((Harry),male) belong to the incidence relation.
More generally, a binary edge ((x,y), a) is represented by an edge from x to y
labelled by a. Other edges ((1,...,2n),a) are represented by ellipses labelled
by a, and having an edge labelled ¢ to each node x;.

Graph Patterns and Projections. Graph patterns generalize the incidence
relation of a graph context by taking its nodes in an infinite set of vari-
ables z,y,... € V. Therefore, a graph context can be seen as a graph pattern
by abstracting its objects as variables. A Projected Graph Patterns (PGP) is a
graph pattern with a tuple of distinguished variables.

Definition 2 (graph pattern and PGP). A graph pattern P C V* x A is a
set of directed hyper-edges with variables as nodes, and attributes as labels.

A projected graph pattern (PGP) is a couple Q = (T, P) where P is a graph
pattern, and T € V* is called the projection tuple. The arity of a PGP is the
length of T. We note Qi the set of PGPs having arity k.

A key aspect of G-FCA is that closure does not apply directly to graph
patterns but to PGPs. PGPs are analogous to anonymous definitions of FOL
predicates, and to SPARQL queries. They play the same role as sets of attributes
in FCA, i.e. as concept intents. Figure[I](b) shows a PGP defining the “sibling”
binary relation as two persons sharing a male parent (father) and a female parent
(mother). The projection tuple is (z,y). Its graphical representation is a diamond
node pointing to each projected variable.

Set operations are extended from sets of attributes to PGPs. PGP inclu-
sion C, is based on graph homomorphisms [7]. It is similar to the notion of
subsumption on queries [2] or rules [I0]. PGP intersection N, is defined as a
form of graph alignment, where each pair of variables from the two patterns
becomes a variable of the intersection pattern. It corresponds to the categorical
product of graphs (see [7], p. 116).

Definition 3 (PGP inclusion). A k-PGP Q1 = (Z1, P1) is included in a k-
PGP Qq = (73, P»), denoted by Q1 C4 Q2, iff there exists a mapping ¢ from P;-
nodes to Py-nodes s.t. ¢(x1) = Tz, and for every edge (7,a) € P1, (4(y),a) € Py,
Therefore, ¢ is an homomorphism from Py to P that preserves the projection

tuple. When Q1 C4 Q2 and Q2 C4 Q1, they are said equivalent (Q1 =4 Q2).

Definition 4 (PGP intersection). Let ¢ be an injective mapping from pairs
of variables to variables. The intersection two k-PGPs Q1 = (1, P1) and Q2 =
(T2, P2), denoted by Q1 Ny Q2, is defined as Q = (T, P), where T = Y(x1,2),
and P = {(4(y1,42),0) | a € A, (F1,a) € Pr, (J2,a) € P2, 71| = |12}

Object Relations. FCA sets of objects are extended to object relations, i.e. sets
of tuples of objects R C O, for some arity k. We note R}, the set of relations with
arity k. For instance, {(Charles, William), (Charles, Harry), (William, Georges)}
is an object relation with arity 2. Object relations are analogous to query answers
in SPARQL. Object relations form a powerset lattice for each arity.

Galois Connection and Graph Concepts. Based on previous definitions, the
following Galois connection can be defined and proved between PGPs and object
relations (see [3] for the proof). The connection from PGP to object relation is
analogous to query evaluation, and the connection from object relations to PGP
to relational learning [10]. In the definitions of Q" and R’ below, the PGP (o, 1) €
Q represents the description of an object tuple o by the relative position of
objects in the whole incidence relation I.

Theorem 1 (Galois connection). Let K = (O, A, I) be a graph context. For
every arity k, the following pair of mappings between PGPs QQ € Qf and object
relations R € Ry, forms a Galois connection.

Q :={ocO"|QCc, (5,1} R :=ng{(0,I)}ser

From there, concepts can be defined in the usual way, and proved to be
organized into lattices. The only restriction compared to FCA is that the concept
lattices may not be complete but this has no practical impact when data is finite.

Definition 5 (graph concept). A graph concept with arity k is a pair (R, Q),
made of an object relation R € Ry, (the extent) and a PGP Q) € Qy, (the intent),
such that R= Q" and Q =, R'.

Figure |2| displays a compact representation of the graph concepts about the
British royal family. Each node z identifies a unary concept (e.g., Q3e) along
with its extent (here, { Charlotte, Georges, Harry, William}). The concept intent
is the PGP ((z), P), where P is the subgraph containing node = and all white
nodes (called the pattern core, i.e. the nodes that appear in all represented con-
cepts). Concept Q3e is concept “child”, which, in the graph context, always
has a known father and mother, which always have a son. Note that the son
maybe either the child’s brother or the child himself because homomorphisms
need not be injective. Concept Qla is concept “female person”. Concept Q4i
uniquely characterizes Charlotte in the graph context as being female, having
parents, paternal grand-parents, and a brother. Note that there is no concept
that uniquely characterizes Harry because his description is a subset of William’s
description; hence concept Q4g gathering William and Harry. In total, there are
19 unary concepts (top and bottom concepts are not represented in Figure .
Figure[3|shows the lattice structure of all unary concepts. Binary concept intents
are obtained by picking two nodes to form a projection tuple, and by taking the
union of the two patterns. For example, concept (Q3a,Q3b) is concept “couple
sharing a son”. Concept (Q3e,Q3d) defines the relationship “having a brother”,
if we exclude self-relationships. Ternary and other n-ary concepts are formed
likewise.

QT Q2a Q3e

Q3d
Charlotte Georges Cliyitoiie Georges
Harry Georges &
ate William Harry ey
Charles William

1 1 érent t 2 arent/parent }arent 1
Q3c

Q3a Kate Q3b
@ @ William Diana Kate @

Charles William Diana

Charles

Q4j
Charlotte
Georges

Qdg
Harry

Kate
William

William

Diana
Charles

Fig. 2. Compact representation of graph concepts about the British royal family.
3 Related Work

G-FCA graph patterns bear much similarity with Conceptual Graphs
(CG) [13I], and we re-used their graphical notation. We adopted a slightly sim-
pler formalization by not distinguishing between concept types, relation types,
and individual markers, which are all modeled with attributes in G-FCA for
uniformity. The semantics of knowledge graphs (e.g., CG type hierarchies, RDF
Schema) is not natively handled but FCA techniques like scaling can easily be
applied to G-FCA. Those differences are minor, and the novelty of G-FCA lies
in projected graph patterns (PGPs), PGP intersection, and concept formation
from a knowledge graph. For comparison, reasoning with CGs is mostly based
on graph homomorphisms, typically between a source graph and a query graph.

G-FCA concept formation works differently from graph mining ap-
proaches [II5IT4] because they generally consist in finding frequent substruc-

tures in a collection of graphs (e.g., molecules), and they use subgraph isomor-
phism instead of homomorphisms.

Fig. 3. Lattice of the unary concepts about the British royal family.

Previous FCA extensions, Logical Concept Analysis (LCA) [4] and Pattern
Structures (PS) [5], have definitions for the Galois connection that look much like
those of G-FCA (Theorem . However, in those extensions, descriptions only
apply to single objects, and are independent one from the other. In G-FCA,
the whole knowledge graph serves as a description, not only for single objects
but also for tuples of objects. This allows for describing n-ary relationships be-
tween objects, as well as discovering new relationships (concepts) as complex
combinations of primitive ones.

Another FCA extension, Relational Concept Analysis (RCA) [I1], also dis-
covers concepts in a graph context. RCA contexts are limited to unary and
binary attributes, and RCA concepts are limited to unary concepts. However,
the main difference lies in the nature of concept intents: (possibly infinite) rooted
tree patterns instead of projected graph patterns. This implies that interesting
cycles in data cannot be expressed in RCA concepts (e.g., concept Q3e in Fig-
ure [2). Other advantages of G-FCA are (1) a declarative, rather than iterative,
characterization of concepts, and (2) a self-contained graph-based representation
of concept intents instead of cascading references to concepts.

4 Computation and Presentation of Graph Concepts

The computation of graph concepts is challenging because of the complexity
of computing with graphs. The fact that PGP inclusion is based on graph ho-
momorphism rather than on subgraph isomorphism like in most other work on
graph patterns [9/I5] is both an advantage and a drawback. The advantage is
that every intersection of two PGPs is a PGP, so that it is not necessary to
reason on sets of PGPs for computing concept intents. The drawback is that an
intersection @1 Ny Q2 may be larger than both 1 and Q)2 when an object has
several edges with the same attribute: e.g., a parent of several children. Another
difficulty is that it is more difficult to get canonical representations of PGPs
compared to FCA sets of attributes. Indeed, two PGPs may be equivalent al-

ERER R NN TR EC

Fig. 4. Graphs H and G1 are retracts of graph G2 but not G3. Graph H is the core
of graphs G1 and G2. Hence, graphs H, G1, and G2 are equivalent.

though their graph patterns are not isomorphic: e.g., graphs H, G1, and G2
in Figure [4 In the following, we first describe the naive version of bottom-up
generation of concepts up to some arity k (Section . We then sketch an algo-
rithm to factorize computations, and to generate a concept basis as a subset of
unary concepts from which other concepts can be derived by simple operations

(Section [4.2).

4.1 Naive Generation of Concepts

The adopted strategy is to generate concept intents in a bottom-up fashion,
based on the second half of the Galois connection: R’ := Ny {(0,I)}ser. The
principle for each arity k is to start from the set of all descriptions of k-tuples of
objects {(0,1) | o € OF}, and to close it by application of PGP intersection N,. It
is easy to see why this naive generation is far from optimal. For example, in the
royal family context, the generation of the unary concepts from the 7 objects

already generates C? = 21 PGP intersections, and hence 21 alignements of
the incidence relation on itself. It gets exponentially worse with concept arity
increasing.

In order to detect when an intent has already been generated, each PGP Q =
(Z, P) (including object tuple descriptions) must be given the canonical repre-
sentation of its equivalence class. That canonical representation is computed in
two steps. First, the minimal retract R of the graph pattern P that contains
the projected nodes T must be found. Second, the nodes of R are numbered in
a canonical way assuming a fixed ordering of attributes. Roughly, a retract of
a graph G is a subgraph of G that conveys the same information (for details
see [7], p. 112). In Figure 4} graphs H and G1 are retracts of graph G2 but not
G3. Indeed, stating several times that x is in a a-relation to something adds
nothing to stating it once because variables y1, y2, and y3 can map to the same
object in the graph context. On the contrary, G3 states that = is both in a a
relation and a b-relation, and cannot retract to H: edge ((z,y3),b) cannot fold
onto edge ((z,y2),a). A core is a minimal retract. In Figure [4] graph H is the
core of graphs G1 and G2. If there are several cores, any of them can be taken
as they are isomorphic.

4.2 Efficient Generation of a Concept Basis

In this section, we sketch an algorithm for a more efficient generation of concepts
(Algorithm. The objective is not quantitative performance (this is let to future
work), but qualitative performance. By that we mean the orderly generation of
concepts avoiding as much as possible duplication both in computation and in
presentation of results.

Algorithm 1 Generation of concepts

Require: K = (0, A,I) is a graph context
Ensure: Concepts is the concept basis, a set of unary concepts (R, Q)@QP where each
concept intent is presented as a subgraph of pattern P
1: Concepts + ()
2: Patterns < {I} // a queue of patterns to process
3: for all P € Patterns do

4: for all new P, € ConnectedComponents(P Ny I) do

5: P, < removeDuplicate N odes(P,)

6: for all new P, € Retracts(Pa) do

7 X < Py.nodes \ UReRetmcts(Pa)\Rng R.nodes // nodes inducing P,
8: if X # 0 then

9: for all x € X do

10: Q < ((z),P); R+ Q' // intent and extent

11: Concepts + {(R,Q)QP,} U Concepts

12: end for

13: Patterns < { Py} U Patterns // queuing P, for intersection
14: end if

15: end for

16: end for

17: end for

Generation of Graph Patterns. Instead of generating PGPs directly by
PGP intersection, we first generate alignments (categorical products) of graph
patterns (P} x P»), ignoring at this stage projection tuples (Step 4). Thus, the
incidence relation is aligned onto itself only once (I x I). The graph product
may have several connected components. However, if a concept has an intent
whose pattern is made of several connected components, then each component
is closed, hence forms a concept intent. Therefore, non-connected concepts could
be composed from connected ones, and we choose to only generate connected
PGPs, and hence only connected patterns. To summarize, whenever a product
of two connected patterns is computed, each connected component P, of the
product becomes an input for the next stage (Step 4).

Generation of Concept Intents. For each connected graph pattern P,, and
for each projection tuple T taken from P,-nodes, the PGP (Z, P,) is a concept

intent. The number of projection tuples can be reduced by abstracting over the
tuple ordering, and by considering projection sets instead of projection tuples.
Indeed, every permutation of the projection tuple of a concept intent obviously
leads to another concept intent. For each projection set X, the PGP (X, P,) can
be minimally retracted to (X, P,) by choosing the smallest retract P, of P, that
contains nodes X. We say that X induces retract P,. The generation of PGPs can
be optimized for two reasons. First, several projection sets may induce the same
retract; second, if a projection set X induces retract Py, then every projection
set Y of Py-nodes that includes X induces the same retract P,. A more efficient
strategy is therefore to first generate all retracts of P, (Step 6), and then for each
retract P, to find the minimal projection sets that induce P, (Step 7, after second
optimization below). A non-minimal projection set could simply be obtained by
extending it with other nodes of P,. For example, from unary concept Q3e in
Figure [2| one could define the binary relationship “brother” by extending the
projection set to Q3d. Note that all retracts P, contains the core P, of P, as a
subgraph. Generating all retracts amounts to computing all matches of P, onto
itself. Finding the minimal projection sets amounts to enumerating the minimal
subsets of P,-nodes that are not included in any retract that is smaller than P.
In this way, all concept intents sharing a same graph pattern are found together
(Steps 10-11). For an even more compact presentation, concepts can further be
grouped by the core P, of their pattern. Finally, each new retract P, is fed as
input to the previous stage (Step 13).

Optimization in case of symmetries. In case of 1-n or n-n relationships (e.g.,
persons having several children), the product graph patterns P, often exhibit
duplications in the sense that several non-adjacent nodes play exactly the same
role in the pattern: e.g., nodes yl1 and 2 in graph G3 of Figure Duplica-
tions can lead to a combinatorial explosion in the generation of all retracts of a
pattern P,. The optimization consists in first partitioning P,-nodes by grouping
those that play the same role, and then keeping only one node out of each group
(Step 5). The only consequence is to miss the concept intents that have several
projected nodes from the same group. However, those intents could easily be
retrieved by duplicating projected nodes in generated intents. For example, the
binary concept “parent couple” (Q3c,Q3c) is obtained by duplicating the unary
concept “parent” Q3c (see Figure [2)).

Optimization by reduction to unary concept intents. It can be proved that for
a retracted pattern P, induced by a projection set X, P, is the union of the
retracts induced by each projected node z € X. Conversely, the union of the
retracts induced by a row of projected nodes = € X is the retract induced by X.
Therefore, n-ary intents could be derived from the set of unary intents extracted
from a connected pattern P, (Step 9). For that reason, it is important, in the
representation of generated intents, to collectively show the patterns of unary
intents as a subgraph of P, (hence the notation @QP, at Step 11), rather than
individually.

4.3 Implementation

We have implemented the above algorithm as a prototype in about 1700 lines of
OCamﬂ It takes as input a graph context, i.e. a set of directed hyper-edges. It
returns as output a compact representation of the concept basis, like in Figure 2}
For each pattern, its core nodes are shown in white while other projection nodes
are shown in grey. Each node represents a unary concept, and is identified by
the pattern number and a letter (e.g., Qla). The graph pattern of the concept
intent is the subgraph induced by the set of nodes made of: the projected node =,
the core nodes, and possibly other nodes between = and core nodes (indicated
between brackets after x’s label). N-ary concepts can be derived by picking sev-
eral nodes, and merging their patterns. The prototype has options for specifying
maximum intent pattern size (nb. of nodes), for computing and displaying unary
concept extents, and for formatting results in graphical form (.dot file) or in
Prolog-like textual form.

5 Use Cases

In this section, two use cases are presented in order to show the interest of G-
FCA concepts and their PGPs. The first one extracts linguistic structures from
parse trees, comparing two graph modellings. The second one extracts workflow
patterns from cooking recipes, highlighting the benefits of n-ary relationships.

5.1 Extraction of Concepts in Parse Trees

We have conducted experiments on the poem of the french poet Charles Baude-
laire named “La beauté’ﬂ The goal of those experiments is the extraction of
syntactic structures appearing in the text. We use the french chunker of the tool
Treetagger [12]E| in order to automatically build the parse tree of the text.

From the computed parse tree, we propose two modellings to represent the
poem: the first model represents the parse tree without taking into account
the order between words, only the composition relation, whereas the second
model explicitly encodes the order between words in addition to the composition
relation. Both modellings are presented in the sequel and then the extracted
patterns are discussed.

Composition Modelling In the first representation of the text, edges represent
a ”contain” relation between phrases and words. For instance, Figure [f] shows
an excerpt of the graph of the sentence ”Je suis belle, 6 mortels !”. In this
representation, the sentence (”s”) is described as containing a verbal nucleus
("vn”) which in turn contains: (1) a verb ("ver”) which has a word (7suis”),

a lemma (7suivre” or ”étre”) and another part-of-speech (POS) information

2 Source code, datasets, and concept sets at https://bitbucket.org/sebferre/g-fca
3 In “Les Fleurs du mal”. Charles Baudelaire. 1857
4 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

https://bitbucket.org/sebferre/g-fca
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

71NN

(proper| \pro < lem;a Je>
\ 2 3
o
S A
(lemma suivre- etrer \ver werpres
verpres)
vn SLUS fﬁ
Fig. 5. Excerpt of the composition modelling
for the phrase ”Je suis”. Fig. 6. Excerpt of the sequen-
tial modelling for the phrase ”Je
suis”.
P1 P3 Pex Pseq Pcomp
Q34c Q81b Q25¢ Q17d Q70c¢ Q4c¢
®) (6) (3) (13) (6) ()
prp \nom np \np dj
Q34b| [Q8la Q25a| [Q25b| [Q17c]| [Q17b] [Q70b
(8) (6) (3) (5) (27) (23) (6)

prp lemmajword [lemma\word nom om
Q34a| |Q8lc XL‘ IJ
®) (6 _I

Fig. 7. Concepts extracted from the poem.

("verpres”, i.e. verb in present) ; (2) a pronoun ("pro”) which has a word (”je”),
a lemma (”je”) and another part-of-speech information (”proper”, i.e. personal
pronoun) ; and two other words (a punctuation and an adjective). Note that the
part-of-speech tags ("ver”, ?vn”, "proper”, etc) are Treetagger tags.

Sequential Modelling In the second representation, nodes represent positions
between words, and edges represent phrases and words between those positions.
POS tags and lemmas are used as attributes. For instance, Figure [6] shows an
excerpt of the graph of the sentence ”Je suis belle, 6 mortels !”. For instance, the
word ”Je” is represented by three edges from the top node: attributes ”proper”,
"pro” (POS information), and ”lemma-je” (lemma). The fact that edge ”vn”
overlaps edges "pro” and ”ver” represents composition.

Discussion about extracted patterns When extracting concepts from both repre-
sentations, we note that more patterns are extracted from the sequential model

than from the composition model. For instance, with parameter maxsize = 10
(maximum number of nodes per PGP), 284 patterns are extracted in the se-
quential model instead of 68 patterns for the composition mode]ﬂ Indeed, in the
sequential model, the graph structure is rigid, the order between words is really
important. When concepts are extracted, the sequential model thus generates
more distinct patterns. For instance, let us consider P1, P2 and P3 in Figure [7}
P1 and P2 are extracted from the sequential model whereas P3 is extracted
from the composition model. The three patterns represent the association be-
tween a preposition and a noun. However the composition modelling generates
only one concept when the sequential modelling generates two concepts taking
into account the ordering of the two words.

Some structural information about the text can be retrieved in the concepts.
For instance, in Figure [7] P.., extracted from the composition model, exhibits
an obvious pattern in the poem, i.e. a noun phrase (np) which contains a noun
(nom). The size of the extent of unary concepts is given between brackets. Con-
cept (Q17b) can be read as ”a noun phrase that contains a noun and that belongs
to something”. Note that the size of the extension of (Q17b) is 23 objects. Con-
cept (Q17a) can be read as ”a noun that belongs to a noun phrase that belongs
to something”. Note that the size of the extension of (Q17a) is 24 objects. The
size of (Q17a) is thus greater than the size of (Q17b), it means that an object in
the extension of Q17b contains not only one but two nouns (”un réve de pierre”).
Concept (Q17c¢) can be read as ”a noun phrase that belongs to something that
contains a noun phrase that contains a noun”. Note that the size of the extension
of (Q17c¢) is 27 objects. This concept is interesting, indeed it exhibits the fact
that a noun phrase does not necessarily contain a noun in this text, for instance
it can also be a pronoun: ”ot” (where), “chacun” (everyone). It also shows that
two noun phrases can be found in the same structure.

The information conveyed by the two modellings are not the same, however
both representations are interesting. For instance, let us consider the two pat-
terns Psey and Py in Figure |Z| that represent the association of a noun and
an adjective. The size of the extension of concepts in Py, is 6 and the size of
the extension of concepts in Py, is 7. Indeed, the six phrases that match Py,
also match P.opp. However the phrase "toutes choses plus belles”, which con-
tains an adverb (” plus”) between the noun and the adjective, only match Qcomp-
The sequential modelling allows to take into account the order between words,
it is more accurate whereas the composition modelling allows for more general
patterns. The choice of the more appropriate modelling depends on the task.

5.2 Extraction of Concepts in Recipes

We have also conducted experiments on recipes. Four recipes are modelised:
chocolate apple pie, strawberry-apple pie, mango-coconut pie and condoeuvre
(Rhubarb pie or gooseberry pie). In this example, n-ary relations are used to

5 Note that, the extraction of the 284 patterns in the sequential model takes about 4s
and the extraction of the 68 patterns in the composition model takes about 20s.

QI3k| |QI3c| [QI3d]| [QI3a| |QI3e
OO NIRCORNC)

1

Fig. 8. Three concepts extracted from the recipes.

represent temporal constraints between actions, and entities manipulated by ac-
tions. For instance, "put_on” is a quaternary relationship relating (1) start, (2)
end, (3) object (e.g., ”fruit”), and (4) destination (e.g., "pastry”). All action at-
tributes use a similar schema (e.g., ”cut”, ”bake_for”); other attributes represent
types of ingredients or ustensils (e.g., ”cream”, ”dish”). From those four recipes,
43 patterns are extracted in less than 1s. An excerpt is given in Figure [8] Some
patterns are very small and very frequent as (a) in Figure |8} They represent
ingredients (e.g., sugar, cream) or atomic actions (e.g., ”put something on some-
thing”, ”pour on”). Some patterns are larger but less frequent as (b) in Figure
They represent refinements of previous patterns or very specific actions (e.g.,
”pour cream on something”). Finally, some patterns are large and still frequent
as (c) in Figure (8] They correspond to the abstraction of many recipes. In this
example, the pattern represents an abstraction of a pie recipe. It means: ”cut
the fruit in order to put it on something (often a pastry), which is put on a
dish, which is baked, after preheating the oven, in order to obtain a pie”. As an
example of n-ary concept, the ternary concept (Q13j,Q13a,Q13c) can be used
to relate a pie (Q13j) to the kind of base (Q13a) and fruit (Q13c) it is made of,
while abstracting over other details of the recipe.

6 Conclusion

In this paper, we have proposed an algorithm to compute graph concepts in
knowledge graphs. In particular, we tackle the problem of the generation and
representation of the PGPs representing concept intents in a compact way. We
also describe two use cases. The first use case, on textual data, allows to discuss
two kinds of modelling (with or without sequentiality). The other use case, on

cooking recipes, shows the interest of G-FCA for n-ary relations. With those
two use cases we have seen that PGPs offer expressive patterns that can mix
sequentiality, temporality, and composition thanks to n-ary relations. However,
the set of extracted concepts can be large. Further work is to find a way to
facilitate, for a user, navigation among them.

References

10.

11.

12.

13.

14.

15.

. Chein, M., Mugnier, M.L.: Graph-based knowledge representation: computational

foundations of conceptual graphs. Advanced Information and Knowledge Process-
ing, Springer (2008)

Chekol, M.W., Euzenat, J., Geneves, P., Layaida, N.: SPARQL query containment
under RDF'S entailment regime. In: Automated Reasoning (IJCAR), pp. 134-148.
Springer (2012)

Ferré, S.: A proposal for extending formal concept analysis to knowledge graphs.
In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) Int. Conf. Formal Concept
Analysis (ICFCA). pp. 271-286. LNCS 9113, Springer (2015)

Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. In:
Mineau, G., Ganter, B. (eds.) Int. Conf. Conceptual Structures. pp. 371-384. LNCS
1867, Springer (2000)

Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In: Delugach,
H.S., Stumme, G. (eds.) Int. Conf. Conceptual Structures. pp. 129-142. LNCS
2120, Springer (2001)

Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York. (1999)

Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph
symmetry, pp. 107-166. Springer (1997)

Huchard, M.: Analyzing inheritance hierarchies through formal concept analysis:
A 22-years walk in a landscape of conceptual structures. In: MechAnisms on SPE-
cialization, Generalization and inHerItance (MASPEGHI). pp. 8-13. ACM (2007)
Kuznetsov, S.0., Samokhin, M.V.: Learning closed sets of labeled graphs for chem-
ical applications. In: Kramer, S., Pfahringer, B. (eds.) Int. Conf. Inductive Logic
Programming. pp. 190-208. LNCS 3625, Springer (2005)

Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19,20, 629-679 (1994)

Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept
analysis: mining concept lattices from multi-relational data. Annals of Mathematics
and Artificial Intelligence 67(1), 81-108 (2013)

Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Int. Conf.
New Methods in Language Processing (1994)

Sowa, J.: Conceptual structures. Information processing in man and machine.
Addison-Wesley, Reading, US (1984)

Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD Ex-
plor. Newsl. 5(1), 59-68 (Jul 2003), http://doi.acm.org/10.1145/959242.959249
Yan, X., Han, J.: Closegraph: mining closed frequent graph patterns. In: ACM Int.
Conf. Knowledge discovery and data mining (SIGKDD). pp. 286-295. ACM (2003)

http://doi.acm.org/10.1145/959242.959249

	Graph-FCA in Practice

