Evolutionary Algorithm for Decision Tree Induction

Abstract : Decision trees are among the most popular classification algorithms due to their knowledge representation in form of decision rules which are easy for interpretation and analysis. Nonetheless, a majority of decision trees training algorithms base on greedy top-down induction strategy which has the tendency to develop too complex tree structures. Therefore, they are not able to effectively generalise knowledge gathered in learning set. In this paper we propose EVO-Tree hybrid algorithm for decision tree induction. EVO-Tree utilizes evolutionary algorithm based training procedure which processes population of possible tree structures decoded in the form of tree-like chromosomes. Training process aims at minimizing objective functions with two components: misclassification rate and tree size. We test the predictive performance of EVO-Tree using several public UCI data sets, and we compare the results with various state-of-the-art classification algorithms.
Type de document :
Communication dans un congrès
Khalid Saeed; Václav Snášel. 13th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. Springer, Lecture Notes in Computer Science, LNCS-8838, pp.23-32, 2014, Computer Information Systems and Industrial Management. 〈10.1007/978-3-662-45237-0_4〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01405549
Contributeur : Hal Ifip <>
Soumis le : mercredi 30 novembre 2016 - 10:42:28
Dernière modification le : jeudi 1 décembre 2016 - 01:04:16
Document(s) archivé(s) le : lundi 27 mars 2017 - 07:44:07

Fichier

978-3-662-45237-0_4_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Dariusz Jankowski, Konrad Jackowski. Evolutionary Algorithm for Decision Tree Induction. Khalid Saeed; Václav Snášel. 13th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. Springer, Lecture Notes in Computer Science, LNCS-8838, pp.23-32, 2014, Computer Information Systems and Industrial Management. 〈10.1007/978-3-662-45237-0_4〉. 〈hal-01405549〉

Partager

Métriques

Consultations de la notice

93

Téléchargements de fichiers

471